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Preparation operations
A preparation operation A is one that prepares the same output state σ regardless of

input, i.e.,
A(ρ) = p(ρ)σ ,

for all ρ for which
p(ρ) = tr

(A(ρ)
) 6= 0 .

Writing A in terms of a Kraus decomposition,

A =
∑
α

Aα ¯A†α ,

we have
p(ρ) = tr(Eρ) ,

where
E =

∑
α

A†αAα

is the POVM element corresponding to A. Writing the eigendecomposition of

E =
∑

j

µj |gj〉〈gj | ,

we see that the input states for which p(ρ) = 0 are those that are confined to the null
subspace of E. In analyzing A, we can confine our attention to states that lie in the
support of E.

If we write the eigendecomposition of

σ =
∑

k

λk|fk〉〈fk| ,

it is easy to see that A has the form

A =
∑

j,k

λkµj |fk〉〈gj | ¯ |gj〉〈fk| =
∑

j,k

√
σ |fk〉〈gj |

√
E ¯

√
E|gj〉〈fk|

√
σ .

Thus one set of Kraus operators for A is {√σ |fk〉〈gj |
√

E}.
If A is trace preserving, it is a deterministic preparation operation, having p(ρ) = 1

for all inputs, and if A is trace decreasing, it is a stochastic preparation operation, which
only works part of the time. A preparation operation is deterministic iff E = I. A
stochastic preparation operation that prepares a pure state can always be thought of as
a measurement in an arbitrary orthonormal basis followed by a conditional unitary that
maps the measured state to the desired pure state.
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Measurement models

Now let’s consider measurement models for A, i.e.,

A(ρ) = trA(ΠAUρ⊗ Σ U†) =
∑

l,m

√
ηl〈Fm|U |Gl〉︸ ︷︷ ︸

= Aα

ρ 〈Gl|U†|Fm〉√ηl︸ ︷︷ ︸
= A†α

,

where
Σ =

∑

l

ηl|Gl〉〈Gl|

is the initial state of the ancilla (or apparatus) and

ΠA =
∑
m

|Fm〉〈Fm|

is an ancilla projector that projects onto subspace SA. Our concern is whether the out-
put state can be made independent of the input product state. Let’s denote the system
dimension by d and the ancilla dimension by D.

Measurement models: Deterministic preparation operations

Let’s concentrate first on deterministic operations, for which ΠA = IA. What we’re
interested in is having the measurement model produce system output state σ for every
input product* state. For this to happen, it must be true, for some product basis |ej〉⊗|El〉,
that

|βj,l〉 = U |ej〉 ⊗ |El〉 =
∑

k

√
λk|fk〉 ⊗ |F k

j,l〉 , (1a)

where the last form is the Schmidt decomposition of |βj,l〉, i.e.,

〈F k
j,l|F k′

j,l〉 = δkk′ , (1b)

and where the output states |βj,l〉, numbering dD, are an orthonormal basis for the joint
system, i.e.,

δjj′δll′ = 〈βj,l|βj′,l′〉 =
∑

k

λk〈F k
j,l|F k

j′,l′〉 . (1c)

Requirement (1) is not sufficient; in addition, we need to have that

U |ψ〉 ⊗ |Ψ〉 =
∑

j,l

ajbl|βj,l〉 =
∑

k

√
λk|fk〉 ⊗

(∑

j,l

ajbl|F k
j,l〉

)
(2a)

* We might require the output state to be independent of input for every input state,
not just product states, and requiring this would make the proof for stochastic preparation
operations much simpler, but it would be far less convincing if this result depended on
inputting entangled states.
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marginalizes to σ for all input product states |ψ〉 ⊗ |Ψ〉, where

|ψ〉 =
∑

j

aj |ej〉 and |Ψ〉 =
∑

l

bl|El〉 .

This means that for arbitrary choices of the expansion coefficients aj and bl, the states
∑

j,l

ajbl|F k
j,l〉 , k = 1, . . . , rank(σ) , (2b)

must be orthonormal. The orthonormality of the states (2b), which includes Eq. (1b),
requires that

〈F k
j,l|F k′

j′,l′〉 = δkk′δjj′δll′ , (3)

as we show below. The number of states |F k
j,l〉 being dD × rank(σ), Eq. (3) is clearly

impossible. Notice that we did not need property (1c).
To show Eq. (3), we begin by defining joint system operators

Mkk′ =
∑

j,l,j′,l′
|ej〉 ⊗ |El〉 〈F k

j,l|F k′
j′,l′〉︸ ︷︷ ︸

= Mkk′
j,l;j′,l′

〈ej′ | ⊗ 〈El′ | ,

whose matrix elements are the various inner-product matrices. The orthonormality of the
states (2b) then becomes

δkk′ =
∑

j,l,j′,l′
a∗jaj′b

∗
l bl′〈F k

j,l|F k′
j′,l′〉 = (〈ψ| ⊗ 〈Ψ|)Mkk′(|ψ〉 ⊗ |Ψ〉)

for all product states |ψ〉 ⊗ |Ψ〉. Since the space of joint operators has a product-operator
basis and the operator space for each subsystem has a basis of rank-one projectors, Mkk′ is
determined by this condition to be Mkk′ = δkk′ , and from this Eq. (3) follows immediately.

Measurement models: Stochastic preparation operations
The case of stochastic preparation operations is now fairly easy to handle. As far as

the system is concerned, we can restrict attention to the support of E. We now let d stand
for the dimension of the support, and we let |ej〉 be an arbitrary orthonormal basis for
the support. Recall that the stochastic operation involves a projection ΠA onto the ancilla
subspace SA. If the system output state is to be independent of the input product state,
we must have

|βj,l〉 = U |ej〉 ⊗ |El〉 =
√

µj,l

∑

k

√
λk|fk〉 ⊗ |F k

j,l〉+
√

1− µ2
j,l|Φj,l〉 , (4a)

where the first term is in SA and the second term is orthogonal to SA. The sum is
the Schmidt decomposition of a state that marginalizes to σ. Thus the states |F k

j,l〉 are
orthonormal,

〈F k
j,l|F k′

j,l〉 = δkk′ , (4b)
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as in Eq. (1b); moreover, these states lie in the subspace SA. The joint states |Φj,l〉 satisfy
ΠA|Φj,l〉 = 0, and the real quantity µj,l ≥ 0 is the probability for the device to output σ
when the input state is |ej〉 ⊗ |El〉. It is useful to absorb the factors involving µj,l into the
states:

|F̃ k
j,l〉 =

√
µj,l|F k

j,l〉 and |Φ̃j,l〉 =
√

1− µ2
j,l|Φj,l〉 .

This puts Eq. (4a) into the form

|βj,l〉 = U |ej〉 ⊗ |El〉 =
∑

k

√
λk|fk〉 ⊗ |F̃ k

j,l〉+ |Φ̃j,l〉 . (4a′)

Finally, the states |βj,l〉, numbering dD, are an orthonormal basis for the joint system, i.e.,

δjj′δll′ = 〈βj,l|βj′,l′〉 =
∑

k

λk〈F̃ k
j,l|F̃ k

j′,l′〉+ 〈Φ̃j,l|Φ̃j′,l′〉 . (4c)

We also need to have that

PAU |ψ〉 ⊗ |Ψ〉 =
∑

j,l

ajblPA|βj,l〉 =
∑

k

√
λk|fk〉 ⊗

(∑

j,l

ajbl|F̃ k
j,l〉

)
(5a)

marginalizes to a nonzero multiple of σ for all input product states |ψ〉 ⊗ |Ψ〉. This means
that for any choice of the expansion coefficients aj and bl, the states

∑

j,l

ajbl|F̃ k
j,l〉 , k = 1, . . . , rank(σ) , (5b)

must be orthogonal, and the magnitude of these states must be the same, that magnitude,
µψ,Ψ > 0, being the (positive) probability to output σ for input |ψ〉 ⊗ |Ψ〉. This is a
scaled-down version of orthonormality.

The joint system operators,

Mkk′ =
∑

j,l,j′,l′
|ej〉 ⊗ |El〉 〈F̃ k

j,l|F̃ k′
j′,l′〉︸ ︷︷ ︸

= Mkk′
j,l;j′,l′

〈ej′ | ⊗ 〈El′ | ,

must satisfy

(〈ψ| ⊗ 〈Ψ|)Mkk′(|ψ〉 ⊗ |Ψ〉) =
∑

j,l,j′,l′
a∗jaj′b

∗
l bl′〈F̃ k

j,l|F̃ k′
j′,l′〉 = µψ,Ψδkk′ .

for all states |ψ〉 and |Ψ〉. This implies that Mkk′ = 0 for k 6= k′, as in the case of deter-
ministic preparation operations, and that the Hermitian operators Mkk are independent
of k, i.e., Mkk = M = M†. In other words, for each k, the states |F̃ k

j,l〉 span a subspace
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Sk, the subspaces for different values of k are orthogonal, and within each subspace, the
states |F̃ k

j,l〉 have the same inner-product (Gram) matrix.
Now we invoke Eq. (4c):

δjj′δll′ =
∑

k

λkMkk
j,l;j′,l′ + 〈Φ̃j,l|Φ̃j′,l′〉 = Mj,l;j′,l′ + 〈Φ̃j,l|Φ̃j′,l′〉 .

Consider the states
|γk

j,l〉 = |fk〉 ⊗ |F̃ k
j,l〉+ |Φ̃j,l〉 ,

which satisfy
〈γk

j,l|γk
j′,l′〉 = Mj,l;j′,l′ + 〈Φ̃j,l|Φ̃j′,l′〉 = δjj′δll′ .

Thus, for each k, these states are an orthonormal basis for the joint Hilbert space of
dimension dD; indeed, these states are a Neumark extension of the states |fk〉⊗ |F̃ k

j,l〉. We
also have

〈γk
j,l|(|fk′〉 ⊗ |F̃ k′

j,l〉) = 0 for k 6= k′,

which is impossible if there is more than one value of k, i.e., if rank(σ) > 1.
This leaves open the nettling case of rank(σ) = 1. To handle it, we show that there

is no operator M with the required properties. The proof thus applies regardless of the
rank of σ [although it is overkill when rank(σ) > 1] and is more akin to what we did for
deterministic preparation operations. What we show is that there is a product state in the
null subspace of M ; for that product state µψ,Ψ will be zero, giving a contradiction. We
can drop the index k on the states |F k

j,l〉, since all values of k give the same operator M .
We first note that the rank of M is the dimension of the subspace spanned by the

states |Fj,l〉.* Since the states |Fj,l〉 span a space of dimension no greater than D, the rank
of M is no greater than D, and the dimension of the null subspace of M is no less than
(d − 1)D. We are left with the need to show that a subspace of dimension ≥ (d − 1)D
must contain a product state. This is established by the fact the maximum dimension
of a subspace that contains only entangled states is (d − 1)(D − 1) < (d − 1)D [K. R.
Parthasarathy, “On the maximal dimension of a completely entangled subspace for finite
level quantum systems,” Proceedings of the Indian Academy of Science (Mathematical
Sciences) 114(4), 365–374 (2004), arxiv:quant-ph/0405077.

* This is a standard result: Let Mjk = 〈φj |φk〉 be a Gram matrix. Diagonalize it with
a unitary matrix, i.e.,

∑
j,k U∗

jlMjkUkm = νlδlm. The number of nonzero eigenvalues is the
rank of Mjk. The vectors |ψl〉 =

∑
j |φj〉Ujl span the space spanned by the states |φj〉,

and since they satisfy 〈ψl|ψm〉 = νlδlm, they span a space of dimension equal to the rank
of M .
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