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Most of the following is based on Chapters 3 and 12 of Elements of Information Theory
by Thomas M. Cover and Joy A. Thomas.

Chebyshev’s inequality.

P (|x| ≥ a) ≤ 〈|x|2〉
a2

where x = (x1, . . . , xL)

Proof.

P (|x| ≥ a) =
∫

|x|≥a

dLx p(x) ≤
∫

|x|≥a

dLx
|x|2
a2

p(x) ≤ 1
a2

∫
dLx |x|2p(x) =

〈|x|2〉
a2

Corollary.

P
(|x− 〈x〉| ≥ a

) ≤ 〈|x− 〈x〉|2〉
a2

i.i.d.’s. Let x = (x1, . . . , xN ) be a sequence of N draws from a probability distribution
p = (p1, . . . , pL) for L alternatives. Each sequence has a vector of occurrence numbers
nx = (n1, . . . , nL) = n and an associated vector of frequencies f = (f1, . . . , fL), where
fj = nj/N . Sequences with the same occurrence numbers (frequencies) make up a type.
The probability of sequence x is

P (x) = pn1
1 · · · pnL

L ,

and the probability of type f is

P (n) =
N !

n1! · · ·nL!
pn1
1 · · · pnL

L .
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It is easy to calculate means and second moments for the occurrence numbers and frequen-
cies:

〈nj〉 =
∑
n

njP (n)

=

(
pj

∂

∂pj

∑
n

N !
n1! · · ·nL!

pn1
1 · · · pnL

L

)∣∣∣∣∣
p1+···+pL=1

=
(

pj
∂

∂pj
(p1 + · · ·+ pL)N

)∣∣∣∣
p1+···+pL=1

= Npj ,

〈njnk〉 =
∑
n

njnkP (n)

=

(
pj

∂

∂pj
pk

∂

∂pk

∑
n

N !
n1! · · ·nL!

pn1
1 · · · pnL

L

)∣∣∣∣∣
p1+···+pL=1

=
(

pj
∂

∂pj
pk

∂

∂pk
(p1 + · · ·+ pL)N

)∣∣∣∣
p1+···+pL=1

= N(N − 1)pjpk −Npjδjk ,

One thus obtains the correlation matrix of the occurrence numbers,

〈∆nj∆nk〉 = 〈njnk〉 − 〈nj〉〈nk〉 = N(pjδjk − pjpk) ,

and the means and correlation matrix of the frequencies,

〈fj〉 = pj , 〈∆fj∆fk〉 =
(pjδjk − pjpk)

N
.

Weak law of large numbers

〈| f − p|2〉 ≤ 1/N

Proof.

〈| f − p|2〉 =
L∑

j=1

(∆fj)2 =
L∑

j=1

pj(1− pj)
N

=

1−
L∑

j=1

p2
j

N
≤ 1/N
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Weak law of large numbers. A second version.. For any δ, ε > 0, there exists an
N0 such that for all N ≥ N0,

P
(|fj − pj | < ε, j = 1, . . . , L

) ≥ P
(| f − p| < ε

) ≥ 1− δ .

Proof. Start with

P
(| f − p| < ε

)
= 1− P

(| f − p| ≥ ε
) ≥ 1− 〈| f − 〈p〉|2〉

ε2
≥ 1− 1

Nε2
.

Given δ and ε, choose N0 ≥ 1/δε2.
The strong law of large numbers is a much stronger statement that sequences whose

frequencies limit to the probabilities have probability 1 in the infinite limit.

Typical sequences. The set of typical sequences of length N , denoted TYPε(N), is
defined by

TYPε(N) ≡ {
x

∣∣ 2−N [H(p)+ε] < P (x) < 2−N [H(p)−ε]
}

=
{
x

∣∣ |−log P (x)/N−H(p)| < ε
}

,

where

H(p) = −
L∑

j=1

pj log pj

is the entropy of the distribution p. Notice that

− log P (x)
N

= −
L∑

j=1

fj log pj ,

so 〈− log P (x)
N

〉
= H(p)

and
− log P (x)

N
−H(p) = −

L∑

j=1

∆fj log pj .

Typical-sequence theorem. For any δ, ε > 0, there exists an N0 such that
1. For all N ≥ N0,

P
(
TYPε(N)

) ≥ 1− δ ;

2. For all N the number of sequences in TYPε(N) satisfies
∣∣TYPε(N)

∣∣ < 2N [H(p)+ε] .
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3. For all N ≥ N0, ∣∣TYPε(N)
∣∣ > (1− δ)2N [H(p)−ε] .

Proof.
1. Since 〈∣∣∣∣

− log P (x)
N

−H(p)
∣∣∣∣
2
〉

=

〈( L∑

j=1

∆fj log pj

)2
〉

=
∑

j,k

〈∆fj∆fk〉 log pj log pk

=
∑

j,k

(pjδjk − pjpk)
N

log pj log pk

=
1
N

( L∑

j=1

pj(log pj)2 −H2

)
,

we have that

P
(
TYPε(N)

)
= 1− P

(| − log P (x)/N −H(p)| ≥ ε
)

≥ 1−
〈| − log P (x)/N −H(p)|2〉

ε2

= 1− 1
Nε2

( L∑

j=1

pj(log pj)2 −H2

)
.

Given δ and ε, choose

N0 ≥ 1
δε2

( L∑

j=1

pj(log pj)2 −H2

)
.

Then, for all N ≥ N0, we have

P
(
TYPε(N)

) ≥ 1− 1
N0ε2

( L∑

j=1

pj(log pj)2 −H2

)
≥ 1− δ .

2.
1 ≥ P

(
TYPε(N)

)

=
∑

x∈TYPε(N)

P (x)

>
∑

x∈TYPε(N)

2−N [H(p)+ε]

=
∣∣TYPε(N)

∣∣2−N [H(p)+ε]
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3. Choosing N0 as in 1, we have for all N ≥ N0,

1− δ ≤ P
(
TYPε(N)

)

=
∑

x∈TYPε(N)

P (x)

<
∑

x∈TYPε(N)

2−N [H(p)−ε]

=
∣∣TYPε(N)

∣∣2−N [H(p)−ε] .

Type classes. As noted above, sequences x with the same occurrence numbers n—i.e.,
with the same frequencies f—make up a type. Formally, we define the type Tf (N) to be
the set

Tf (N) ≡ {x|nx = N f} .

The number of sequences in the type Tf (N) is given by a multinomial coefficient:

∣∣Tf (N)
∣∣ =

N !
(Nf1)! · · · (NfL)!

.

The probability for any sequence in Tf (N) is given by

P (x) = pNf1
1 · · · pNfL

L = 2N [f1 log p1+···+fL log pL] = 2−N [H(f)+H(f ||p)] ,

where

H(f ||p) ≡
L∑

j=1

fj log
(

fj

pj

)

=
L∑

j=1

fj log fj −
L∑

j=1

fj log pj

= −H(f)−
L∑

j=1

fj log pj

= −H(f)− log P (x)
N

is the relative entropy of the distributions f and p.
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It is easy to show that

H(f ||p) = −
L∑

j=1

fj log
(

pj

fj

)

≥ 1
ln 2

L∑

j=1

fj

(
1− pj

fj

)

=
1

ln 2

L∑

j=1

(fj − pj)

= 0 ,

with equality holding if and only if f = p. (Here we use − log x = − ln x/ ln 2 ≥ (1−x)/ ln 2,
with equality if and only if x = 1.) When f = p + ∆f is close to p, the relative entropy
becomes the Wootters distance:

H(f ||p) =
1

2 ln 2

L∑

j=1

(∆fj)2

pj
.

Notice that the difference between the entropies of f and p has two parts, one the relative
entropy and the other the difference that defines typical subsets:

H(f)−H(p) = −H(f ||p)−
L∑

j=1

∆fj log pj = −H(f ||p) +
(− log P (x)

N
−H(p)

)
.

The probability of the type Tf (N) can be expressed as

P
(
Tf (N)

)
= P (n) =

∣∣Tf (N)
∣∣pNf1

1 · · · pNfL

L =
∣∣Tf (N)

∣∣2−N [H(f)+H(f ||p)] .

Notice that the probability is bounded by

P
(
Tf (N)

) ≤ ∣∣Tf (N)
∣∣2−NH(f) ,

with equality holding if and only if p = f .
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Number of types. Let PN be the set of types for sequences of length N . The possible
occurrence numbers are in one-to-one correspondence with binary strings of the form

0 . . . 0︸ ︷︷ ︸
n10′s

1 0 . . . 0︸ ︷︷ ︸
n20′s

1 . . . 1 0 . . . 0︸ ︷︷ ︸
nL0′s

,

where the 1’s are used to separate substrings of 0’s whose lengths give the occurrence
numbers nj . These binary strings have L− 1 1’s and total length N + L− 1. The number
of such binary strings—and, hence, the number of types—is

|PN | = (N + L− 1)!
N !(L− 1)!

.

The number of types is the same as the number of states for a Bose-Einstein system of
N particles occupying L single-particle states, and the argument leading to PN is the
standard one for determining the number Bose-Einstein states.

The number of types can be bounded by

|PN | ≤ (N + 1)L−1 ≤ (N + 1)L .

Proof. The second inequality follows directly from noting that a type is specified by L
occurrence numbers, each of which can take on N + 1 values. The first inequality, which
provides a better bound, comes from

|PN | = N + L− 1
L− 1

N + L− 2
L− 2

· · · N + 2
2

N + 1
1

=
L−1∏

k=1

N + k

k

≤
L−1∏

k=1

kN + k

k

=
L−1∏

k=1

(N + 1)

= (N + 1)L−1 .
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Bounds on sizes of type classes.

1
(N + 1)L−1

2NH(f) ≤ 1
|PN |2

NH(f) ≤ ∣∣Tf (N)
∣∣ ≤ 2NH(f)

Proof. The rightmost inequality is easy:

1 ≥ P
(
Tp(N)

)
=

∣∣Tp(N)
∣∣2−NH(p) .

To prove the left-hand inequalities, we first need to show that P
(
Tf (N)

) ≤ P
(
Tp(N)

)
.

We proceed by noting that

P
(
Tp(N)

)

P
(
Tf (N)

) =

∣∣Tp(N)
∣∣pNp1

1 · · · pNpL

L∣∣Tf (N)
∣∣pNf1

1 · · · pNfL

L

=
(Nf1)! · · · (NfL)!
(Np1)! · · · (NpL)!

p
N(p1−f1)
1 · · · pN(pL−fL)

L .

The factorials can be bounded by m!/n! ≥ nm−n, which is easily proved by separately
considering m ≥ n and m < n. We find

P
(
Tp(N)

)

P
(
Tf (N)

) ≥ (Np1)N(f1−p1) · · · (NpL)N(fL−pL)p
N(p1−f1)
1 · · · pN(pL−fL)

L

= NN(f1−p1+···+fL−pL)

= NN(1−1)

= 1 .

Now we can write

1 =
∑

f

P
(
Tf (N)

) ≤
∑

f

P
(
Tp(N)

)
= |PN |P

(
Tp(N)

)
= |PN |

∣∣Tp(N)
∣∣2−NH(p) .

Bounds on probabilities of type classes.

1
(N + 1)L−1

2−NH(f ||p) ≤ 1
|PN |2

−NH(f ||p) ≤ P
(
Tf (N)

) ≤ 2−NH(f ||p)

Proof. The bounds follow immediately from applying the bounds on the sizes of type
classes to

P
(
Tf (N)

)
=

∣∣Tf (N)
∣∣2−N [H(f)+H(f ||p)] .
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Another set of typical sequences. We can define another kind of set of typical se-
quences of length N :

TYP′ε(N) ≡ {
x

∣∣ H(fx||p) < ε
}

=
⋃

H(f ||p)<ε

Tf (N) .

Typical-sequence theorem. For any δ, ε > 0, there exists an N0 such that for all
N ≥ N0,

P
(
TYP′ε(N)

) ≥ 1− δ .

Proof. We first note that

1− P
(
TYP′ε(N)

)
=

∑

{f |H(f ||p)≥ε}
P

(
Tf (N)

)

≤
∑

{f |H(f ||p)≥ε}
2−NH(f ||p)

≤
∑

{f |H(f ||p)≥ε}
2−Nε

≤
∑

f

2−Nε

= |PN | 2−Nε

≤ (N + 1)L−12−Nε

= 2−N
(
ε+[(L−1) log(N+1)]/N

)
.

The function (N + 1)L−12−Nε is equal to 2L−1−ε ≥ 1 at N = 1, increases to a maximum
≥ 1 at N = Nc = −1 + (L− 1)/ε ln 2, and then decreases for N > Nc. Choose N0 > Nc to
satisfy

δ = (N0 + 1)L−12−N0ε .

Then for all N ≥ N0, we have

P
(
TYP′ε(N)

) ≥ 1− (N + 1)L−12−Nε ≥ 1− (N0 + 1)L−12−N0ε = 1− δ .
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Csiszár-Körner typical sequences. For a maximum entropy H0, define the Csiszár-
Körner set of typical sequences of length N :

CKH0(N) ≡ {
x

∣∣ H(fx) ≤ H0

}
=

⋃

H(f)≤H0

Tf (N) .

Csiszár-Körner typical-sequence theorem. For any δ, ε > 0, there exists an N0 such
that for all N ≥ N0,

1. For any p such that H(p) < H0, P
(
CKH0(N)

) ≥ 1− δ ,

2.
∣∣CKH0(N)

∣∣ < 2N(H0+ε) .

Proof. We need two properties:

1− P
(
CKH0(N)

)
=

∑

{f |H(f)>H0}
P

(
Tf (N)

)

≤
∑

{f |H(f)>H0}
2−NH(f ||p)

≤
∑

{f |H(f)>H0}
2−NH∗

H0,p

≤
∑

f

2−NH∗
H0,p

= |PN | 2−NH∗
H0,p

≤ (N + 1)L−12−NH∗
H0,p ,

where
H∗

H0,p ≡ inf
{f |H(f)>H0}

H(f ||p) ,

and ∣∣CKH0(N)
∣∣ =

∑

{f |H(f)≤H0}

∣∣Tf (N)
∣∣

≤
∑

{f |H(f)≤H0}
2NH(f)

≤
∑

{f |H(f)≤H0}
2NH0

≤
∑

f

2NH0

= |PN | 2NH0

≤ (N + 1)L−12NH0

= 2N
(
H0+[(L−1) log(N+1)]/N

)
.
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If p is such that H(p) ≥ H0, then H∗
H0,p = 0, and there is no bound on the probability

1 − P
(
CKH0(N)

)
. In contrast, if p is such that H(p) < H0, then H∗

H0,p > 0. Then,
choosing N0 = max(N1, N2), where N1 and N2 are defined by

ε = (N1 + 1)L−12−N1H∗
H0,p

δ =
(L− 1) log(N2 + 1)

N2
,

we have the two results for all N ≥ N0.
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