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In a D-dimensional Hilbert space, a symmetric informationally complete POVM is a
set of one-dimensional projectors Πα = |ψα〉〈ψα|, α = 1, . . . , D2, satisfying

I =
1
D

∑
α

Πα =
1
D

∑
α

|ψα〉〈ψα| (1)

(the I/D is dictated by taking the trace) and

tr(ΠαΠβ) = |〈ψα|ψβ〉|2 = µ2 for α 6= β. (2)

We can easily derive the value of µ by squaring Eq. (1) and taking the trace of the result

D = tr(I2) =
1

D2

∑

α,β

tr(ΠαΠβ) =
1

D2

(
D2 + µ2D2(D2 − 1)

)
. (3)

This gives

µ2 =
1

D + 1
. (4)

It is easy to show that the projectors Πα are linearly independent. [This is required
for an informationally complete POVM; in this symmetric case, we need not assume it
since it follows from Eqs. (1) and (2).] Suppose that

0 =
∑
α

cαΠα . (5)

This implies that for each β,

0 =
∑
α

cα〈ψβ |Πα|ψβ〉 = cβ +µ2
∑

α 6=β

cα = (1−µ2)cβ +µ2
∑
α

cα =
1

D + 1

(
Dcβ +

∑
α

cα

)
,

(6)
and, hence, that

cβ = − 1
D

∑
α

cα ≡ A (7)

is independent of β. But then Eq. (7) shows that A = 0 and thus that all the cβ ’s are
zero. We conclude that the projectors Πα are linearly independent, and there being D2 of
them, they make up an operator basis.

Another property that we get for free is the following. Consider the superoperator

G =
∑
α

Πα ¯Πα =
∑
α

|ψα〉〈ψα| ¯ |ψα〉〈ψα| . (8)
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Applying this operator to one of the projectors, we get

G(Πβ) =
∑
α

Πα|〈ψα|ψβ〉|2

= Πβ +
1

D + 1

∑

α 6=β

Πα

=
D

D + 1
Πβ +

1
D + 1

∑
α

Πα

=
D

D + 1
(
Πβ + I

)
.

(9)

Since the projectors Πβ are a complete set of operators, this implies that G is the special
superoperator

G =
D

D + 1
(I + I

)
, (10)

which is specified up to a scale factor by the properties (i) G = G† = G× = G# and (ii) G
commutes with all unitaries, i.e., U† ¯ U ◦ G ◦ U ¯ U† = G. The scale factor comes from
Tr(G) = D2.

We can now find the (left-right) inverse of G in the following way. Use I = I ¯ I/D +
T = I/D + T , where T is the (left-right) projector onto trace-free operators, to write G
in terms of its (left-right) eigendecomposition

G = I +
D

D + 1
T = D

I ¯ I

D
+

D

D + 1
T , (11)

from which it easy to find the inverse:

G−1 =
1
D

I ¯ I

D
+

D + 1
D

T =
I

D2
+

D + 1
D

T =
1
D

(
(D + 1)I− I

)
. (12)

This allows us to write

Qα ≡ G−1|Πα) =
1
D

(
(D + 1)Πα − I

)
(13)

and
I = G−1G =

∑
α

|Qα)(Πα| = 1
D

∑
α

(
(D + 1)Πα ¯Πα − I ¯Πα

)
. (14)

If you didn’t like the derivation of this equation, it can easily be checked as follows:

1
D

∑
α

(
(D + 1)Πα ¯Πα − I ¯Πα

)
=

D + 1
D

G − I ¯ I = I + I− I = I . (15)
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Equation (14) is the result we are looking for. It allows us to write any state ρ in the
form

ρ = I|ρ) =
∑
α

(
(D + 1)Πα − I

) (Πα|ρ)
D

=
∑
α

(
(D + 1)Πα − I

) tr(Παρ)
D

=
∑
α

pα

(
(D + 1)Πα − I

)

= −I + (D + 1)
∑
α

pα|ψα〉〈ψα|

=
∑
α

(
(D + 1)pα − 1

D

)
|ψα〉〈ψα| ,

(16)

where pα = tr(Παρ)/D is the probability to find result α. Putting it slightly differently,
we can also write

ρ + I

D + 1
=

∑
α

pα|ψα〉〈ψα| . (17)

Notice that
qα = (Qα|ρ) = tr(Qαρ) = (D + 1)pα − 1

D
(18)

is a normalized quasidistribution, since it is generally takes on negative values. Any in-
formationally complete POVM generates measurement probabilities pα and a unique qua-
sidistribution qα that comes from expanding the state in terms of the projectors in the
POVM. Symmetric informational complete POVMs have a uniquely simple relation be-
tween the measurement probabilities and the quasidistribution, which allows one to write
down immediately the quasidistribution expansion of an arbitrary state in terms of the
measurement probabilities.

For D = 2 (qubits) we can write

Πα =
1
2
(I + ~nα · ~σ) , (19)

and the universal value, µ = 1/
√

3, of the inner product translates to

~nα · ~nβ = −1
3

for α 6= β. (20)
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This means that the four Bloch vectors lie at the vertices of a tetrahedron. One choice is

~n1 = ~e3 , θ = 0, φ arbitrary,

~n2 =

√
8
9
~e1 − 1

3
~e3 , cos θ = −1/3, cos(θ/2) = 1/

√
3, sin(θ/2) =

√
2/3, φ = 0,

~n3 = −
√

2
9
~e1 +

√
2
3
~e2 − 1

3
~e3 ,

cos θ = −1/3, cos(θ/2) = 1/
√

3, sin(θ/2) =
√

2/3, φ = 2π/3,

~n4 = −
√

2
9
~e1 −

√
2
3
~e2 − 1

3
~e3 ,

cos θ = −1/3, cos(θ/2) = 1/
√

3, sin(θ/2) =
√

2/3, φ = −2π/3.

(21)

Using the convention

|~n〉 = e−iφ/2 cos(θ/2)|0〉+ eiφ/2 sin(θ/2)|1〉 , (22)

we have
|~n1〉 = |0〉 ,

|~n2〉 =
1√
3
|0〉+

√
2
3
|1〉 ,

|~n3〉 = e−iπ/3 1√
3
|0〉+ eiπ/3

√
2
3
|1〉 ,

|~n4〉 = eiπ/3 1√
3
|0〉+ e−iπ/3

√
2
3
|1〉 .

(23)

For D = 3 (qutrits), we can use the following nine pure states to construct the one-
dimensional projectors (I believe Bill Wootters thought up these states; I certainly got the
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idea from him):

|ψ1〉 =
1√
2

(|1〉+ |2〉) , θ = π/2, φ = π/4, χ1 = 0, χ2 = 0,

|ψ2〉 =
1√
2

(
ω|1〉+ ω∗|2〉) , θ = π/2, φ = π/4, χ1 = 2π/3, χ2 = 4π/3,

|ψ3〉 =
1√
2

(
ω∗|1〉+ ω|2〉) , θ = π/2, φ = π/4, χ1 = 4π/3, χ2 = 2π/3,

|ψ4〉 =
1√
2

(|1〉+ |3〉) , θ = π/4, φ = 0, χ1 = 0, χ2 arbitrary,

|ψ5〉 =
1√
2

(
ω|1〉+ ω∗|3〉) , θ = π/4, φ = 0, χ1 = 4π/3, χ2 arbitrary,

|ψ6〉 =
1√
2

(
ω∗|1〉+ ω|3〉) , θ = π/4, φ = 0, χ1 = 2π/3, χ2 arbitrary,

|ψ7〉 =
1√
2

(|2〉+ |3〉) , θ = π/4, φ = π/2, χ1 arbitrary, χ2 = 0,

|ψ8〉 =
1√
2

(
ω|2〉+ ω∗|3〉) , θ = π/4, φ = π/2, χ1 arbitrary, χ2 = 4π/3,

|ψ9〉 =
1√
2

(
ω∗|2〉+ ω|3〉) , θ = π/4, φ = π/2, χ1 arbitrary, χ2 = 2π/3,

(24)

where
ω ≡ e2πi/3 (25)

and the coördinates are those of the Bloch-sphere-like representation of qutrit states. The
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corresponding Bloch vectors are

~n1 =
√

3
2

~e1 +
1
2
~e8 ,

~n2 = −
√

3
4

~e1 +
3
4
~e2 +

1
2
~e8 ,

~n3 = −
√

3
4

~e1 − 3
4
~e2 +

1
2
~e8 ,

~n4 =
√

3
4

~e3 +
√

3
2

~e4 − 1
4
~e8 ,

~n5 =
√

3
4

~e3 −
√

3
4

~e4 +
3
4
~e5 − 1

4
~e8 ,

~n6 =
√

3
4

~e3 −
√

3
4

~e4 − 3
4
~e5 − 1

4
~e8 ,

~n7 = −
√

3
4

~e3 +
√

3
2

~e6 − 1
4
~e8 ,

~n8 = −
√

3
4

~e3 −
√

3
4

~e6 +
3
4
~e7 − 1

4
~e8 ,

~n9 = −
√

3
4

~e3 −
√

3
4

~e6 − 3
4
~e7 − 1

4
~e8 .

(26)

By virtue of
1
4

= µ2 = tr(ΠαΠβ) =
1
3
(1 + 2~nα · ~nβ) for α 6= β, (27)

we have that that these vectors satisfy

~nα · ~nβ = −1
8

for α 6= β. (28)

Notice that you can’t do the D = 4 case by taking the tensor product of the tetrahedral
vectors for two qubits.

6


