To: C. M. Caves
From: C. M. Caves
Subject: Laws of large numbers and typical-sequence theorems
2000 December 11

Most of the following is based on Chapters 3 and 12 of Elements of Information Theory by Thomas M. Cover and Joy A. Thomas.

Chebyshev's inequality.

$$
P(|\mathbf{x}| \geq a) \leq \frac{\left.\left.\langle | \mathbf{x}\right|^{2}\right\rangle}{a^{2}} \quad \text { where } \quad \mathbf{x}=\left(x_{1}, \ldots, x_{L}\right)
$$

Proof.

$$
P(|\mathbf{x}| \geq a)=\int_{|\mathbf{x}| \geq a} d^{L} x p(\mathbf{x}) \leq \int_{|\mathbf{x}| \geq a} d^{L} x \frac{|\mathbf{x}|^{2}}{a^{2}} p(\mathbf{x}) \leq \frac{1}{a^{2}} \int d^{L} x|\mathbf{x}|^{2} p(\mathbf{x})=\frac{\left.\left.\langle | \mathbf{x}\right|^{2}\right\rangle}{a^{2}}
$$

Corollary.

$$
P(|\mathbf{x}-\langle\mathbf{x}\rangle| \geq a) \leq \frac{\left.\langle | \mathbf{x}-\left.\langle\mathbf{x}\rangle\right|^{2}\right\rangle}{a^{2}}
$$

i.i.d.'s. Let $\mathbf{x}=\left(x_{1}, \ldots, x_{N}\right)$ be a sequence of N draws from a probability distribution $\mathbf{p}=\left(p_{1}, \ldots, p_{L}\right)$ for L alternatives. Each sequence has a vector of occurrence numbers $\mathbf{n}_{\mathbf{x}}=\left(n_{1}, \ldots, n_{L}\right)=\mathbf{n}$ and an associated vector of frequencies $\mathbf{f}=\left(f_{1}, \ldots, f_{L}\right)$, where $f_{j}=n_{j} / N$. Sequences with the same occurrence numbers (frequencies) make up a type. The probability of sequence \mathbf{x} is

$$
P(\mathbf{x})=p_{1}^{n_{1}} \cdots p_{L}^{n_{L}}
$$

and the probability of type \mathbf{f} is

$$
P(\mathbf{n})=\frac{N!}{n_{1}!\cdots n_{L}!} p_{1}^{n_{1}} \cdots p_{L}^{n_{L}}
$$

It is easy to calculate means and second moments for the occurrence numbers and frequencies:

$$
\begin{aligned}
\left\langle n_{j}\right\rangle & =\sum_{\mathbf{n}} n_{j} P(\mathbf{n}) \\
& =\left.\left(p_{j} \frac{\partial}{\partial p_{j}} \sum_{\mathbf{n}} \frac{N!}{n_{1}!\cdots n_{L}!} p_{1}^{n_{1}} \cdots p_{L}^{n_{L}}\right)\right|_{p_{1}+\cdots+p_{L}=1} \\
& =\left.\left(p_{j} \frac{\partial}{\partial p_{j}}\left(p_{1}+\cdots+p_{L}\right)^{N}\right)\right|_{p_{1}+\cdots+p_{L}=1} \\
& =N p_{j}, \\
\left\langle n_{j} n_{k}\right\rangle & =\sum_{\mathbf{n}} n_{j} n_{k} P(\mathbf{n}) \\
& =\left.\left(p_{j} \frac{\partial}{\partial p_{j}} p_{k} \frac{\partial}{\partial p_{k}} \sum_{\mathbf{n}} \frac{N!}{n_{1}!\cdots n_{L}!} p_{1}^{n_{1}} \cdots p_{L}^{n_{L}}\right)\right|_{p_{1}+\cdots+p_{L}=1} \\
& =\left.\left(p_{j} \frac{\partial}{\partial p_{j}} p_{k} \frac{\partial}{\partial p_{k}}\left(p_{1}+\cdots+p_{L}\right)^{N}\right)\right|_{p_{1}+\cdots+p_{L}=1} \\
& =N(N-1) p_{j} p_{k}-N p_{j} \delta_{j k},
\end{aligned}
$$

One thus obtains the correlation matrix of the occurrence numbers,

$$
\left\langle\Delta n_{j} \Delta n_{k}\right\rangle=\left\langle n_{j} n_{k}\right\rangle-\left\langle n_{j}\right\rangle\left\langle n_{k}\right\rangle=N\left(p_{j} \delta_{j k}-p_{j} p_{k}\right),
$$

and the means and correlation matrix of the frequencies,

$$
\left\langle f_{j}\right\rangle=p_{j}, \quad\left\langle\Delta f_{j} \Delta f_{k}\right\rangle=\frac{\left(p_{j} \delta_{j k}-p_{j} p_{k}\right)}{N} .
$$

Weak law of large numbers

$$
\left.\langle | \mathbf{f}-\left.\mathbf{p}\right|^{2}\right\rangle \leq 1 / N
$$

Proof.

$$
\left.\langle | \mathbf{f}-\left.\mathbf{p}\right|^{2}\right\rangle=\sum_{j=1}^{L}\left(\Delta f_{j}\right)^{2}=\sum_{j=1}^{L} \frac{p_{j}\left(1-p_{j}\right)}{N}=\frac{1-\sum_{j=1}^{L} p_{j}^{2}}{N} \leq 1 / N
$$

Weak law of large numbers. A second version.. For any $\delta, \epsilon>0$, there exists an N_{0} such that for all $N \geq N_{0}$,

$$
P\left(\left|f_{j}-p_{j}\right|<\epsilon, j=1, \ldots, L\right) \geq P(|\mathbf{f}-\mathbf{p}|<\epsilon) \geq 1-\delta
$$

Proof. Start with

$$
P(|\mathbf{f}-\mathbf{p}|<\epsilon)=1-P(|\mathbf{f}-\mathbf{p}| \geq \epsilon) \geq 1-\frac{\left.\langle | \mathbf{f}-\left.\langle\mathbf{p}\rangle\right|^{2}\right\rangle}{\epsilon^{2}} \geq 1-\frac{1}{N \epsilon^{2}} .
$$

Given δ and ϵ, choose $N_{0} \geq 1 / \delta \epsilon^{2}$.
The strong law of large numbers is a much stronger statement that sequences whose frequencies limit to the probabilities have probability 1 in the infinite limit.

Typical sequences. The set of typical sequences of length N, denoted $\operatorname{TYP}_{\epsilon}(N)$, is defined by
$\operatorname{TYP}_{\epsilon}(N) \equiv\left\{\mathbf{x} \mid 2^{-N[H(\mathbf{p})+\epsilon]}<P(\mathbf{x})<2^{-N[H(\mathbf{p})-\epsilon]}\right\}=\{\mathbf{x}| |-\log P(\mathbf{x}) / N-H(\mathbf{p}) \mid<\epsilon\}$, where

$$
H(\mathbf{p})=-\sum_{j=1}^{L} p_{j} \log p_{j}
$$

is the entropy of the distribution \mathbf{p}. Notice that

$$
\frac{-\log P(\mathbf{x})}{N}=-\sum_{j=1}^{L} f_{j} \log p_{j}
$$

so

$$
\left\langle\frac{-\log P(\mathbf{x})}{N}\right\rangle=H(\mathbf{p})
$$

and

$$
\frac{-\log P(\mathbf{x})}{N}-H(\mathbf{p})=-\sum_{j=1}^{L} \Delta f_{j} \log p_{j}
$$

Typical-sequence theorem. For any $\delta, \epsilon>0$, there exists an N_{0} such that

1. For all $N \geq N_{0}$,

$$
P\left(\operatorname{TYP}_{\epsilon}(N)\right) \geq 1-\delta ;
$$

2. For all N the number of sequences in $\operatorname{TYP}_{\epsilon}(N)$ satisfies

$$
\left|\operatorname{TYP}_{\epsilon}(N)\right|<2^{N[H(\mathbf{p})+\epsilon]} .
$$

3. For all $N \geq N_{0}$,

$$
\left|\operatorname{TYP}_{\epsilon}(N)\right|>(1-\delta) 2^{N[H(\mathbf{p})-\epsilon]}
$$

Proof.

1. Since

$$
\begin{aligned}
\left.\langle | \frac{-\log P(\mathbf{x})}{N}-\left.H(\mathbf{p})\right|^{2}\right\rangle & =\left\langle\left(\sum_{j=1}^{L} \Delta f_{j} \log p_{j}\right)^{2}\right\rangle \\
& =\sum_{j, k}\left\langle\Delta f_{j} \Delta f_{k}\right\rangle \log p_{j} \log p_{k} \\
& =\sum_{j, k} \frac{\left(p_{j} \delta_{j k}-p_{j} p_{k}\right)}{N} \log p_{j} \log p_{k} \\
& =\frac{1}{N}\left(\sum_{j=1}^{L} p_{j}\left(\log p_{j}\right)^{2}-H^{2}\right)
\end{aligned}
$$

we have that

$$
\begin{aligned}
P\left(\operatorname{TYP}_{\epsilon}(N)\right) & =1-P(|-\log P(\mathbf{x}) / N-H(\mathbf{p})| \geq \epsilon) \\
& \geq 1-\frac{\left.\langle |-\log P(\mathbf{x}) / N-\left.H(\mathbf{p})\right|^{2}\right\rangle}{\epsilon^{2}} \\
& =1-\frac{1}{N \epsilon^{2}}\left(\sum_{j=1}^{L} p_{j}\left(\log p_{j}\right)^{2}-H^{2}\right) .
\end{aligned}
$$

Given δ and ϵ, choose

$$
N_{0} \geq \frac{1}{\delta \epsilon^{2}}\left(\sum_{j=1}^{L} p_{j}\left(\log p_{j}\right)^{2}-H^{2}\right)
$$

Then, for all $N \geq N_{0}$, we have

$$
P\left(\operatorname{TYP}_{\epsilon}(N)\right) \geq 1-\frac{1}{N_{0} \epsilon^{2}}\left(\sum_{j=1}^{L} p_{j}\left(\log p_{j}\right)^{2}-H^{2}\right) \geq 1-\delta
$$

2.

$$
\begin{aligned}
1 & \geq P\left(\operatorname{TYP}_{\epsilon}(N)\right) \\
& =\sum_{\mathbf{x} \in \operatorname{TYP}_{\epsilon}(N)} P(\mathbf{x}) \\
& >\sum_{\mathbf{x} \in \operatorname{TYP}_{\epsilon}(N)} 2^{-N[H(\mathbf{p})+\epsilon]} \\
& =\left|\operatorname{TYP}_{\epsilon}(N)\right| 2^{-N[H(\mathbf{p})+\epsilon]}
\end{aligned}
$$

3. Choosing N_{0} as in 1 , we have for all $N \geq N_{0}$,

$$
\begin{aligned}
1-\delta & \leq P\left(\operatorname{TYP}_{\epsilon}(N)\right) \\
& =\sum_{\mathbf{x} \in \operatorname{TYP}_{\epsilon}(N)} P(\mathbf{x}) \\
& <\sum_{\mathbf{x} \in \operatorname{TYP}_{\epsilon}(N)} 2^{-N[H(\mathbf{p})-\epsilon]} \\
& =\left|\operatorname{TYP}_{\epsilon}(N)\right| 2^{-N[H(\mathbf{p})-\epsilon]} .
\end{aligned}
$$

Type classes. As noted above, sequences \mathbf{x} with the same occurrence numbers \mathbf{n}-i.e., with the same frequencies \mathbf{f}-make up a type. Formally, we define the type $T_{\mathbf{f}}(N)$ to be the set

$$
T_{\mathbf{f}}(N) \equiv\left\{\mathbf{x} \mid \mathbf{n}_{\mathbf{x}}=N \mathbf{f}\right\}
$$

The number of sequences in the type $T_{\mathbf{f}}(N)$ is given by a multinomial coefficient:

$$
\left|T_{\mathbf{f}}(N)\right|=\frac{N!}{\left(N f_{1}\right)!\cdots\left(N f_{L}\right)!}
$$

The probability for any sequence in $T_{\mathbf{f}}(N)$ is given by

$$
P(\mathbf{x})=p_{1}^{N f_{1}} \cdots p_{L}^{N f_{L}}=2^{N\left[f_{1} \log p_{1}+\cdots+f_{L} \log p_{L}\right]}=2^{-N[H(\mathbf{f})+H(\mathbf{f} \| \mathbf{p})]}
$$

where

$$
\begin{aligned}
H(\mathbf{f} \| \mathbf{p}) & \equiv \sum_{j=1}^{L} f_{j} \log \left(\frac{f_{j}}{p_{j}}\right) \\
& =\sum_{j=1}^{L} f_{j} \log f_{j}-\sum_{j=1}^{L} f_{j} \log p_{j} \\
& =-H(\mathbf{f})-\sum_{j=1}^{L} f_{j} \log p_{j} \\
& =-H(\mathbf{f})-\frac{\log P(\mathbf{x})}{N}
\end{aligned}
$$

is the relative entropy of the distributions \mathbf{f} and \mathbf{p}.

It is easy to show that

$$
\begin{aligned}
H(\mathbf{f} \| \mathbf{p}) & =-\sum_{j=1}^{L} f_{j} \log \left(\frac{p_{j}}{f_{j}}\right) \\
& \geq \frac{1}{\ln 2} \sum_{j=1}^{L} f_{j}\left(1-\frac{p_{j}}{f_{j}}\right) \\
& =\frac{1}{\ln 2} \sum_{j=1}^{L}\left(f_{j}-p_{j}\right) \\
& =0
\end{aligned}
$$

with equality holding if and only if $\mathbf{f}=\mathbf{p}$. (Here we use $-\log x=-\ln x / \ln 2 \geq(1-x) / \ln 2$, with equality if and only if $x=1$.) When $\mathbf{f}=\mathbf{p}+\Delta \mathbf{f}$ is close to \mathbf{p}, the relative entropy becomes the Wootters distance:

$$
H(\mathbf{f} \| \mathbf{p})=\frac{1}{2 \ln 2} \sum_{j=1}^{L} \frac{\left(\Delta f_{j}\right)^{2}}{p_{j}}
$$

Notice that the difference between the entropies of \mathbf{f} and \mathbf{p} has two parts, one the relative entropy and the other the difference that defines typical subsets:

$$
H(\mathbf{f})-H(\mathbf{p})=-H(\mathbf{f} \| \mathbf{p})-\sum_{j=1}^{L} \Delta f_{j} \log p_{j}=-H(\mathbf{f} \| \mathbf{p})+\left(\frac{-\log P(\mathbf{x})}{N}-H(\mathbf{p})\right)
$$

The probability of the type $T_{\mathbf{f}}(N)$ can be expressed as

$$
P\left(T_{\mathbf{f}}(N)\right)=P(\mathbf{n})=\left|T_{\mathbf{f}}(N)\right| p_{1}^{N f_{1}} \cdots p_{L}^{N f_{L}}=\left|T_{\mathbf{f}}(N)\right| 2^{-N[H(\mathbf{f})+H(\mathbf{f}| | \mathbf{p})]}
$$

Notice that the probability is bounded by

$$
P\left(T_{\mathbf{f}}(N)\right) \leq\left|T_{\mathbf{f}}(N)\right| 2^{-N H(\mathbf{f})}
$$

with equality holding if and only if $\mathbf{p}=\mathbf{f}$.

Number of types. Let \mathcal{P}_{N} be the set of types for sequences of length N. The possible occurrence numbers are in one-to-one correspondence with binary strings of the form

$$
\underbrace{0 \ldots 0}_{n_{1} 0^{\prime} s} 1 \underbrace{0 \ldots 0}_{n_{2} 0^{\prime} s} 1 \quad \ldots \quad 1 \underbrace{0 \ldots 0}_{n_{L} 0^{\prime} s},
$$

where the 1's are used to separate substrings of 0's whose lengths give the occurrence numbers n_{j}. These binary strings have $L-1$'s and total length $N+L-1$. The number of such binary strings - and, hence, the number of types - is

$$
\left|\mathcal{P}_{N}\right|=\frac{(N+L-1)!}{N!(L-1)!} .
$$

The number of types is the same as the number of states for a Bose-Einstein system of N particles occupying L single-particle states, and the argument leading to \mathcal{P}_{N} is the standard one for determining the number Bose-Einstein states.

The number of types can be bounded by

$$
\left|\mathcal{P}_{N}\right| \leq(N+1)^{L-1} \leq(N+1)^{L} .
$$

Proof. The second inequality follows directly from noting that a type is specified by L occurrence numbers, each of which can take on $N+1$ values. The first inequality, which provides a better bound, comes from

$$
\begin{aligned}
\left|\mathcal{P}_{N}\right| & =\frac{N+L-1}{L-1} \frac{N+L-2}{L-2} \cdots \frac{N+2}{2} \frac{N+1}{1} \\
& =\prod_{k=1}^{L-1} \frac{N+k}{k} \\
& \leq \prod_{k=1}^{L-1} \frac{k N+k}{k} \\
& =\prod_{k=1}^{L-1}(N+1) \\
& =(N+1)^{L-1}
\end{aligned}
$$

Bounds on sizes of type classes.

$$
\frac{1}{(N+1)^{L-1}} 2^{N H(\mathbf{f})} \leq \frac{1}{\left|\mathcal{P}_{N}\right|} 2^{N H(\mathbf{f})} \leq\left|T_{\mathbf{f}}(N)\right| \leq 2^{N H(\mathbf{f})}
$$

Proof. The rightmost inequality is easy:

$$
1 \geq P\left(T_{\mathbf{p}}(N)\right)=\left|T_{\mathbf{p}}(N)\right| 2^{-N H(\mathbf{p})}
$$

To prove the left-hand inequalities, we first need to show that $P\left(T_{\mathbf{f}}(N)\right) \leq P\left(T_{\mathbf{p}}(N)\right)$. We proceed by noting that

$$
\frac{P\left(T_{\mathbf{p}}(N)\right)}{P\left(T_{\mathbf{f}}(N)\right)}=\frac{\left|T_{\mathbf{p}}(N)\right| p_{1}^{N p_{1}} \cdots p_{L}^{N p_{L}}}{\left|T_{\mathbf{f}}(N)\right| p_{1}^{N f_{1}} \cdots p_{L}^{N f_{L}}}=\frac{\left(N f_{1}\right)!\cdots\left(N f_{L}\right)!}{\left(N p_{1}\right)!\cdots\left(N p_{L}\right)!} p_{1}^{N\left(p_{1}-f_{1}\right)} \cdots p_{L}^{N\left(p_{L}-f_{L}\right)}
$$

The factorials can be bounded by $m!/ n!\geq n^{m-n}$, which is easily proved by separately considering $m \geq n$ and $m<n$. We find

$$
\begin{aligned}
\frac{P\left(T_{\mathbf{p}}(N)\right)}{P\left(T_{\mathbf{f}}(N)\right)} & \geq\left(N p_{1}\right)^{N\left(f_{1}-p_{1}\right)} \cdots\left(N p_{L}\right)^{N\left(f_{L}-p_{L}\right)} p_{1}^{N\left(p_{1}-f_{1}\right)} \cdots p_{L}^{N\left(p_{L}-f_{L}\right)} \\
& =N^{N\left(f_{1}-p_{1}+\cdots+f_{L}-p_{L}\right)} \\
& =N^{N(1-1)} \\
& =1 .
\end{aligned}
$$

Now we can write

$$
1=\sum_{\mathbf{f}} P\left(T_{\mathbf{f}}(N)\right) \leq \sum_{\mathbf{f}} P\left(T_{\mathbf{p}}(N)\right)=\left|\mathcal{P}_{N}\right| P\left(T_{\mathbf{p}}(N)\right)=\left|\mathcal{P}_{N}\right|\left|T_{\mathbf{p}}(N)\right| 2^{-N H(\mathbf{p})} .
$$

Bounds on probabilities of type classes.

$$
\frac{1}{(N+1)^{L-1}} 2^{-N H(\mathbf{f} \| \mathbf{p})} \leq \frac{1}{\left|\mathcal{P}_{N}\right|} 2^{-N H(\mathbf{f} \| \mathbf{p})} \leq P\left(T_{\mathbf{f}}(N)\right) \leq 2^{-N H(\mathbf{f} \| \mathbf{p})}
$$

Proof. The bounds follow immediately from applying the bounds on the sizes of type classes to

$$
P\left(T_{\mathbf{f}}(N)\right)=\left|T_{\mathbf{f}}(N)\right| 2^{-N[H(\mathbf{f})+H(\mathbf{f} \| \mathbf{p})]} .
$$

Another set of typical sequences. We can define another kind of set of typical sequences of length N :

$$
\operatorname{TYP}_{\epsilon}^{\prime}(N) \equiv\left\{\mathbf{x} \mid H\left(\mathbf{f}_{\mathbf{x}} \| \mathbf{p}\right)<\epsilon\right\}=\bigcup_{H(\mathbf{f} \| \mathbf{p})<\epsilon} T_{\mathbf{f}}(N) .
$$

Typical-sequence theorem. For any $\delta, \epsilon>0$, there exists an N_{0} such that for all $N \geq N_{0}$,

$$
P\left(\operatorname{TYP}_{\epsilon}^{\prime}(N)\right) \geq 1-\delta
$$

Proof. We first note that

$$
\begin{aligned}
1-P\left(\operatorname{TYP}_{\epsilon}^{\prime}(N)\right) & =\sum_{\{\mathbf{f} \mid H(\mathbf{f} \| \mathbf{p}) \geq \epsilon\}} P\left(T_{\mathbf{f}}(N)\right) \\
& \leq \sum_{\{\mathbf{f} \mid H(\mathbf{f} \| \mathbf{p}) \geq \epsilon\}} 2^{-N H(\mathbf{f} \| \mathbf{p})} \\
& \leq \sum_{\{\mathbf{f} \mid H(\mathbf{f}| | \mathbf{p}) \geq \epsilon\}} 2^{-N \epsilon} \\
& \leq \sum_{\mathbf{f}} 2^{-N \epsilon} \\
& =\left|\mathcal{P}_{N}\right| 2^{-N \epsilon} \\
& \leq(N+1)^{L-1} 2^{-N \epsilon} \\
& =2^{-N(\epsilon+[(L-1) \log (N+1)] / N)} .
\end{aligned}
$$

The function $(N+1)^{L-1} 2^{-N \epsilon}$ is equal to $2^{L-1-\epsilon} \geq 1$ at $N=1$, increases to a maximum ≥ 1 at $N=N_{c}=-1+(L-1) / \epsilon \ln 2$, and then decreases for $N>N_{c}$. Choose $N_{0}>N_{c}$ to satisfy

$$
\delta=\left(N_{0}+1\right)^{L-1} 2^{-N_{0} \epsilon} .
$$

Then for all $N \geq N_{0}$, we have

$$
P\left(\operatorname{TYP}_{\epsilon}^{\prime}(N)\right) \geq 1-(N+1)^{L-1} 2^{-N \epsilon} \geq 1-\left(N_{0}+1\right)^{L-1} 2^{-N_{0} \epsilon}=1-\delta .
$$

Csiszár-Körner typical sequences. For a maximum entropy H_{0}, define the CsiszárKörner set of typical sequences of length N :

$$
\mathrm{CK}_{H_{0}}(N) \equiv\left\{\mathbf{x} \mid H\left(\mathbf{f}_{\mathbf{x}}\right) \leq H_{0}\right\}=\bigcup_{H(\mathbf{f}) \leq H_{0}} T_{\mathbf{f}}(N) .
$$

Csiszár-Körner typical-sequence theorem. For any $\delta, \epsilon>0$, there exists an N_{0} such that for all $N \geq N_{0}$,

1. For any \mathbf{p} such that $H(\mathbf{p})<H_{0}, P\left(\mathrm{CK}_{H_{0}}(N)\right) \geq 1-\delta$,
2. $\left|\mathrm{CK}_{H_{0}}(N)\right|<2^{N\left(H_{0}+\epsilon\right)}$.

Proof. We need two properties:

$$
\begin{aligned}
1-P\left(\mathrm{CK}_{H_{0}}(N)\right) & =\sum_{\left\{\mathbf{f} \mid H(\mathbf{f})>H_{0}\right\}} P\left(T_{\mathbf{f}}(N)\right) \\
& \leq \sum_{\left\{\mathbf{f} \mid H(\mathbf{f})>H_{0}\right\}} 2^{-N H(\mathbf{f} \| \mathbf{p})} \\
& \leq \sum_{\left\{\mathbf{f} \mid H(\mathbf{f})>H_{0}\right\}} 2^{-N H_{H_{0}, \mathbf{p}}^{*}} \\
& \leq \sum_{\mathbf{f}} 2^{-N H_{H_{0}, \mathbf{p}}^{*}} \\
& =\left|\mathcal{P}_{N}\right| 2^{-N H_{H_{0}, \mathbf{p}}^{*}} \\
& \leq(N+1)^{L-1} 2^{-N H_{H_{0}, \mathbf{p}}^{*}}
\end{aligned}
$$

where

$$
H_{H_{0}, \mathbf{p}}^{*} \equiv \inf _{\left\{\mathbf{f} \mid H(\mathbf{f})>H_{0}\right\}} H(\mathbf{f} \| \mathbf{p}),
$$

and

$$
\begin{aligned}
\left|\mathrm{CK}_{H_{0}}(N)\right| & =\sum_{\left\{\mathbf{f} \mid H(\mathbf{f}) \leq H_{0}\right\}}\left|T_{\mathbf{f}}(N)\right| \\
& \leq \sum_{\left\{\mathbf{f} \mid H(\mathbf{f}) \leq H_{0}\right\}} 2^{N H(\mathbf{f})} \\
& \leq \sum_{\left\{\mathbf{f} \mid H(\mathbf{f}) \leq H_{0}\right\}} 2^{N H_{0}} \\
& \leq \sum_{\mathbf{f}} 2^{N H_{0}} \\
& =\left|\mathcal{P}_{N}\right| 2^{N H_{0}} \\
& \leq(N+1)^{L-1} 2^{N H_{0}} \\
& =2^{N\left(H_{0}+[(L-1) \log (N+1)] / N\right)} .
\end{aligned}
$$

If \mathbf{p} is such that $H(\mathbf{p}) \geq H_{0}$, then $H_{H_{0}, \mathbf{p}}^{*}=0$, and there is no bound on the probability $1-P\left(\mathrm{CK}_{H_{0}}(N)\right)$. In contrast, if \mathbf{p} is such that $H(\mathbf{p})<H_{0}$, then $H_{H_{0}, \mathbf{p}}^{*}>0$. Then, choosing $N_{0}=\max \left(N_{1}, N_{2}\right)$, where N_{1} and N_{2} are defined by

$$
\begin{aligned}
& \epsilon=\left(N_{1}+1\right)^{L-1} 2^{-N_{1} H_{H_{0}, \mathbf{p}}^{*}} \\
& \delta=\frac{(L-1) \log \left(N_{2}+1\right)}{N_{2}},
\end{aligned}
$$

we have the two results for all $N \geq N_{0}$.

