
To: Chris Fuchs and Rüdiger Schack
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Classical probabilities

The classical de Finetti representation theorem states that every ∞-exchangeable probability assignment
can be written uniquely as a mixture of iid’s, i.e., can be generated from a unique probability on single-trial
probabilities, or generating function. Formally this means that the map from generating functions to ∞-
exchangeable probability assignments is one-to-one (uniqueness) and onto (every). Another formal way of
stating this is that the convex set of ∞-exchangeable probability assignments is a simplex whose extreme
points are the product distributions, or iid’s. That the product distributions are the entire set of extreme
points is the onto property of the map, and that the set is a simplex is the uniqueness of the expansion
in terms of extreme points. It should be emphasized that neither of these properties holds for (N < ∞)-
exchangeable probability assignments: the map from generating functions to N -exchangeable probability
assignments is neither one-to-one nor onto.

So why do we care about the one-to-one and onto properties established by the de Finetti representation
theorem? The importance of the one-to-one property is, I think, easy to identify. The subjectivist program is
aimed at replacing probabilities on probabilities—and their interpretation in terms of a “man in a box”—with
primary probability assignments. The one-to-one property is crucial for this program: if there were more
than one probability on probabilities for an ∞-exchangeable probability assignment, then probabilities on
probabilities would have distinguishing features not captured by the ∞-exchangeable probability assignment;
an ∞-exchangeable probability assignment would not characterize fully the behavior of the man in the box.

This reasoning leaves unanswered the question of why it is important that every ∞-exchangeable prob-
ability assignment correspond to a probability on single-trial probabilities. Why should the subjectivist
program care if there are ∞-exchangeable probabilities that have no interpretation in terms of a man in
a box? The answer, I believe, lies in the need, even for a subjectivist, to maintain a connection between
observed frequencies and single-trial probabilities. The subjective view undermines this connection, there
being no necessary relation between frequencies and single-trial probabilities, since single-trial probabilities
predict long-run frequencies only for an iid. On the other hand, one might still hope that using frequency
data to update probability assignments for future trials could be thought of as using the observed frequencies
to learn about single-trial probabilities, i.e., to learn about a possible objective “mechanism” embodied in
the man in the box.

Exchangeability is clearly the condition under which frequency data is a sufficient statistic: frequency
data, and only frequency data, is relevant for updating probability assignments for future trials. The ques-
tion is whether the updating based on frequency data can be thought of in terms of updating a probability
for single-trial probabilities, which can then be used to update the probability assignment for future trials.
This kind of updating, which I call updating or learning through single-trial probabilities, is the subjectivist
connection between frequencies and probabilities, i.e., the connection between observables and possible ob-
jective mechanisms. It is clear that when an exchangeable probability assignment, finite or infinite, is derived
from a probability on probabilities, all the updating is of this sort. This is why the de Finetti representation
theorem says something about learning: the onto property of the representation theorem says that for all
∞-exchangeable probability assignments, updating based on frequency data is equivalent to learning through
single-trial probabilities.

More generally, consider a situation where Bayesian updating of probabilities proceeds through updat-
ing an underlying parameter (or sufficient statistic). I call this “learning through the parameter.” The
parameter can be thought of as describing an underlying mechanism—“man in a box”—that determines
the probabilities. Whether such a mechanism actually “exists”—i.e., whether you are learning about an
objective property—is irrelevant; the point is that this is the method scientists use for finding out about
such a mechanism should it exist.

Call the parameter α, and let it be distributed according to a probability density p(α). The updating
must proceed through the parameter no matter what p(α) is. Let D1 and D2 be two pieces of data, which
depend on the parameter according to a joint probability P (D1, D2|α). The first piece of data can be used
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to update the probability for the second piece by using Bayes’s theorem:

P (D2|D1) =
P (D1, D2)

P (D1)

=

∫
P (D1, D2|α)p(α) dα

P (D1)

=
∫

P (D2|D1, α)
P (D1|α)p(α)

P (D1)
dα

=
∫

P (D2|D1, α)p(α|D1) dα .

(1)

The condition that the Bayesian updating proceed through the parameter α is that

P (D2|D1, α) = P (D2|α) ⇐⇒ P (D1, D2|α) = P (D1|α)P (D2|α) . (2)

This means that given the parameter, the two pieces of data are statistically independent or, equivalently,
that the two pieces of data are correlated only through the parameter. Under this condition, the Bayesian
updating of Eq. (1) becomes

P (D2|D1) =
∫

P (D2|α)p(α|D1) dα . (3)

This is what we mean by updating probability assignments through the parameter α.
The learning condition (2) has a nice information-theoretic expression:

H(D1; D2|α) = 0 . (4)

Given α, the mutual information between the two pieces of data is zero; in other words, all the mutual
information between D1 and D2 flows through the parameter.

The notion of learning through a parameter is easily generalized to any number of pieces of data. What
we have shown is that learning through a parameter is equivalent to the statement that the probability of
the data is a mixture of product distributions:

P (D1, . . . , DN ) =
∫

P (D1|α) · · ·P (DN |α)p(α) dα . (5)

The application of learning through a parameter to exchangeability is the following: if the parameter is
faithful to exchangeability—i.e., if the parameter generates an N -exchangeable distribution for all choices of
p(α)—then the conditional probability for results x1, . . . , xL in L trials satisfies

P (x1, . . . , xL|α) = P (x1|α) · · ·P (xL|α) , (6)

where the probabilities on the right are independent of trial, depending only on the alternative. Thus they
make up a vector of single-trial probabilities, p = (p1, . . . , pL). The parameter α is nothing but a label for
this vector, so we can write

P (x1, . . . , xN |p) = px1 · · · pxN = pn1
1 · · · pnL

L . (7)

The result is that the ability to update probabilities through an exchangeable parameter is equivalent to
having a probability on probabilities, i.e.,

P (x1, . . . , xN ) =
∫

P (x1, . . . , xN |p)p(p) dp =
∫

pn1
1 · · · pnL

L p(p) dp . (8)

Notice that this result says nothing about the existence or the uniqueness of an expansion in terms of
probabilities on single-trial probabilities.
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We can now formulate another way of stating the de Finetti representation theorem: every ∞-ex-
changeable probability has a unique representation in terms of learning through single-trial probabilities.
This establishes the subjective connection between frequencies, which constitute the data for updating, and
single-trial probabilities.

It is instructive to spell out what is different for finite exchangeable sequences. The Heath-Sudderth
proof shows that any finite exchangeable sequence can be generated by mixing probabilities for drawing
from various urns without replacement. The parameter in this case labels the initial properties of the urns.
Though this is a case of learning solely from frequency data, it is not a case of learning through the parameter,
because updated probabilities after an initial set of trials depend both on the parameter and on the results
of the initial trials, which determine how the urns have changed as a consequence of the initial trials.

Quantum mechanics

Now on to the quantum case. The quantum de Finetti representation theorem says that any density
operator ρ(N) in an ∞-exchangeable density operator can be written uniquely as a mixture of repetition
product density operators (rpdo’s), i.e., product density operators of the form

ρ⊗N ≡ ρ⊗ ρ · · · ρ︸ ︷︷ ︸
N times

. (9)

Formally this means that the map from mixtures of rpdo’s, or probabilities on single-system density opera-
tors, to∞-exchangeable density operators is one-to-one and onto. In the way we prove the quantum theorem,
the one-to-one and onto properties follow directly from applying the classical theorem to the exchangeable
probabilities generated by an informationally complete single-system POVM, followed by a relatively simple
argument showing that the representation is restricted to positive single-system operators. The crucial prop-
erty of the POVM is that the product POVM for many systems remains informationally complete. Another
formal way of stating the theorem is that the convex set of ∞-exchangeable density operators is a simplex
whose extreme points are the infinite rpdo’s. We now face the same question we confronted in the classical
case: the one-to-one property of the map is sufficient for the subjectivist program of replacing probabilities
on single-system density operators by a primary density-operator assignment, so what’s important about
knowing that every ∞-exchangeable density operator corresponds to a probability on single-system density
operators?

The answer again lies in considering what is meant by learning through a parameter. The difference is
that in quantum mechanics we have a mathematical structure for describing measurement statistics (POVMs)
and the updating of quantum states based on the results of measurements (operations). What we want to
know is when this structure is consistent with learning through a parameter via Bayes’s theorem.

For this purpose consider two systems, labeled 1 and 2, having a density operator

ρ =
∫

p(α)ρα dα , (10)

where ρα is the density operator conditioned on the parameter. Suppose a measurement on system 1,
described by operations AD1 , yields result D1. The probability for this result is

P (D1) = tr
(
(AD1 ⊗ I2)(ρ)

)
, (11)

and the corresponding probability given α is

P (D1|α) = tr
(
(AD1 ⊗ I2)(ρα)

)
. (12)
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The state of system 2 after the measurement takes the form

ρ′D1
=

tr1
(
(AD1 ⊗ I2)(ρ)

)

P (D1)

=

∫
tr1

(
(AD1 ⊗ I2)(ρα)

)
p(α) dα

P (D1)

=
∫

tr1
(
(AD1 ⊗ I2)(ρα)

)

tr
(
(AD1 ⊗ I2)(ρα)

) P (D1|α)p(α)
P (D1)

dα

=
∫

ρ′D1,αp(α|D1) dα ,

(13)

where

ρ′D1,α =
tr1

(
(AD1 ⊗ I2)(ρα)

)

tr
(
(AD1 ⊗ I2)(ρα)

) (14)

is the state of system 2 after a measurement with result D1, provided the initial state is ρα. The condition
for updating through the parameter α is

ρ′D1,α = ρ′α , (15)

in which case Eq. (13) becomes

ρ′D1
=

∫
ρ′αp(α|D1) dα . (16)

What we mean by updating a density operator by learning through a parameter is that Eq. (15)—and,
hence, Eq. (16)—holds for all measurements on system 1.

If the states ρα are product states, i.e., ρα = ρ1,α ⊗ ρ2,α, it is obvious that the updating condition (15)
is satisfied, with ρ′D1,α = ρ2,α, no matter what measurement operations are applied to system 1. That the
states ρα must be product states can be seen in the following way. Consider an informationally complete
POVM for system 1, with POVM elements Eµ1 , and let the operations for system 1 be Aµ1 =

√
Eµ1¯

√
Eµ1 .

With these choices, Eq. (14) becomes

ρ′µ1,α =
tr1(ραEµ1 ⊗ 12)
tr(ραEµ1 ⊗ 12)

. (17)

Letting Fµ2 be the POVM elements of an informationally complete POVM for system 2, we can multiply
the numerator of Eq. (17) by 11 ⊗ Fµ2 and take a trace over system 2, yielding

tr(ραEµ1 ⊗ Fµ2) = tr(ραEµ1 ⊗ 12)tr(ρ′µ1,α11 ⊗ Fµ2) . (18)

When the learning condition (15) is satisfied, the quantity on the left becomes a product of a function of µ1

and a function of µ2:
tr(ραEµ1 ⊗ Fµ2) = tr(ραEµ1 ⊗ 12)tr(ρ′α11 ⊗ Fµ2) . (19)

Since Eµ1 ⊗ Fµ2 is an informationally complete POVM for the joint system, we can conclude that ρα =
ρ1,α⊗ρ2,α is a product state. What we have shown is that the quantum learning condition is satisfied if and
only if ρ is separable.

The learning condition (15) has a nice interpretation: given the parameter, no measurement on system 1
provides any useful information for updating the state of system 2; in other words, all information relevant
for updating runs through the parameter. It is satisfying that the learning condition can only be met by
separable states, with the parameter labeling the product states in the mixture.

Applied to N systems, the learning condition is that

ρ(N)
α = ρ1,α ⊗ · · · ⊗ ρN,α . (20)
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If the parameter is faithful to exchangeability, the density operators in this product must be identical, and
the parameter can be taken to be this single-system operator. We conclude that the only way to learn
through a parameter that is faithful to exchangeability is if the parameter is equivalent to a single-system
density operator, in which case we have

ρ(N) =
∫

p(ρ)ρ⊗N dρ . (21)

This result is independent of the quantum de Finetti theorem, which establishes that any ∞-exchangeable
density operator can be updated uniquely through single-system density operators.

Real vector spaces
In real vector spaces something different happens, but it turns out to have only fairly mild effects. In

complex quantum mechanics both the de Finetti representation theorem and the quantum learning condition
rely on the property that the tensor product of two informationally complete POVMs is an informationally
complete POVM for the joint system. This property does not hold in real vector spaces. Though this does
not prove that the theorem and the condition fail in real vector spaces, it certainly prejudices one in that
direction. Though it might be thought that one is cast completely adrift on the sea of reality, it is easy to
confirm the prejudice and to derive all the properties of exchangeable density operators in real vector spaces
simply by complexifying the real vector space.

Consider now a D-dimensional real vector space. Density operators and POVM elements are positive,
symmetric (i.e., their matrix representations are symmetric) operators in this space. The vector space of
symmetric operators, which is [D(D +1)/2]-dimensional, is spanned by operators Sj , j = 1, . . . , D(D+1)/2,
whereas the vector space of antisymmetric operators, which is [D(D − 1)/2]-dimensional, is spanned by
operators Aj , j = 1, . . . , D(D − 1)/2. In a composite system made up of two D-dimensional systems, the
space of symmetric operators is spanned by the operators Sj ⊗ Sk and Aj ⊗Ak, giving a dimension

D2(D + 1)2

4
+

D2(D − 1)2

4
=

D2(D2 + 1)
2

, (22)

which is clearly greater than the dimension, D2(D + 1)2/4, of the product space of symmetric operators.
The [D2(D + 1)2/4]-dimensional subspace spanned by the operators Sj ⊗ Sk is called the symmetric-

symmetric (SS) subspace; SS operators are invariant under partial transposition. The [D2(D − 1)2/4]-
dimensional subspace spanned by the operators Aj ⊗ Ak is called the antisymmetric-antisymmetric (AA)
subspace; AA operators change sign under partial transposition and thus have zero partial trace.

The analysis of learning through a parameter proceeds through Eq. (16) just as in standard quantum
mechanics, with the condition for updating through a parameter given by Eq. (15). When one proceeds
further, however, one finds that Eq. (19) only requires that the SS part of ρα be a product. This suggests
that any state of the form

ρα = ρ1,α ⊗ ρ2,α + Aα , (23)

where Aα is an AA operator, ought to satisfy the learning condition. To show this, we need to know that a
real quantum operation preserves symmetric and antisymmetric operators. Thus we can write

ρ′D1,α =
tr1

(
(AD1 ⊗ I2)(ρα)

)

tr
(
(AD1 ⊗ I2)(ρα)

) = ρ2,α

tr1
(AD1(ρ1,α)

)

tr1
(AD1(ρ1,α)

) = ρ2,α . (24)

Since Aα has zero trace, the only constraint on it is that ρα be positive. Generalizing the learning condition
to N systems is tedious at best. I don’t know how to write the general density operator that satisfies the
condition, so I don’t go into it here. What I do below is to consider learning through a parameter in the
case of ∞-exchangeable states.

The analogue of the de Finetti representation theorem for real vector spaces can be gotten directly from
the corresponding theorem for the complexification. If ρ(N) is part of an ∞-exchangeable sequence of real
density operators, then the complex de Finetti representation theorem says that it can be written uniquely
as

ρ(N) =
∫

p(ρ)ρ⊗N dρ , (25)
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where the integral runs over all complex density operators. Since ρ(N) is real, we have that

ρ(N) = (ρ(N))∗ =
∫

p(ρ)(ρ∗)⊗N dρ , (26)

which, from the uniqueness of the representation, implies that

p(ρ∗) = p(ρ) . (27)

Define
ρS ≡ 1

2
(ρ + ρ∗)

rA ≡ − i

2
(ρ− ρ∗)

=⇒ ρ = ρS + irA

ρ∗ = ρS − irA

, (28)

where ρS is a real (symmetric) density operator and rA is a real, antisymmetric operator. Equation (27) is
equivalent to

p(ρ) = p(ρS , rA) = p(ρS ,−rA) = p(ρ∗) . (29)

We can manipulate the de Finetti representation (25) in the following ways:

ρ(N) =
∫

p(ρS , rA)(ρS + irA)⊗N dρS drA

=
∫ ′

p(ρS , rA)(ρS + irA)⊗N dρS drA +
∫ ′

p(ρS ,−rA)(ρS − irA)⊗N dρS drA

=
∫ ′

p ′(ρS , rA)
1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)
dρS drA .

(30)

Here the primed integrals run over half the domain of rA for each ρS and p ′(ρS , rA) = 2p(ρS , rA) =
2p(ρS ,−rA).

What we have shown is that if ρ(N) is part of an ∞-exchangeable sequence of real density operators,
then it has a unique representation of the form (30). A formal way of saying this is the following: whereas the
convex set of ∞-exchangeable complex density operators is a simplex whose extreme points are the infinite
rpdo’s, the convex set of ∞-exchangeable real density operators is a simplex whose extreme points are states
of the form

1
2

(
(ρS + irA)⊗∞ + (ρS − irA)⊗∞

)
. (31)

If rA 6= 0, these states are necessarily entangled, since they contain antisymmetric operators that cannot
appear in a separable state.

Now let’s ask about learning through the parameters ρS and rA in the case of an ∞-exchangeable real
density operator. For this purpose consider the N -system state

1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)
. (32)

Given result D1 for quantum operation AD1 applied to system 1, the state of the remaining systems is

tr1

(
AD1 ⊗ I2,...,N

(
1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)))

tr

(
AD1 ⊗ I2,...,N

(
1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)))

=

1
2

(
(ρS + irA)⊗(N−1)tr1

(AD1(ρS + irA)
)

+ (ρS − irA)⊗(N−1)tr1
(AD1(ρS − irA)

))

1
2

(
tr1

(AD1(ρS + irA)
)

+ tr1
(AD1(ρS − irA)

))

=
1
2

(
(ρS + irA)⊗(N−1) + (ρS − irA)⊗(N−1)

)
tr1

(AD1(ρS)
)

tr1
(AD1(ρS)

)

=
1
2

(
(ρS + irA)⊗(N−1) + (ρS − irA)⊗(N−1)

)
.

(33)
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Given the parameters ρS and rA, the updated state does not depend on the data, so the ∞-exchangeable
state (30) satisfies the condition for learning through the parameters. Notice, however, that since

p(D1|ρS , rA) = tr1
(AD1(ρS + irA)

)
= tr1

(AD1(ρS)
)

, (34)

the data provides no information about rA. Two observers starting with different probabilities p(ρS , rA)
and making single-system measurements will not to come to agreement on the value of rA, since they get no
information about its value, though they will come to agreement about the probabilities for future single-
system measurements, since these probabilities are independent of rA.

The inability to find out anything about rA can be remedied by considering two-system measurements.
Given result D12 for quantum operation AD12 applied to systems 1 and 2, the state of the remaining systems
is

tr12

(
AD12 ⊗ I3,...,N

(
1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)))

tr

(
AD12 ⊗ I3,...,N

(
1
2

(
(ρS + irA)⊗N + (ρS − irA)⊗N

)))

=

1
2

(
(ρS + irA)⊗(N−2)tr12

(
AD12

(
(ρS + irA)⊗2

))
+ (ρS − irA)⊗(N−2)tr12

(
AD12

(
(ρS − irA)⊗2

)))

1
2

(
tr12

(
AD12

(
(ρS + irA)⊗2

))
+ tr12

(
AD12

(
(ρS − irA)⊗2

)))

=
1
2

(
(ρS + irA)⊗(N−2) + (ρS − irA)⊗(N−2)

) tr12
(
AD12

(
(ρS + irA)⊗2

))

tr12
(
AD12

(
(ρS + irA)⊗2

))

=
1
2

(
(ρS + irA)⊗(N−1) + (ρS − irA)⊗(N−1)

)
.

(35)
Given the parameters ρS and rA, the updated state does not depend on the data, so the ∞-exchangeable
state (30) satisfies the condition for learning through the parameters for two-system measurements. Unlike
single-system measurents, two-system measurements do provide information about rA:

p(D12|ρS , rA) = tr12
(
AD12

(
(ρS + irA)⊗2

))
= tr12

(
AD12

(
(ρS − irA)⊗2

))
. (36)

As a consequence, coming to agreement about predictions for two-system measurements will involve coming
to agreement about both ρS and rA.

A real quantum operationA consists of sums of terms of the form A¯AT . We have (AOAT )T = AOT AT ,
so

(A(O)
)T = A(OT ), so a symmetric operator stays symmetric, and an antisymmetric operator stays

antisymmetric. Moreover, we can also conclude that

tr
(A(O)

)
= tr

((A(O)
)T

)
= tr

(A(OT )
)

. (37)
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