To: R. Schack From: C. M. Caves Subject: Constructing an orthonormal basis from an arbitrary basis 1996 May 23

Consider an arbitrary set of basis vectors $|\phi_k\rangle$ (linearly independent vectors that span a vector space). There are many ways—e.g., Gram-Schmidt orthogonalization—to construct an orthonormal basis from this arbitrary basis. The aim here is to give a procedure that is *democratic* in the sense that it treats all the vectors $|\phi_k\rangle$ on the same footing.

Define the operator

$$\hat{G} \equiv \sum_{k} |\phi_k\rangle \langle \phi_k| .$$
(1)

This operator is manifestly positive, because

$$\langle \psi | \hat{G} | \psi \rangle = \sum_{k} |\langle \phi_k | \psi \rangle|^2 \ge 0 , \qquad (2)$$

and thus has a positive square root $\hat{G}^{1/2}$. Moreover, it is easy to show that \hat{G} is positive definite. Any vector $|\psi\rangle$ can be expanded (uniquely) as

$$|\psi\rangle = \sum_{k} c_k |\phi_k\rangle , \qquad (3)$$

which implies that

$$\langle \psi | \psi \rangle = \sum_{k} c_k \langle \psi | \phi_k \rangle .$$
⁽⁴⁾

Suppose that a vector $|\psi\rangle$ satisfies

$$0 = \langle \psi | \hat{G} | \psi \rangle = \sum_{k} | \langle \phi_k | \psi \rangle |^2 .$$
(5)

This implies that $\langle \phi_k | \psi \rangle = 0$ for all k. Hence, from (4), we have that $\langle \psi | \psi \rangle = 0$, which implies that $|\psi\rangle = 0$. Thus \hat{G} is positive definite, which means that its square root has an inverse $\hat{G}^{-1/2}$.

Now notice that

$$\hat{1} = \hat{G}^{-1/2} \hat{G} \hat{G}^{-1/2} = \sum_{k} |\psi_k\rangle \langle \psi_k| , \qquad (6)$$

where

$$|\psi_k\rangle \equiv \hat{G}^{-1/2}|\phi_k\rangle . \tag{7}$$

Any vectors $|\psi_k\rangle$ that satisfy the completeness condition (6) span the space, for an arbitrary vector $|\psi\rangle$ can be expanded as

$$|\psi\rangle = \sum_{k} |\psi_k\rangle \langle \psi_k |\psi\rangle .$$
(8)

Moreover, the linear independence of the original basis vectors $|\phi_k\rangle$ implies immediately that the vectors $|\psi_k\rangle$ are linearly independent. Linearly independent vectors that satisfy the completeness condition are orthonormal, for the uniqueness of the expansion

$$|\psi_l\rangle = \sum_k |\psi_k\rangle \langle \psi_k |\psi_l\rangle \tag{9}$$

implies that

$$\langle \psi_k | \psi_l \rangle = \delta_{kl} \ . \tag{10}$$

Thus the vectors $|\psi_k\rangle$ make up an orthonormal basis.

I learned this procedure from Ben Schumacher, who extracted it from the ρ -distortion technique introduced by Hughston, Jozsa, and Wootters. The procedure could be used, for example, to convert a basis of nonorthogonal vectors localized on phase space into an orthonormal basis of localized vectors.