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I. The unit sphere

The unit sphere SL−1 in L dimensions—i.e., the unit (L− 1)-sphere—is defined by

1 =

L∑
j=1

x2j . (1)

A. Metric and volume element on the unit sphere

The Euclidean metric in L dimensions has the line element

ds2 =
L∑

j=1

dx2j . (2)

Defining a radial coördinate r by

r2 =
L∑

j=1

x2j , (3)

one can write the line element as

ds2 = dr2 + r2dΩ2
L−1 , (4)

where dΩ2
L−1 is the line element on the unit (L− 1)-sphere.

Picking a “polar axis” along x1, we can define a cylindrical radial coördinate ρ by

ρ2 =
L∑

j=2

x2j . (5)

The surface generated by holding both x1 and ρ constant is a (L− 2)-dimensional sphere
of radius ρ. Thus we can write the line element as

ds2 = dx21 + dρ2 + ρ2dΩ2
L−2 . (6)

We can also use a “polar angle” θ defined by

x1 = r cos θ and ρ = r sin θ , (7)
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where 0 ≤ θ ≤ π, in terms of which the line element takes the form

ds2 = dr2 + r2dθ2 + r2 sin2θ dΩ2
L−2 . (8)

We can conclude that
dΩ2

L−1 = dθ2 + sin2θ dΩ2
L−2 . (9)

The L-dimensional Euclidean volume element is

dx1 · · · dxL = rL−1dr dSL−1 , (10)

where dSL−1 is the volume element on the unit (L− 1)-sphere. We can also write

dx1 · · · dxL = ρL−2dx1 dρ dSL−2 = rL−1 sinL−2θ dr dθ dSL−2 . (11)

Combining Eqs. (10) and (11) or using Eq. (9) gives

dSL−1 = sinL−2θ dθ dSL−2 . (12)

We can also introduce nearly global angular coördinates on the unit sphere in the
following way:

x1 = cos θ1 ,

x2 = sin θ1 cos θ2 ,

x3 = sin θ1 sin θ2 cos θ3 ,

...

xL−1 = sin θ1 · · · sin θL−2 cos θL−1 ,

xL = sin θ1 · · · sin θL−2 sin θL−1 .

(13)

These relations can be summarized by

xj =

{ cos θ1 , j = 1,
sin θ1 · · · sin θj−1 cos θj , j = 2, . . . , L− 1,
sin θ1 · · · sin θL−1 , j = L.

(14)

To cover the unit sphere, the angular coördinates range over the values

0 ≤ θj ≤ π , j = 1, . . . , L− 2,

0 ≤ θL−1 ≤ 2π , j = L− 1.
(15)

Notice that
L∑

j=L−k

x2j =

{
sin2θ1 · · · sin2θL−k−1 , k = 1, . . . , L− 2,
1 , k = L− 1.

(16)

This means that for constant values of θ1, . . . , θL−k−1, where k = 1, . . . , L − 2, the
coördinates xL−k, . . . , xL range over a k-sphere of radius sin θ1 · · · sin θL−k−1.
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These facts allow us to write the line element on the unit (L− 1)-sphere as

dΩ2
L−1 = ds2r=1

= dθ21 + sin2θ1

(
dθ22 + sin2θ2

(
dθ23 + · · ·+ sin2θL−3(dθ

2
L−2 + sin2θL−2dθ

2
L−1)

))
= dθ21 + sin2θ1dθ

2
2 + sin2θ1 sin

2θ2dθ
2
3 + · · ·+ sin2θ1 · · · sin2 θL−2dθ

2
L−1 .

(17)
The corresponding volume element is

dSL−1 = sinL−2θ1 sin
L−3θ2 · · · sin θL−2 dθ1 · · · dθL−1 . (18)

B. Volume SL−1 of the unit sphere SL−1

1. The Gaussian method

The easiest method for calculating the volume of a sphere is to use a trick involving
Gaussian integrals:

1

2
SL−1 Γ(L/2) =

1

2
SL−1

∫ ∞

0

dwwL/2−1e−w

= SL−1

∫ ∞

0

dr rL−1e−r2 (w = r2)

=

∫
rL−1dr dSL−1 e

−r2

=

∫
dx1 · · · dxL e−(x2

1+···+x2
L)

=

(∫ ∞

−∞
dx e−x2

)L
= πL/2 .

(19)

The result is

SL−1 =
2πL/2

Γ(L/2)
=


2(2π)(L−1)/2

(L− 2)!!
, L odd,

(2π)L/2

(L− 2)!!
, L even,

(20)

where we use

Γ(n+ 1) = n! ⇐⇒ Γ(L/2) = 2
(L− 2)!!

2L/2
, L even,

Γ(n+ 1
2 ) =

(2n− 1)!!

2n
√
π ⇐⇒ Γ(L/2) =

√
2π

(L− 2)!!

2L/2
, L odd .

(21)
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2. An iterative method

Using Eq. (12), we get a recursion relation for L− 1 ≥ 2,

SL−1 =

∫
dSL−1 =

∫
sinL−2θ dθ SL−2 = SL−2IL−2 , (22)

where

IL ≡
∫ π

0

dθ sinLθ . (23)

The recursion relation gives

SL−1 = S1

L−2∏
l=1

Il = 2π

L−2∏
l=1

Il . (24)

Integrating by parts, for L > 1, we find

IL =

∫ π

0

dθ sinL−1θ sin θ

= − sinL−1θ cos θ
∣∣∣π
0︸ ︷︷ ︸

= 0

+(L− 1)

∫ π

0

dθ sinL−2θ cos2θ︸ ︷︷ ︸
= IL−2 − IL

= (L− 1)(IL−2 − IL) .

(25)

The resulting recursion relation for IL, valid for L ≥ 2, is

IL =
L− 1

L
IL−2 . (26)

Using I0 = π and I1 = 2, we find

IL =
(L− 1)!!

L!!

{
2 , L odd,
π , L even,

(27)

which gives

L∏
l=1

Il =


2(2π)(L−1)/2

L!!
, L odd,

(2π)L/2

L!!
, L even.

(28)

Plugging this result into Eq. (24) gives

SL−1 =


2(2π)(L−1)/2

(L− 2)!!
, L odd,

(2π)L/2

(L− 2)!!
, L even,

(29)

in agreement with the Eq. (20).
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3. Direct integration

Using Eq. (18), we can integrate directly to find the volume of SL−1,

SL−1 =

∫ π

0

dθ1 sinL−2θ1

∫ π

0

dθ2 sinL−3θ2 · · ·
∫ π

0

dθL−2 sin θL−2

∫ 2π

0

dθL−1 = 2π
L−2∏
l=1

Il ,

(30)
thus giving the same volume as in Eq. (24).

4. Related results

The volume interior to a (L− 1)-sphere of radius R is∫
rL−1dr dSL−1 = SL−1

∫ R

0

dr rL−1 =
1

L
SL−1R

L; . (31)

II. The probability simplex

For L alternatives, the probability simplex is defined by

1 =
L∑

j=1

pj and pj ≥ 0 , j = 1, . . . , L. (32)

A. Euclidean metric

1. Line element and volume element on the probability simplex

If we regard the probabilities as Cartesian coördinates, the corresponding Euclidean
line element,

ds2 =

L∑
j=1

dp2j , (33)

induces a flat geometry on the probability simplex.
The unit vector orthogonal to the simplex is given by

n ≡

∇

(
L∑

j=1

pj

)
∣∣∣∣∣∇
(

L∑
j=1

pj

)∣∣∣∣∣
=

1√
L

L∑
j=1

ej . (34)

We can define a coördinate v that measures distance orthogonal to the simplex:

v = n ·
L∑

j=1

pjej =
1√
L

L∑
j=1

pj . (35)
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Notice that the simplex is defined by v = 1/
√
L. The Euclidean line element can be written

as
ds2 = dv2 + (

√
Lv)2dµ2

L−1 , (36)

where dµ2
L−1 is the line element on the simplex.

The L-dimensional Euclidean volume element is

dp1 · · · dpL = (
√
Lv)L−1dv dAL−1 , (37)

where dAL−1 is the volume element on the simplex. This allows us to write

dAL−1 = δ

(
v − 1√

L

)
dp1 · · · dpL = δ

1−
L∑

j=1

pj

√
Ldp1 · · · dpL =

√
Ldp1 · · · dpL−1 .

(38)
In the last form the δ function has been used to do the integral over pL; the result is an
integral over the region R defined by

L−1∑
j=1

pj ≤ 1 and pj ≥ 0 , j = 1, . . . , L− 1, with pL = 1−
L−1∑
j=1

pj . (39)

The factor of
√
L in Eq. (38) is the inverse of a direction cosine that comes from projecting

volumes on the simplex onto the region (39).

2. Volume AL−1 of the probability simplex

a. The exponential method

The easiest way to calculate the volume of the probability simplex is to use a trick
involving integrals over exponentials:

1√
L
AL−1Γ(L) =

1√
L
AL−1

∫ ∞

0

dwwL−1e−w

= AL−1

∫ ∞

0

dv (
√
Lv)L−1e−

√
Lv (w =

√
Lv)

=

∫
(
√
Lv)L−1dv dAL−1e

−
√
Lv

=

∫
dp1 · · · dpL e−(p1+···+pL)

=

(∫ ∞

0

dp e−p

)L
= 1 .

(40)

The result is

AL−1 =

√
L

Γ(L)
=

√
L

(L− 1)!
. (41)
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b. Explicit integration

Using Eqs. (38) and (39), we can write AL−1 as

AL−1 =
√
L

∫
R
dp1 · · · dpL−1

=
√
L

∫ 1

0

dp1

∫ 1−p1

0

dp2

∫ 1−(p1+p2)

0

dp3

· · ·
∫ 1−(p1+···+pL−3)

0

dpL−2

∫ 1−(p1+···+pL−2)

0

dpL−1 .

(42)

New integration variables, defined by

qj = 1− (p1 + · · ·+ pL−j) , j = 1, . . . , L− 1, (43)

satisfy

qj =

{
qj+1 − pL−j , j = 1, . . . , L− 2,
1− p1 , j = L− 1,

(44)

which allows us to write the integral as

AL−1 =
√
L

∫ 1

0

dqL−1

∫ qL−1

0

dqL−2 · · ·
∫ q3

0

dq2

∫ q2

0

dq1 =

√
L

(L− 1)!
. (45)

Though it is easy to evaluate directly the integral

IL−1 ≡
∫ 1

0

dqL−1

∫ qL−1

0

dqL−2 · · ·
∫ q3

0

dq2

∫ q2

0

dq1 , (46)

there is a clever way to determine the value without doing any integrations at all. Notice
that for each of the (L−1)! permutations of the integration variables, the integration region
defines a subset of the unit hypercube in L− 1 dimensions. These regions are disjoint and
equivalent, and their union is the entire hypercube. Thus we have immediately that

(L− 1)! IL−1 = 1 . (47)

3. Properties of regular polyhedra

The simplex is an (L − 1)-dimensional regular polyhedron with sides of length
√
2.

The volume of the regular polyhedron is AL−1 =
√
L/(L−1)!. Other properties of regular

polyhedra and of hypercubes can be found in the attached notes entitled “Number of
probability distributions.”
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B. Wootters metric

1. Line element and volume element on the probability simplex

In terms of the coördinates
rj =

√
pj , (48)

the probability simplex is the all positive 2L-ant of a unit sphere, i.e., the portion of the
unit sphere for which all the coördinates are positive:

1 =

L∑
j=1

pj =

L∑
j=1

r2j and rj ≥ 0 , j = 1, . . . , L. (49)

If we regard the coördinates rj as Cartesian coördinates, the Euclidean line element is

ds2 =
L∑

j=1

dr2j =
1

4

L∑
j=1

dp2j
pj

. (50)

With this line element, the metric on the probability simplex, called the Wootters metric,
is the standard metric of a unit sphere. The Wootters metric defines distances in terms
of the statistical distinguishability of neighboring probability distributions. The standard
radial coördinate r measures distance orthogonal to the simplex. The line element can be
written as

ds2 = dr2 + r2dΩ2
L−1 , (51)

where dΩ2
L−1, the line element on the unit (L− 1)-sphere, is the Wootters line element on

the simplex.
The L-dimensional Euclidean volume element is

dr1 · · · drL =
1

2L
dp1 · · · dpL√
p1 · · · pL

= rL−1dr dSL−1 . (52)

This allows us to write

dSL−1 = δ(r − 1)dr1 · · · drL = δ(r − 1)
1

2L
dp1 · · · dpL√
p1 · · · pL

. (53)

By rewriting the δ function as

δ(r − 1) = 2 δ(r2 − 1) = 2 δ

1−
L∑

j=1

r2j

 = 2 δ

1−
L∑

j=1

pj

 , (54)
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we obtain the more useful forms

dSL−1 = 2 δ

1−
L∑

j=1

r2j

 dr1 · · · drL

= δ

1−
L∑

j=1

pj

 1

2L−1

dp1 · · · dpL√
p1 · · · pL

=
1

2L−1

dp1 · · · dpL−1√
p1 · · · pL

=
1

2L−1
√
L

dAL−1√
p1 · · · pL

.

(55)

2. Volume S(W )
L−1 of the probability simplex

Since the all-positive 2L-ant is one of 2L equivalent portions of the unit (L−1)-sphere,
the volume of the probability simplex with respect to the Wootters metric is

S(W )
L−1 =

SL−1

2L
=

πL/2

2L−1Γ(L/2)
=


π(L−1)/2

2(L−1)/2(L− 2)!!
, L odd,

πL/2

2L/2(L− 2)!!
, L even.

(56)

This volume can also be written as the integral

SL−1 =

∫
dSL−1 =

1

2L−1

∫
R

dp1 · · · dpL−1√
p1 · · · pL

. (57)

III. Projective Hilbert space

Projective Hilbert space is the space of rays in a D-dimensional complex vector space.
It is equivalent to the space of normalized pure states |ϕ⟩, i.e.,

⟨ϕ|ϕ⟩ = 1 , (58)

with states that differ only by a phase identified, i.e.,

|ϕ⟩ ⇐⇒ eiδ|ϕ⟩ . (59)

A general vector in the Hilbert space can be written as

|ψ̃⟩ = reiδ|ϕ⟩ , 0 ≤ r ≤ ∞, 0 ≤ δ < 2π . (60)

where |ϕ⟩ is an element of projective Hilbert space. In practice, what this means is that
for each ray in Hilbert space, we make a particular choice of phase for |ϕ⟩.
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A. Fubini-Studi metric and associated volume element

The Euclidean line element on a complex vector space is

ds2 = ⟨dψ̃|dψ̃⟩ . (61)

If we introduce an orthonormal basis |ej⟩ and expand an arbitrary vector in terms of it,

|ψ̃⟩ =
D∑

j=1

cj |ej⟩ , (62)

we can write the line element (61) as

ds2 =
D∑

j=1

|dcj |2 =
D∑

j=1

(dx2j + dy2j ) =
D∑

j=1

(dr2j + r2jdϕ
2
j ) =

D∑
j=1

(
dp2j
4pj

+ pjdϕ
2
j

)
, (63)

where we have defined
cj = xj + iyj = rje

iϕj =
√
pje

iϕj . (64)

Notice that the squared magnitude of |ψ̃⟩ has the forms

r2 = ⟨ψ̃|ψ̃⟩ =
D∑

j=1

|cj |2 =
D∑

j=1

(x2j + y2j ) =
D∑

j=1

r2j =
D∑

j=1

pj . (65)

The difficulty in dealing with projective Hilbert space is that there is no way to define
a satisfactory global overall-phase coördinate. Thus, in contrast to Eq. (60), it is best to
write a general vector as

|ψ̃⟩ = r|ψ⟩ , (66)

where |ψ⟩ is normalized, but can have an arbitrary phase. A small displacement in |ψ̃⟩ can
be written as

|dψ̃⟩ = dr|ψ⟩+ r|dψ⟩ . (67)

Preservation of the normalization of |ψ⟩ requires that

0 = d
(
⟨ψ|ψ⟩

)
= ⟨dψ|ψ⟩+ ⟨ψ|dψ⟩+ ⟨dψ|dψ⟩ = 2Re

(
⟨ψ|dψ⟩

)
+ ⟨dψ|dψ⟩ , (68)

which implies that

Re
(
⟨ψ|dψ⟩

)
= −1

2
⟨dψ|dψ⟩ = 0 , (69)

where the last equality is good to first order in small displacements. The Euclidean line
element (61) takes on the standard form for spherical coördinates,

ds2 = dr2 + 2rdrRe
(
⟨ψ|dψ⟩

)
+ r2⟨dψ|dψ⟩ = dr2 + r2⟨dψ|dψ⟩︸ ︷︷ ︸

= dΩ2
2D−1

, (70)
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with the normalized vectors |ψ⟩ describing a unit (2D − 1)-sphere.
The line element on projective Hilbert space, called the Fubini-Studi metric, is given

by the Hilbert-space angle dγD between neighboring vectors:

cos dγD = |⟨ψ|ψ′⟩| = |1 + ⟨ψ|dψ⟩| , |ψ′⟩ = |ψ⟩+ |dψ⟩ . (71)

The line element is given by

dγ2D = sin2dγD = 1− cos2dγD = −2Re
(
⟨ψ|dψ⟩

)
− |⟨ψ|dψ⟩|2 , (72)

which becomes
dγ2D = ⟨dψ|dψ⟩ − |⟨ψ|dψ⟩|2 = ⟨dψ⊥|dψ⊥⟩ , (73)

where
|dψ⊥⟩ ≡ |dψ⟩ − |ψ⟩⟨ψ|dψ⟩ (74)

is the projection of |dψ⟩ orthogonal to |ψ⟩. The imaginary quantity ⟨ψ|dψ⟩ describes an
infinitesimal phase change of |ψ⟩ and is thus subtracted out of the line element on projective
Hilbert space, which is insensitive to phase changes.

If we fix a phase for each ray in Hilbert space and write

|ψ⟩ = eiδ|ϕ⟩ , (75)

a small displacement in |ψ⟩ becomes

|dψ⟩ = idδ|ψ⟩+ eiδ|dϕ⟩ , (76)

which gives

⟨ψ|dψ⟩ = idδ + ⟨ϕ|dϕ⟩ =⇒ |dψ⊥⟩ = eiδ
(
|dϕ⟩ − |ϕ⟩⟨ϕ|dϕ⟩

)
= eiδ|dϕ⊥⟩ (77)

and
dγ2D = ⟨dψ⊥|dψ⊥⟩ = ⟨dϕ⊥|dϕ⊥⟩ = ⟨dϕ|dϕ⟩ − |⟨ϕ|dϕ⟩|2 . (78)

It would be nice if one could choose a particular phase for each ray and introduce a
global overall phase in such a way that ⟨ϕ|dϕ⟩ vanished everywhere. Unfortunately, it is
impossible to do this, for if ⟨ϕ|dϕ⟩ vanished everywhere, then from Eq. (77), ⟨ψ|dψ⟩ would
also be a perfect differential, satisfying

0 = id2δ = d
(
⟨ψ|dψ⟩

)
= ⟨dψ|dψ⟩ , (79)

but this is impossible. Thus one is forced always to use Eq. (73) for the Fubini-Studi line
element, explicitly removing the infinitesimal phase displacement.

A useful set of coördinates comes from picking a “polar axis” along |e1⟩ and defining
a “polar angle” θ by

c1 ≡ reiϕ1 cos θ , 0 ≤ θ ≤ π/2 . (80)
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Writing the other complex amplitudes in terms of these coördinates, we have

cj = reiϕ1 sin θ bj , j = 2, . . . , D, (81)

where the reduced expansion coefficients bj = (rj/r sin θ)e
i(ϕj−ϕ1), j = 2, . . . , D, are nor-

malized to unity, i.e.,

D∑
j=2

|bj |2 =
1

r2 sin2θ

D∑
j=2

r2j =
r2 − r21
r2 sin2θ

= 1 . (82)

Thus we can define a normalized vector in the subspace orthogonal to |e1⟩,

|η⟩ ≡
D∑

j=2

bj |ej⟩ , (83)

and write |ψ⟩ as
|ψ⟩ = eiϕ1

(
cos θ|e1⟩+ sin θ|η⟩

)
. (84)

A small displacement in |ψ⟩ takes the form

|dψ⟩ = idϕ1|ψ⟩+ eiϕ1

(
dθ
(
− sin θ|e1⟩+ cos θ|η⟩

)
+ sin θ|dη⟩

)
, (85)

where Re
(
⟨η|dη⟩

)
= 0 for the same reasons as in Eq. (69). We can now calculate

⟨ψ|dψ⟩ = idϕ1 + sin2θ ⟨η|dη⟩ . (86)

Projective Hilbert space is defined by r = 1 and ϕ1 = constant, corresponding to a
particular phase choice for each Hilbert space ray. Though this is a reasonable choice,
we are still left with a nonzero value of ⟨ψ|dψ⟩ = sin2θ ⟨η|dη⟩, in accordance with the
preceding discussion.

Given a particular vector |ψ0⟩, we can always choose our basis such that |e1⟩ = |ψ0⟩
and use “polar” coördinates relative to this basis. Near |ψ0⟩, the polar angle θ is an
infinitesimal quantity, so locally we have

⟨ψ|dψ⟩ = idϕ1 , (87)

which means that locally ϕ1 = δ describes overall phase changes. We also have

dΩ2
2D−1 = ⟨dψ|dψ⟩ = ⟨dψ⊥|dψ⊥⟩+ |⟨ψ|dψ⟩|2 = dγ2D + dδ2 . (88)

Thus, at each point in projective Hilbert space, the overall phase changes produce displace-
ments that are orthogonal to projective Hilbert space. Adding the overall phase changes
to projective Hilbert space gives the metric on a unit (2D−1)-sphere. The volume element
on the unit (2D − 1)-sphere is

dS2D−1 = dδ dΓD , (89)
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where dΓD is the volume element on projective Hilbert space. Though this is a lo-
cal relation—i.e., there is no global overall phase δ such that the line element has the
form (88)—we can use the volume element (89) in integrals by patching together local
volume elements. As a result, we can turn an integral over projective Hilbert space into
an integral over the unit (2D − 1)-sphere simply by appending at each point an integral
over a phase δ that runs from 0 to 2π.

The coördinates in Eq. (63) yield a variety of forms for the Euclidean volume element
on Hilbert space,

dx1 · · · dxD dy1 · · · dyD = r1 · · · rD dr1 · · · drD dϕ1 · · · dϕD =
1

2D
dp1 · · · dpD dϕ1 · · · dϕD ,

(90)
and Eq. (70) gives

dx1 · · · dxD dy1 · · · dyD = r2D−1dr dS2D−1 . (91)

Combining Eqs. (89), (90), (91), and (38), we get another useful form:

dδ dΓD = dS2D−1

= δ(r − 1)︸ ︷︷ ︸
= 2δ(r2 − 1)

1

2D
dp1 · · · dpD dϕ1 · · · dϕD

= δ

1−
D∑

j=1

pj

 1

2D−1
dp1 · · · dpD dϕ1 · · · dϕD

=
1

2D−1
√
D
dAD−1 dϕ1 · · · dϕD .

(92)

This form illustrates the important result that after integrating over the phases in a par-
ticular basis, the resulting measure on the probability simplex is, aside from constants, the
Euclidean measure of Sec. II.A.

Another set of useful relations comes from setting ϕ1 = 0, thus working in projective
Hilbert space by making a particular phase choice. With this choice, Eq. (85) becomes

|dψ⟩ = dθ
(
− sin θ|e1⟩+ cos θ|η⟩

)
+ sin θ|dη⟩ , (93)

and Eq. (86) becomes
⟨ψ|dψ⟩ = sin2θ⟨η|dη⟩ . (94)

Thus we have
⟨dψ|dψ⟩ = dθ2 + sin2θ⟨dη|dη⟩ (95)

and
dγ2D = ⟨dψ|dψ⟩ − |⟨ψ|dψ⟩|2

= dθ2 + sin2θ⟨dη|dη⟩ − sin4θ|⟨η|dη⟩|2

= dθ2 + sin2θ
(
⟨dη⊥|dη⊥⟩+ cos2θ|⟨η|dη⟩|2

)
.

(96)
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There is an apparent puzzle here, because the normalization constraint on changes in
|η⟩ implies

0 = 2Re
(
⟨η|dη⟩

)
+ ⟨dη|dη⟩ , (97)

in analogy to Eq. (68), but then Eqs. (68), (95), and (96) say

0 = 2Re
(
⟨ψ|dψ⟩

)
+ ⟨dψ|dψ⟩ = dθ2 + sin2θ

(
2Re(⟨η|dη⟩) + ⟨dη|dη⟩

)
= dθ2 , (98)

which can’t be right. The puzzle is resolved by noting that in the normalization constraints,
we have to evaluate the small changes to second order. Thus we have to write

|ψ′⟩ = |ψ⟩+ |dψ⟩
= cos(θ + dθ)|e1⟩+ sin(θ + dθ)(|η⟩+ |dη⟩)

= |ψ⟩+ dθ(− sin θ|e1⟩+ cos θ|η⟩) + sin θ|dη⟩ − 1

2
dθ2|ψ⟩+ cos θdθ|dη⟩ ,

(99)

which gives

⟨ψ|dψ⟩ = (sin2θ + cos θ sin θ dθ)⟨η|dη⟩ − 1

2
dθ2 (100)

and

2Re
(
⟨ψ|dψ⟩

)
+ ⟨dψ|dψ⟩ = (sin2θ + cos θ sin θ dθ)2Re(⟨η|dη⟩)− dθ2 + dθ2 + sin2θ⟨dη|dη⟩

= −(sin2θ + cos θ sin θ dθ)⟨dη|dη⟩+ sin2θ⟨dη|dη⟩
= 0

(101)
to second order in small quantities.

In Eq. (96) the line element

⟨dη⊥|dη⊥⟩+ cos2θ|⟨η|dη⟩|2 (102)

is that of a projective Hilbert space inD−1 dimensions plus overall phase changes whose as-
sociated length is scaled by a factor cos θ. The corresponding volume element, cos θ dS2D−3,
is that of a unit (2D − 3)-sphere with lengths in one dimension scaled by the factor cos θ.
Thus for the volume element on projective Hilbert space, we have

dΓD = sin2D−3θ cos θ dθ dS2D−3 . (103)

This form is useful for doing integrals over projective Hilbert space where the integrand
depends only on the polar angle θ.

We can also define nearly global coördinates on projective Hilbert space in the fol-
lowing way. For normalized vectors the coördinates rj define the all-positive 2D-ant of the
unit (D − 1)-sphere. Thus we can introduce angular coördinates as in Eq. (14):

rj =

{ cos θ1 , j = 1,
sin θ1 · · · sin θj−1 cos θj , j = 2, . . . , D − 1,
sin θ1 · · · sin θD−1 , j = D.

(104)
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Since the coördinates rj are all positive, the angular coördinates are all restricted to the
same range:

0 ≤ θj ≤ π/2 , j = 1, . . . , D − 1. (105)

To fix a phase—and thus work in projective Hilbert space—we choose ϕ1 = 0. With these
choices, the state vector |ψ⟩ becomes

|ψ⟩ =
D∑

j=1

rje
iϕj |ej⟩ (ϕ1 = 0) , (106)

and a small displacement takes the form

|dψ⟩ =
D∑

j=1

eiϕj (drj + irjdϕj)|ej⟩ . (107)

With these choices we have

⟨dψ|dψ⟩ =
D∑

j=1

dr2j +
D∑

j=2

r2jdϕ
2
j (108)

and

⟨ψ|dψ⟩ =
D∑

j=1

rjdrj + i

D∑
j=2

r2jdϕj = i

D∑
j=2

r2jdϕj , (109)

where we use
D∑

j=1

rjdrj =
1

2
d

( D∑
j=1

r2j︸ ︷︷ ︸
= 1

)
= 0 . (110)

Thus the line element on projective Hilbert space is given by

dγ2D = ⟨dψ|dψ⟩ − |⟨ψ|dψ⟩|2 =
D∑

j=1

dr2j +
D∑

j=2

r2jdϕ
2
j −

D∑
j,k=2

r2j r
2
kdϕjdϕk , (111)

where in terms of the angular coördinates, the first term is given by Eq. (17):

D∑
j=1

dr2j = dθ21 + sin2θ1dθ
2
2 + sin2θ1 sin

2θ2dθ
2
3 + · · ·+ sin2θ1 · · · sin2 θD−2dθ

2
D−1 . (112)

In terms of these coördinates, the volume element on projective Hilbert space is given
by

dΓD = sinD−2θ1 sin
D−3θ2 · · · sin θD−2 dθ1 · · · dθD−1

√
detM dϕ2 · · · dϕD , (113)
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where M is the matrix whose elements are given by

Mjk = r2j δjk − r2j r
2
k , j, k = 2, . . . , D. (114)

We can calculate the determinant of M from

detM =
∑

j1,...,jD

ϵj2...jDM2j2 · · ·MDjD

=
∑

j1,...,jD

ϵj2...jD (r
2
2δ2j2 − r22r

2
j2) · · · (r

2
DδDjD − r2Dr

2
jD )

= r22 · · · r2D
∑

j1,...,jD

ϵj2...jD (δ2j2 − r2j2) · · · (δDjD − r2jD )

= r22 · · · r2D

1−
D∑

j=2

r2j


= r21r

2
2 · · · r2D ,

(115)

where ϵj2...jD is the completely antisymmetric symbol. This gives us

√
detM = r1 · · · rD = sinD−1θ1 sin

D−2θ2 · · · sin2θD−2 sin θD−1 cos θ1 · · · cos θD−1 . (116)

The final result for the volume element on projective Hilbert space is

dΓD = sin2D−3θ1 sin
2D−5θ2 · · · sin3θD−2 sin θD−1 cos θ1 · · · cos θD−1 dθ1 · · · dθD−1

× dϕ2 · · · dϕD .
(117)

B. Volume of projective Hilbert space

1. Projecting down from the unit (2D − 1)-sphere

The simplest method for getting the volume of projective Hilbert space is to use
Eq. (89):

S2D−1 =

∫ 2π

0

dδ

∫
dΓD = 2πΓD . (118)

The result is

ΓD =
S2D−1

2π
=

(2π)D−1

(2D − 2)!!
=

πD−1

(D − 1)!
. (119)
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2. Integrating up from the unit (2D − 3)-sphere

Equation (103) gives

ΓD =

∫
dΓD

=

∫ π/2

0

dθ sin2D−3θ cos θ

∫
dS2D−3

=
S2D−3

2(D − 1)

=
(2π)D−1

2(D − 1)(2D − 4)!!

=
πD−1

(D − 1)!
.

(120)

3. Integration over phases and the probability simplex

Using Eq. (92), we can also proceed through direct integration over phases and then
over the probability simplex:

2πΓD =
1

2D−1
√
D

∫
dAD−1

∫
dϕ1 · · · dϕD︸ ︷︷ ︸
= (2π)D

. (121)

The result is

ΓD = πD−1AD−1√
D

=
πD−1

(D − 1)!
. (122)

4. Direct integration

Using Eq. (117), we can evaluate the volume of projective Hilbert space as follows:

ΓD =

∫ π/2

0

dθ1 sin2D−3θ1 cos θ1

∫ π/2

0

dθ2 sin2D−5θ2 cos θ2 · · ·

×
∫ π/2

0

dθD−2 sin3θD−2 cos θD−2

∫ π/2

0

dθD−1 sin θD−1 cos θD−1

×
∫ 2π

0

dϕ2 · · ·
∫ 2π

0

dϕD

= (2π)D−1

∫ 1

0

du1 u
2D−3
1

∫ 1

0

du2 u
2D−5
2 · · ·

∫ 1

0

duD−2 u
3
D−2

∫ 1

0

duD−1 uD−1

=
(2π)D−1

(2D − 2)!!

=
πD−1

(D − 1)!
.

(123)
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IV. Density-operator space

The space of density operators consists of positive, trace-one operators ρ, i.e.,

ρ ≥ 0 , tr(ρ) = 1 . (124)

The main difficulty in dealing with density-operator space is knowing where the boundary
is. If one introduces coördinates based on the matrix elements of ρ in some fixed orthonor-
mal basis, then there is no simple test for determining when ρ is on the boundary—i.e.,
has one or more zero eigenvalues—or outside the space—i.e., has one or more negative
eigenvalues. We get around this difficulty by using the eigendecomposition to specify ρ:

ρ =

D∑
j=1

λj |ej⟩⟨ej | . (125)

Thus a density operator is specified by a set of eigenvalues λj , which lie in the probabil-
ity simplex, and by an associated orthonormal set of eigenvectors |ej⟩, each of which is
determined up to a phase.

Notice that if we permute simultaneously the eigenvalues and eigenvectors, the density
operator remains unchanged. Thus, in general, when doing integrals over density operators,
we must restrict the integrals to run over distinct (unordered) sets of bases or over distinct
(unordered) sets of eigenvalues. If we allow the integral to run over the entire eigenvalue
simplex and over all ordered sets of orthonormal eigenvectors, we will include each density
opertator D! times. One way to handle this would be to integrate over all ordered sets
of eigenvectors, but to restrict the integral over the eigenvalue simplex to one of the D!
regions that are equivalent under permutation. Usually, however, we are interested in
integrals whose integrand depends only on the eigenvalues. Then it is easiest to integrate
over the entire eigenvalue simplex and over all ordered sets of eigenvectors and to divide
by D! to remove the resulting overcounting of density operators.

A small displacement in the density operator takes the form

dρ =

D∑
j=1

dλj |ej⟩⟨ej |+
D∑

j=1

λj
(
|ej⟩⟨dej |+ |dej⟩⟨ej |

)
. (126)

The displacement must preserve orthonormality, so we have

0 = dδjk = d⟨ej |ek⟩ = ⟨dej |ek⟩+ ⟨ej |dek⟩ . (127)

When j = k, this simplifies to the requirement that the displaced eigenvectors remain
normalized:

0 = 2Re
(
⟨ej |dej⟩

)
. (128)

The imaginary part of ⟨ej |dej⟩ describes a change in the phase of |ej⟩. Such a phase change
has no effect on dρ. Indeed, if we define

|dej⊥⟩ = |dej⟩ − |ej⟩⟨ej |dej⟩ , (129)
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the part of dρ having to do with changes in the eigenvectors becomes

|ej⟩⟨dej |+ |dej⟩⟨ej | = |ej⟩⟨dej⊥|+ |dej⊥⟩⟨ej |+ 2|ej⟩⟨ej |Re
(
⟨ej |dej⟩

)︸ ︷︷ ︸
= 0

= |ej⟩⟨dej⊥|+ |dej⊥⟩⟨ej | .
(130)

The matrix elements of dρ in the local eigenbasis are given by

⟨ej |dρ|ek⟩ = dλjδjk + (λk − λj)⟨ej |dek⟩ =
{
dλj , j = k,
(λk − λj)⟨ej |dek⟩ , j ̸= k.

(131)

A. Haar metric and volume of projective U(D)

Any ordered eigenbasis |ej⟩ is related to a fiducial orthonormal basis |e(0)j ⟩ by a unique
unitary operator U defined by

U |e(0)j ⟩ = |ej⟩ . (132)

Thus there is a one-to-one correspondence between unitary operators in U(D) and ordered
eigenbases. The matrix elements of U relative to the fiducial basis are

Ujk = ⟨e(0)j |U |e(0)k ⟩ = ⟨e(0)j |ek⟩ . (133)

In this section matrix elements written like Ujk refer to the fiducial basis. Matrix elements
with respect to a local eigenbasis are written out explicitly, as in Eq. (131).

A small displacement dU produces a change in the eigenbasis given by

dU |e(0)j ⟩ = |dej⟩ . (134)

The matrix elements of dU ,

dUjk = ⟨e(0)j |dU |e(0)k ⟩ = ⟨e(0)j |dek⟩ , (135)

are important, but more useful are the matrix elements of U†dU ,

(U†dU)jk = ⟨e(0)j |U†dU |e(0)k ⟩ = ⟨ej |dek⟩ . (136)

Preservation of unitarity means that the displacements dU satisfy

0 = d1 = d(U†U) = dU† U + U†dU . (137)

The matrix elements of this relation,

0 =
⟨
e
(0)
j

∣∣(dU† U + U†dU
)∣∣e(0)k

⟩
= ⟨dej |ek⟩+ ⟨ej |dek⟩ , (138)

are identical, as they should be, to the requirements (127) set by the orthonormality of
the eigenbases.
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There is a natural metric on U(D), the group of unitary matrices. This metric, called
the Haar metric, has a line element

ds2 =
∑
j,k

|dUjk|2 = tr(dU†dU) . (139)

There being a one-to-one correspondence between unitary operators and ordered eigen-
bases, the Haar metric induces a metric on orthonormal bases:

ds2 =
∑
j

⟨e(0)j |dU†dU |e(0)j ⟩ =
∑
j

⟨dej |dej⟩ . (140)

Our objective is to use the Haar metric to provide a measure for a part of density-
operator space, the part corresponding to changes in eigenbasis. Since a change in the
phases of the eigenvectors has no effect on the density operator, we are really interested
in a projective version of U(D), where we identify unitary operators that produce the
same eigenbasis up to phase changes of the eigenvectors. In practice, this means that we
choose a particular set of phases for each eigenbasis. Looking at the matrix elements Ujk in

Eq. (133), we could fix the phases of the eigenbasis, for example, by choosing Ujj = ⟨e(0)j |ej⟩
to be real and positive or by choosing U1j = ⟨e(0)1 |ej⟩ to be real and positive. In terms of
the line element, we want to use a projective version of Eq. (140); since ⟨ej |dej⟩ describes
phase changes of |ej⟩, the appropriate line element is

du2D =
∑
j

⟨dej⊥|dej⊥⟩ =
∑
j

⟨dej |dej⟩ − |⟨ej |dej⟩|2 =
∑
j,k

|⟨ek|dej⟩|2 −
∑
j

|⟨ej |dej⟩|2 .

(141)
By writing

|dej⊥⟩ = |dej⟩ − |ej⟩⟨ej |dej⟩ = dU |e(0)j ⟩ − U |e(0)j ⟩⟨e(0)j |U†dU |e(0)j ⟩ = dU⊥|e(0)j ⟩ , (142)

where
dU⊥ ≡ dU −

∑
j

U |e(0)j ⟩⟨e(0)j |U†dU |e(0)j ⟩⟨e(0)j | , (143)

we can write the line element on projective U(D) formally as

du2D = tr(dU†
⊥dU⊥) , (144)

although we have little occasion to use this form.
The most useful way to think about projective U(D) is the following. The elements

of projective U(D) are in one-to-one correspondence with ordered eigenbases determined
up to phase changes of the eigenvectors. An ordered eigenbasis can be specified by first
picking an arbitrary vector and fixing its phase, then picking an arbitrary vector in the
subspace orthogonal to the first and fixing its phase, and so forth. Moreover, the line
element (141) can be written as

du2D = 2
∑
k>j

|⟨ek|dej⟩|2 = 2
∑
j

⟨de>j |de>j ⟩ , (145)
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where
|de>j ⟩ ≡

∑
k>j

|ek⟩⟨ek|dej⟩ (146)

is the displacement |dej⟩ projected onto the subspace spanned by subsequent vectors in
the basis. The jth term in the line element (145) is the line element on a projective Hilbert
space of dimension D − j + 1. Thus we can write the volume element on projective U(D)
as

dΥD =
(√

2
)2(D−1)

dΓD

(√
2
)2(D−2)

dΓD−1 · · ·
(√

2
)2(3−1)

dΓ3

(√
2
)2(2−1)

dΓ2

= 2D(D−1)/2dΓD · · · dΓ2 .
(147)

The volume of projective U(D) is obtained by integrating over the entirety of each of the
projective Hilbert spaces:

ΥD = 2D(D−1)/2ΓD · · ·Γ2 =
(2π)D(D−1)/2

D−1∏
d=1

d !

. (148)

Notice that had we dealt with U(D) instead of projective U(D), we would have had
the line element (140):

ds2 =
∑
j

⟨dej |dej⟩ = du2D +
∑
j

|⟨ej |dej⟩|2 =
∑
j

2⟨de>j |de>j ⟩+ |⟨ej |dej⟩|2 . (149)

This line element differs from the line element on projective U(D) by additional terms
that describe the phase changes of each basis vector; i.e., if we used a fiducial basis vector
|e′j⟩ in projective U(D), then we must consider all basis vectors |ej⟩ = eiδj |e′j⟩ in U(D),

thus giving |⟨ej |dej⟩|2 = dδ2j . The corresponding volume of U(D) is bigger than that of
Eq. (148) by a factor of 2π for each dimension, thus giving(

volume of
U(D)

)
=

(2π)D(D+1)/2

D−1∏
d=1

d !

. (150)

For D = 2 this gives a volume of 8π3, which agrees with a direct calculation.
What if we are interested in the volume of SU(D)? Choosing the phases of the fiducial

basis vectors |e′j⟩ so as to make the determinant of U equal to 1, we see that the additional

phases eiδj change the determinant to ei(δ1+···+δD). To maintain a unit determinant, we
must choose

δ1 = −
D∑

j=2

δj . (151)
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Each of the phases δj for j = 2, . . . , D, runs from 0 to 2π, because every choice of these
phases corresponds to a different basis and thus to a different unitary operator U . The
phase δ1 tracks the other phases according to the unit-determinant condition (151); other
choices of δ1, differing by multiples of 2π, do not lead to a different unitary operator and
thus can be ignored. As a consequence of these considerations, the local line element for
the additional phase changes becomes

D∑
j=1

|⟨ej |dej⟩|2 =
D∑

j=1

dδ2j =
D∑

j=2

dδ2j +
D∑

j,k=2

dδjdδk . (152)

The phase part of the volume element is given by
√
detM dδ2 · · · dδD, where M has matrix

elements Mjk = 1 + δjk, j, k = 2, . . . , D. Writing

M = I+ (D − 1)|e⟩⟨e| , (153)

where

|e⟩ = 1√
D − 1

D∑
j=2

|j⟩ (154)

is a normalized vector, we find that detM = D. The result is that, relative to the volume
element on projective U(D), there is an additional phase volume element

√
Ddδ2 · · · dδD

at each fiducial basis, which contributes an additional volume factor
√
D(2π)D−1. (The

need for this calculation, instead of just including D − 1 factors of 2π, was pointed out to
me by Mark S. Byrd.) The result is(

volume of
SU(D)

)
=

√
D(2π)(D+2)(D−1)/2

D−1∏
d=1

d !

. (155)

For D = 2 this gives a volume 4
√
2π2, which agrees with a direct calculation.

The above measures and volumes were founded on the line element (139). It is some-
times more convenient to begin with the line element

(ds′)2 =
1

2
ds2 =

1

2
tr(dU†dU) . (156)

With this choice the volume of projective U(D) becomes

Υ′
D =

ΥD

(
√
2)D(D−1)

=
πD(D−1)/2

D−1∏
d=1

d !

. (157)
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Similarly, the volume of U(D) is reduced by a factor of (
√
2)D

2

, giving(
volume of
U(D)

)′

=
2D/2πD(D+1)/2

D−1∏
d=1

d !

, (158)

and the volume of SU(D) is reduced by a factor of (
√
2)D

2−1, giving(
volume of
SU(D)

)′

=

√
D 2(D−1)/2π(D+2)(D−1)/2

D−1∏
d=1

d !

. (159)

This result agrees with Eq. (A10) of C. Bernard, Phys. Rev. A 19, 3013–3019 (1979) and
also with Eq. (31) of M. S. Marinov, J. Phys. A 14, 543–544 (1981), which corrects the
corresponding equation in M. S. Marinov, J. Phys. A 13, 3357–3366 (1980).

B. Metrics and volume elements on density-operator space

1. General formulation

There is no way to pick out a universally preferred line element on density opera-
tors, but we can restrict the possibilities by imposing the following natural restrictions:
(i) displacements on the eigenvalue simplex are orthogonal to displacements describing
basis changes, (ii) there are no preferred directions on the eigenvalue simplex, and (iii) the
line element for basis changes is the same as the Haar metric except that we allow for
the possibility of eigenvalue-dependent length scalings. The resulting line element has the
form

ds2 =
∑
j

⟨ej |dρ|ej⟩2

f(λj)
+
∑
j ̸=k

g(λj , λk)|⟨ek|dρ|ej⟩|2

=
∑
j

dλ2j
f(λj)

+ 2
∑
k<j

g(λj , λk)(λj − λk)
2|⟨ek|dej⟩|2 ,

(160)

where f(λj) is a positive function and g(λj , λk) is a symmetric, positive function.
To get the corresponding volume element, we focus first on the volume element on the

eigenvalue simplex. At a point on the simplex specified by eigenvalues λ
(0)
j (

∑
j λ

(0)
j = 1),

consider a curve that runs orthogonal to the simplex into the region of unnormalized
eigenvalues. Near the simplex such a curve is given by

λj − λ
(0)
j =

f
(
λ
(0)
j

)(∑
k

f
(
λ
(0)
k

))1/2 ℓ , (161)
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where ℓ measures distance along the curve according to the simplex part of the line ele-
ment (160). This allows us to write

ℓ =

∑
j

λj − 1

(∑
k

f
(
λ
(0)
k

))1/2 . (162)

At the point in question, the line element on the space of eigenvalues has the form

∑
j

dλ2j
f(λj)

= dℓ2 + dν2D−1 , (163)

where dν2D−1 is the line element on the simplex.
The volume element on the eigenvalue space thus has the form

dλ1 · · · dλD√
f(λ1) · · · f(λD)

= dℓ dBD−1 , (164)

where dBD−1 is the volume element on the simplex. Thus we have

dBD−1 = δ(ℓ)
dλ1 · · · dλD√
f(λ1) · · · f(λD)

. (165)

Since

δ(ℓ) = δ


1−

∑
j

λj(∑
k

f(λk)

)1/2
 =

(∑
j

f(λj)

)1/2
δ

1−
∑
j

λj

 , (166)

we can put the volume element on the eigenvalue simplex in the more convenient forms

dBD−1 = δ

1−
∑
j

λj

(∑
j

f(λj)

)1/2
dλ1 · · · dλD√
f(λ1) · · · f(λD)

=

 1

D

∑
j

f(λj)

1/2

dAD−1√
f(λ1) · · · f(λD)

= 2D−1

(∑
j

f(λj)

)1/2√
λ1 · · ·λD

f(λ1) · · · f(λD)
dSD−1 .

(167)
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Now the volume element on density-operator space becomes

dVD = dBD−1

∏
k<j

2g(λj , λk)(λj − λk)
2

 dΓD · · · dΓ2

=

(∏
k<j

g(λj , λk)(λj − λk)
2

)
dBD−1 dΥD .

(168)

As discussed above, for integrating over all density operators, one should integrate over
all of projective U(D), but only over unordered sets of eigenvalues, i.e., over one of the
D! equivalent subsets of the eigenvalue simplex that are equivalent under permutations.
When the integrand depends only on the eigenvalues, however, we can integrate over the
entire simplex and over the entirety of projective U(D), dividing by D! to remove the
overcounting. Thus we have for the volume of density-operator space

VD =
ΥD

D!

∫
dBD−1

(∏
k<j

g(λj , λk)(λj − λk)
2

)
. (169)

2. Examples

a. Flat metric

The simplest metric on density operators is the flat metric

ds2 = tr(dρ2) =
∑
j,k

|⟨ej |dρ|ek⟩|2 =
∑
j

dλ2j +
∑
k ̸=j

(λj − λk)
2|⟨ek|dej⟩|2 . (170)

This metric is flat on the eigenvalue simplex, and its overall flatness requires a scaling
factor (λj −λk)2 relative to the Haar metric on projective U(D). These factors reduce the
distance corresponding to a change in basis vector relative to the distance corresponding
to the same change for a pure state on projective Hilbert space. Thus this factor means
that a smaller volume is assigned to basis-vector changes for highly mixed states than for
nearly pure ones. Notice that the flat metric has f(λj) = 1 and g(λj , λk) = 1; the general
scaling functions f(λj) and g(λj , λk) appearing in other line elements thus describe further
scalings relative to the flat metric.

The volume element for the flat metric,

dVD =

(∏
k<j

(λj − λk)
2

)
dAD−1 dΥD , (171)

leads to a total volume

VD =
ΥD

D!

∫
dAD−1

(∏
k<j

(λj−λk)2
)

=
(2π)D(D−1)/2

D∏
d=1

d!

∫
dAD−1

(∏
k<j

(λj−λk)2
)
. (172)
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For D = 2, this becomes

V2 = π

∫
dA1 (λ2 − λ1)

2 = π
√
2

∫ 1

0

dλ1 (2λ1 − 1)2 =
π
√
2

3
. (173)

b. Round metric

Another simple and natural choice is the round metric

ds2 = tr
(
(d
√
ρ)2
)
=
∑
j,k

|⟨ej |d
√
ρ |ek⟩|2 . (174)

Writing √
ρ =

∑
j

√
λj |ej⟩⟨ej | , (175)

we find that a small displacement of
√
ρ becomes

d
√
ρ =

∑
j

dλj

2
√
λj

+
∑
j

√
λj
(
|ej⟩⟨dej |+ |dej⟩⟨ej |

)
, (176)

which gives

⟨ej |d
√
ρ |ek⟩ =

dλj

2
√
λj
δjk + (

√
λk −

√
λj )⟨ej |dek⟩ =

{
dλj/2

√
λj , j = k,

(
√
λk −

√
λj )⟨ej |dek⟩ , j ̸= k.

(177)
The resulting line element is

ds2 =
∑
j

dλ2j
4λj

+
∑
k ̸=j

(
√
λj −

√
λk )

2|⟨ek|dej⟩|2 . (178)

This metric is the Wootters metric on the eigenvalue simplex, and its overall roundness
requires a scaling factor (

√
λj −

√
λk )

2 relative to the Haar metric on projective U(D).
Notice that the round metric has

f(λj) = 4λj and g(λj , λk) =

(√
λj −

√
λk

λj − λk

)2

. (179)

The volume element for the round metric,

dVD =

(∏
k<j

(
√
λj −

√
λk )

2

)
dSD−1 dΥD , (180)

leads to a total volume

VD =
ΥD

D!

∫
dSD−1

(∏
k<j

(
√
λj −

√
λk )

2

)
=

(2π)D(D−1)/2

D∏
d=1

d!

∫
dSD−1

(∏
k<j

(rj − rk)
2

)
.

(181)
For D = 2, this becomes

V2 = π

∫
dS1 (r2−r1)2 = π

∫ π/2

0

dϕ (sinϕ−cosϕ)2 = π

∫ π/2

0

dϕ (1−sin 2ϕ) = π
(π
2
− 1
)
.

(182)
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c. Bures-Uhlmann metric

Statistical distance for density operators leads to the Bures-Uhlmann metric

ds2 =
1

2
tr
(
dρLρ(dρ)

)
, (183)

where Lρ is the lowering superoperator defined by

Lρ(B) = A if B = ρA+Aρ = Rρ . (184)

Thus we have that
⟨ej |B|ek⟩ = (λj + λk)⟨ej |A|ek⟩ , (185)

which gives

⟨ej |Lρ(B)|ek⟩ = ⟨ej |A|ek⟩ =
⟨ej |B|ek⟩
λj + λk

. (186)

The resulting line element is

ds2 =
1

2

∑
j,k

⟨ek|dρ|ej⟩⟨ej |Lρ(dρ)|ek⟩

=
1

2

∑
j,k

|⟨ej |dρ|ek⟩|2

λj + λk

=
dλ2j
4λj

+
∑
k ̸=j

(λj − λk)
2

2(λj + λk)
|⟨ek|dej⟩|2 .

(187)

The Bures-Uhlmann metric is the Wootters metric on the eigenvalue simplex, with a
“statistical distinguishability” scaling factor for basis changes. Notice that the Bures-
Uhlmann metric has

f(λj) = 4λj =
1

g(λj , λj)
and g(λj , λk) =

1

2(λj + λk)
. (188)

The volume element for the Bures-Uhlmann metric,

dVD =
1

2D(D−1)/2

(∏
k<j

(λj − λk)
2

λj + λk

)
dSD−1 dΥD , (189)

leads to a total volume

VD =
ΥD

2D(D−1)/2D!

∫
dSD−1

(∏
k<j

(λj − λk)
2

λj + λk

)

=
πD(D−1)/2

D∏
d=1

d!

∫
dSD−1

(∏
k<j

(r2j − r2k)
2

r2j + r2k

)
.

(190)
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For D = 2, this becomes

V2 =
π

2

∫
dS1 (r

2
2−r21)2 =

π

2

∫ π/2

0

dϕ (sin2ϕ−cos2ϕ)2 =
π

2

∫ π/2

0

dϕ cos22ϕ =
π2

8
. (191)

d. Another metric based on statistical distinguishability

Another way to introduce a metric based on statistical distinguishability is to use the
isotropic, informationally complete POVM

dE(|ψ⟩) ≡ D

ΓD
dΓD |ψ⟩⟨ψ| , (192)

where ∫
dE(|ψ⟩) = D

ΓD

∫
dΓD |ψ⟩⟨ψ| = 1 . (193)

This POVM generates probabilities

p(|ψ⟩) dΓD = tr
(
ρ dE(|ψ⟩)

)
=

D

ΓD
⟨ψ|ρ|ψ⟩ dΓD , (194)

whose Wootters metric induces a metric on density operators,

ds2 =
1

4

∫
dΓD

dp2(|ψ⟩)
p(|ψ⟩)

=
D

4ΓD

∫
dΓD

⟨ψ|dρ|ψ⟩2

⟨ψ|ρ|ψ⟩
. (195)

At the time of writing, I don’t know how to evaluate this integral to put the line element
in the standard form (160), so I confine myself to working out the D = 2 case below.

3. D = 2

For D = 2 the density operator can be written as

ρ =
1

2
(1 + rn · σ) = 1 + r

2︸ ︷︷ ︸
= λ1

1

2
(1 + n · σ) + 1− r

2︸ ︷︷ ︸
= λ2

1

2
(1− n · σ) . (196)

a. Flat metric

A small displacement of the density operator takes the form

dρ =
1

2
(dr n+ rdn) · σ . (197)

The resulting flat line element,

ds2 = tr(dρ2) =
1

2
|dr n+ rdn|2 =

1

2
(dr2 + r2dn · dn) , (198)
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is indeed the standard flat metric on the Bloch sphere, except that lengths are contracted
by a factor of 1/

√
2. The corresponding volume is thus

V2 =
1

2
√
2

4π

3
=
π
√
2

3
. (199)

b. Round metric

The square root of the density operator can be written as

√
ρ =

√
1 + r

2

1

2
(1 + n · σ) +

√
1− r

2

1

2
(1− n · σ) . (200)

Defining a new coördinate χ by r = sin 2χ, where 0 ≤ χ ≤ π/4, we have

√
1± r

2
=

√
1± sin 2χ

2
=

√
sin2χ+ cos2χ± 2 sinχ cosχ

2
=

1√
2
(cosχ± sinχ) . (201)

In terms of χ, the square root of the density operator becomes

√
ρ =

1√
2
(cosχ+sinχ)

1

2
(1+n·σ)+ 1√

2
(cosχ−sinχ)

1

2
(1−n·σ) = 1√

2
(cosχ 1+sinχn·σ) ,

(202)
and a small displacement in

√
ρ takes the form

d
√
ρ =

1√
2
[− sinχdχ 1 + (cosχdχn+ sinχdn) · σ] . (203)

The resulting line element is

ds2 = tr
(
(d
√
ρ)2
)

= sin2χdχ2 + | cosχdχn+ sinχdn|2

= dχ2 + sin2χdn · dn

=
dr2

4(1− r2)
+

1

2

(
1−

√
1− r2

)
dn · dn .

(204)

Under the round metric the Bloch sphere has the geometry of the part of the unit 3-sphere
that lies within π/4 of the north pole. The corresponding volume is

V2 =

∫ π/4

0

dχ 4π sin2χ = 2π

∫ π/4

0

dχ (1− cos 2χ) = π
(π
2
− 1
)
. (205)
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The quantity
√
r2grr/gθθ measures the ratio of radial to angular distances relative to

a unity ratio for the flat metric. For the round metric we have√
r2grr
gθθ

=
r√

2(1− r2)(1−
√
1− r2)

→
{
1 , r ≪ 1,
1/2

√
1− r , r ≃ 1.

(206)

c. Bures-Uhlmann metric

Writing an arbitrary operator as

A = aασα = a01 + a · σ , (207)

we find that
B = ρA+Aρ = (a0 + ra · n)1 + (a+ ra0n) · σ = bασα , (208)

which gives
b0 = a0 + ra · n and b = a+ ra0n . (209)

The vector relation gives immediately that

a− n(a · n) = a⊥ = b⊥ = b− n(b · n) (210)

and
b · n = a · n+ ra0 . (211)

Inverting the equations for b0 and b · n, we find

a0 =
b0 − rb · n
1− r2

and a · n =
b · n− rb0
1− r2

. (212)

Combining these relations with Eq. (210) yields

a = b− n(b · n− a · n︸ ︷︷ ︸
= ra0

) = b− n
rb0 − r2b · n

1− r2
. (213)

The result is an explicit form for the action of the lowering operator:

Lρ(B) = A =
b0 − rb · n
1− r2

1 + σ ·
(
b− n

rb0 − r2b · n
1− r2

)
. (214)

We apply this result to the dρ of Eq. (197), for which b0 = 0 and b = (dr n+ rdn)/2:

Lρ(dρ) = −1

2

r dr

1− r2
1 +

1

2
σ ·
(

dr

1− r2
n+ rdn

)
. (215)
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The resulting Bures-Uhlmann line element is

ds2 =
1

2
tr
(
dρLρ(dρ)

)
=

1

4
(dr n+ rdn) ·

(
dr

1− r2
n+ rdn

)
=

1

4

(
dr2

1− r2
+ r2dn · dn

)
.

(216)
Introducing a new coördinate χ defined by r = sinχ, with 0 ≤ χ ≤ π/2, we find that the
line element assumes the form

ds2 =
1

4
(dχ2 + sin2χdn · dn) . (217)

which means that the Bloch sphere has the geometry of the northern hemisphere of a
3-sphere of radius 1/2. The corresponding volume is

V2 =
1

2

S3

8
=
π2

8
. (218)

For the Bures-Uhlmann metric, the quantity
√
r2grr/gθθ takes the form√

r2grr
gθθ

=
1√

1− r2
→
{
1 , r ≪ 1,
1/
√

2(1− r) , r ≃ 1.
(219)

Relative to the flat metric, the Bures-Uhlmann metric assigns a consistently greater dis-
tance to radial displacements than to angular displacements, reflecting the ease of distin-
guishing mixed states with the same eigenvectors relative to the distance assigned by the
flat metric.

d. Another metric based on statistical distinguishability

Letting |ψ⟩⟨ψ| = 1
2 (1 + m · σ) and using ⟨ψ|ρ|ψ⟩ = 1

2 (1 + rn · m) and ⟨ψ|dρ|ψ⟩ =
1
2 (dr n+ rdn) ·m, the line element (195) becomes

ds2 =
1

2

∫
dΩm

4π

⟨ψ|dρ|ψ⟩2

⟨ψ|ρ|ψ⟩
=

1

16π

∫
dΩm

[(dr n+ rdn) ·m]2

1 + rn ·m
, (220)

where dΓD/ΓD = dΩm/4π. We can evaluate the integral by orienting the coördinates so
that n = ez and thus dn = dnxex + dnyey. With this choice we have

ds2 =
1

16π

∫
dΩm

(dr cos θ + rdn ·m)2

1 + r cos θ

=
1

16π

∫
dΩm

dr2 cos2θ + 2r dr cos θ dn ·m+ r2(dn ·m)2

1 + r cos θ

=
1

16π

(
dr2

∫
dΩm

cos2θ

1 + r cos θ
+ 2r dr dnj

∫
dΩm

mj cos θ

1 + r cos θ

+ r2 dnj dnk

∫
dΩm

mjmk

1 + r cos θ

)
.

(221)
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In the two sums over dnj , remember that j can only take on two values, x and y.
The integrals in the final line of Eq. (221) are easy to evaluate. The first integral is∫
dΩm

cos2θ

1 + r cos θ
= 2π

∫ π

0

dθ
sin θ cos2θ

1 + r cos θ

=
2π

r3

∫ 1+r

1−r

du
(u− 1)2

u
(u = 1 + r cos θ, du = −r sin θ dθ)

=
2π

r3

[
ln

(
1 + r

1− r

)
− 2r

]
.

(222)

The second integral vanishes due to reflection symmetry. The third integral vanishes for
j ̸= k and has the same value for j = k = x and j = k = y, which is given by∫

dΩm
m2

x

1 + r cos θ
=

∫ π

0

dθ
sin3θ

1 + r cos θ

∫ 2π

0

dϕ cos2ϕ

= π

(∫ π

0

dθ
sin θ

1 + r cos θ︸ ︷︷ ︸
=

1

r
ln

(
1 + r

1− r

) −
∫ π

0

dθ
sin θ cos2θ

1 + r cos θ︸ ︷︷ ︸
=

1

r3

[
ln

(
1 + r

1− r

)
− 2r

]
)

=
π

r3

[
2r − (1− r2) ln

(
1 + r

1− r

)]
.

(223)

The resulting line element is

ds2 =
1

12

(
3

2r3

[
ln

(
1 + r

1− r

)
− 2r

]
dr2 +

3

4r

[
2r − (1− r2) ln

(
1 + r

1− r

)]
dn · dn

)
. (224)

For small r, ln[(1 + r)/(1 − r)] = 2r + 2r3/3, so the line element takes on the flat
form, ds2 = 1

12 (dr
2 + r2dn · dn), whereas for r ≃ 1, the line element goes to ds2 =

1
8 [− ln(1− r)dr2 + dn · dn]. The quantity

√
r2grr/gθθ takes the form

√
r2grr
gθθ

=

√√√√√√√2

ln

(
1 + r

1− r

)
− 2r

2r − (1− r2) ln

(
1 + r

1− r

) →
{
1 , r ≪ 1,√
− ln(1− r) , r ≃ 1.

(225)

Relative to the flat metric, this line element assigns a consistently greater distance to
radial displacements than to angular displacements, reflecting the ease of distinguishing
mixed states with the same eigenvectors relative to the distance assigned by the flat metric.
The distinguishability is nowhere near as good as for the Bures-Uhlmann metric, however,
reflecting the fact that the Bures-Uhlmann metric uses the best measurement for distin-
guishing two neighboring density operators, whereas this line element refers to a particular
metric that is optimal for distinguishing a density operator from all its neighbors in all
directions.
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