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Most of the following is based on Chapters 3 and 12 of Elements of Information Theory
by Thomas M. Cover and Joy A. Thomas.

Chebyshev’s inequality.

P(|x|>a) < > where x = (z1,...,2p)
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Corollary.
(1x— (x)*)
P(jx— (0| > a) < X2
i.i.d.’s. Let x = (z1,...,zy) be a sequence of N draws from a probability distribution
p = (p1,...,pr) for L alternatives. Each sequence has a vector of occurrence numbers
ny = (ny,...,nr) = n and an associated vector of frequencies f = (f1,..., fr), where

f; = nj/N. Sequences with the same occurrence numbers (frequencies) make up a type.
The probability of sequence x is

P(x) =pi"---pr"
and the probability of type f is

N! " n
P(n):mm Pp -



It is easy to calculate means and second moments for the occurrence numbers and frequen-

cles:
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One thus obtains the correlation matrix of the occurrence numbers,
(AnjAng) = (njng) — (ng)(nk) = N(pjdje — pijpk) »

and the means and correlation matrix of the frequencies,

(F)=p;. (AfyAfy = PPt

Weak law of large numbers

(If—p|*) <1/N
Proof.




Weak law of large numbers. A second version.. For any d,¢ > 0, there exists an
Ny such that for all N > N,

P(fj—pjl<e i=1,...,L) > P([f —p|<e) >1-34.
Proof. Start with

P(f—pl<e) =1-P(f—p| = =1 L@ !

Given ¢ and €, choose Ny > 1/d¢2. [ |
The strong law of large numbers is a much stronger statement that sequences whose
frequencies limit to the probabilities have probability 1 in the infinite limit.

Typical sequences.  The set of typical sequences of length N, denoted TYP.(NV), is
defined by

TYP.(N) = {x | 27 VH®IH < p(x) < 27N HEP)=dY = Ix | |~log P(x)/N-H(p)| < ¢} ,
where

L
—> “pjlogp;
j=1

is the entropy of the distribution p. Notice that
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Typical-sequence theorem. For any §,¢ > 0, there exists an Ny such that

1. For all N > N,
P(TYPe(N)) >1—-9;

2. For all N the number of sequences in TYP.(N) satisfies
ITYP(N)| < 2NH @)
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3. For all N > N,
ITYP.(N)| > (1 — §)2NH P~

Proof.
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we have that

P(TYP.(N)) =1— P(] —log P(x)/N — H(p)| > ¢)
(| = log PGx)/N — H(p)P)

Given ¢ and €, choose

L
1 2 2
Noz 5 (S myllogn? - ).
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Then, for all N > N, we have

P(TYP.(N)) >

L
1
Noo? <ij(logpj)2 — H2> >1-90.
j=1
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3. Choosing Ny as in 1, we have for all N > N,

1 -0 < P(TYP.(N))

= > P

xETYP(N)

< 3 2 NHEE-d
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= |TYP.(N)[2-NH®) =]
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Type classes. As noted above, sequences x with the same occurrence numbers n—i.e.,
with the same frequencies f—make up a type. Formally, we define the type T¢(NN) to be
the set

T¢(N) = {x|nx = Nf} .

The number of sequences in the type T¢(N) is given by a multinomial coefficient:

N!
(Nf)t--- (N fL)t

T¢(N)| =

The probability for any sequence in T¢(N) is given by

P(X) — pivfl .. .pgfL — 9NI[filogpi+--+frlogpr] _ o—N[H(f)+H(f||p)] ’
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where

H(f[|p) =
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log P(x)
N
is the relative entropy of the distributions f and p.

= H(f)



It is easy to show that

with equality holding if and only if f = p. (Here we use —logx = —Inz/In2 > (1—z)/In2,
with equality if and only if z = 1.) When f = p + Af is close to p, the relative entropy
becomes the Wootters distance:

L
A
H(Ep) = s > fi)"

255 P

Notice that the difference between the entropies of f and p has two parts, one the relative
entropy and the other the difference that defines typical subsets:

H(E) - H(p) = ~H(f]|p) - ZAfg gy = ~(elp) + (5 - e )

The probability of the type T¢(IN) can be expressed as
P(Tx(N)) = P(n) = |Te(N)|pY 7 - -pY 0 = |Tp(N) |2~ NHOFHER)]
Notice that the probability is bounded by
P(T¢(N)) < |Te(N) |27 VHE)

with equality holding if and only if p = f.



Number of types. Let Py be the set of types for sequences of length N. The possible
occurrence numbers are in one-to-one correspondence with binary strings of the form

0...010...01 ... 10...0,
——— T N ——
n10’s n90's nr0's

where the 1’s are used to separate substrings of 0’s whose lengths give the occurrence
numbers n;. These binary strings have L —1 1’s and total length N + L — 1. The number
of such binary strings—and, hence, the number of types—is

(N + L - 1)!

[Pl = NI(L —1)!

The number of types is the same as the number of states for a Bose-Einstein system of
N particles occupying L single-particle states, and the argument leading to Py is the
standard one for determining the number Bose-Einstein states.

The number of types can be bounded by

Py| < (N+ DI <(N4+1)E.

Proof. The second inequality follows directly from noting that a type is specified by L
occurrence numbers, each of which can take on N + 1 values. The first inequality, which
provides a better bound, comes from

N+L-1N+L-2 N+2N+1
L — L—-2 2 1




Bounds on sizes of type classes.

e S 2O < (10| < 2V
N

Proof. The rightmost inequality is easy:
1> P(Tp(N)) = |Tp(N)[27VHP)

To prove the left-hand inequalities, we first need to show that P(T¢(N)) < P(Tp(N)).
We proceed by noting that

P(TP(N)) — ’TP(N)‘pivpl .UpgpL _ (Nfl)!”'(NfL)!pN(plffl) ,.-pN(pL*fL)
P(T¢(N)) |Tf(N)]inf1 N T (Np)l--- (Npp)! 1 L

The factorials can be bounded by m!/n! > n™~" which is easily proved by separately
considering m > n and m < n. We find

];((?;((g)); > (Npp)NUi—po) .. (NpL)N(fL_pL)in(pl_fl) . .pJLV(pL—fL)
— NNUi—pit+-+fr—pL)
_ NN(a-1)
=1.

Now we can write

1= P(Te(N)) < Y P(Tp(N)) = [Pu|P(Tp(N)) = [Pyl [T (W) 2~ V@)

Bounds on probabilities of type classes.

1 1
___~  9=NH({f|lp) « _— 9=NH({|IP) « p(T.(N)) < 2~ NH(|IP)
(N +1)E-1 = Py < PI(N) <
Proof. The bounds follow immediately from applying the bounds on the sizes of type

classes to
P(T¢(N)) = |T(N)[2~ NHO+HEN )]



Another set of typical sequences. We can define another kind of set of typical se-
quences of length N:

TYP/(N) = {x | HElp) < e} = | Te(V).
H(f|| p)<e

Typical-sequence theorem. For any 6, > 0, there exists an Ny such that for all
N Z NO;
P(TYP/(N))>1-6.

Proof. We first note that
1-P(TYP/(N))= > P(Tx(\))

{fIH(f][ p) =€}

< o~ NH(E]|p)

(]

{f1H(f]| p) =€}

S 27N€
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{£1H (f]| p) =€}
< Zz—Ne
f
_ |PN| 27Ne
< (N—i— 1)L—12—N€

_ o~ N(e+[(L—1) log(N+1)]/N)
The function (N + 1)L=127N¢ is equal to 2E717¢ > 1 at N = 1, increases to a maximum
>lat N=N.= -1+ (L—1)/eln2, and then decreases for N > N.. Choose Ny > N, to

satisfy
§ = (No +1)L1a=Noe |

Then for all N > Ny, we have

P(TYP/(N)) >1— (N+ 1)t 127 Ne > 1 — (Ny+1)ltaNoe =1 4.



Csiszar-Korner typical sequences. For a maximum entropy H, define the Csiszar-
Korner set of typical sequences of length NV:

CKp(N)={x|H(f) <H} = |J Te(N).
H(f)<Ho

Csiszar-Korner typical-sequence theorem. For any d,¢ > 0, there exists an Ny such
that for all N > Ny,

1. For any p such that H(p) < Ho, P(CKpg,(N)) >1-4,

2. |CKp(N)| < 2NVHote)

Proof. We need two properties:

1-P(CKuy(N)) = Y  P(Te(N))

{f1H(£)>Ho}

< Y ovHEIR)
{£[H(£)>Ho)

< Z 9= NHiz

{f|H(f)>Ho}
<302
f

= [Py |2 ¥ Hiow

< (N + 1)Lt N Hip |

where
H; = inf H(f
fop = il (fllp)
and
CKuN)| = > [T(V)|
{f|H(f)<Ho}

< Z oNH(f)

{flH(f)<Ho}

< Z 9N Ho

{f|H(f)<Ho}
ST
f

= |Py| 2%
S (N+ 1)L712NH0

_ 2N(H0+[(L—1) log(N+1)1/N) ]
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If p is such that H(p) > Ho, then Hj_ , = 0, and there is no bound on the probability

1 — P(CKp,(N)). In contrast, if p is such that H(p) < Ho, then Hj , > 0. Then,
choosing Ny = max (N1, N3), where N7 and Ny are defined by

e= (N1 + 1)L*12_NlH;"0ap
(L —1)log(Ny + 1)
Ny ’

5=

we have the two results for all N > Nj. [ ]
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