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Consider a trace-preserving quantum operation A, i.e.,

tr
(A(ρ)

)
= 1 for all ρ ⇐⇒ A×(1) = 1 ,

which is also unital, i.e.,
A(1) = 1 .

A trace-preserving, unital operation is called doubly stochastic. Any convex sum of unitary
operations, i.e., an operation of the form

A =
∑
α

λαUα ⊗ U†
α ,

with λα ≥ 0 and ∑
α

λα = 1 ,

is doubly stochastic. Our objective is to show that for operations on qubits, any doubly
stochastic quantum operation is a convex sum of unitaries. Thus we now restrict A to be
an operation on a single qubit.

Consider a density operator

ρ =
1
2
(1 + ~S · ~σ) =

1
2
(1 + Sjσj) ,

where ~S = ~ejSj and ~σ = ~ejσj . The operation maps this density operator to

A(ρ) =
1
2
(
1 + SjA(σj)

)
.

The linearity of A then implies that

A(σj) = Ajkσk

for some real 3× 3 matrix A. Thus we have

A(ρ) =
1
2
(
1 + SjAjkσk

)
=

1
2
(
1 + ~S ·A~σ

)
=

1
2
(
1 + AT ~S · ~σ)

.

We assume here that A has positive determinant on the grounds that A must arise con-
tinuously from the identity operation.
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The polar decomposition of A is A = GR, where R is a three-dimensional rotation
(unit-determinant orthogonal) matrix and G =

√
AAT is a positive, real symmetric matrix.

(This form of the polar decomposition assumes that A has a positive determinant; if we
allowed A to have a negative determinant, then R would have to be replaced by PR, P
being a reflection.) Notice first that

R~σ = U†
R~σUR ⇐⇒ U†

RσjUR = Rjkσk ,

where UR is the unitary operator that corresponds to the rotation R. Now let ~nj = ~ekQkj

be the orthogonal (right-handed) eigenvectors of G, Q being a rotation matrix, and let αj

be the corresponding (nonnegative) eigenvalues. Thus we have (where we must now drop
the summation convention for expressions involving the eigenvalues)

∑

lk

~elGlkQkj = G~nj = αj~nj = αj

∑

l

~elQlj ⇐⇒
∑

k

GlkQkj = αjQlj .

Now notice that

A~σ = GR~σ = U†
R(G~σ)UR =

∑

j

U†
R(~σ · ~nj)G~njUR = U†

R

(∑

j

αj~nj

(
~σ · ~nj

))
UR . (1)

[If we allowed A to have a negative determinant, G would be replaced by GP in Eq. (1).
Choosing P to be defined by P~nj = εj~nj , where ε1 = ε2 = 1 and ε3 = −1, we would find
the only consequence to be a change in the sign of α3 in what follows.] This allows us to
write the action of the quantum operation as

A(ρ) =
1
2
(
1 + ~S ·A~σ

)

= U†
R

(
1
2

(
1 +

∑

j

αj

(
~S · ~nj

)(
~σ · ~nj

))
)

UR .

When ~S = ~nj , we get

A(ρ) = U†
R

(
1
2
(
1 + αj~σ · ~nj

)
)

UR ,

from which we can see that the eigenvalues must satisfy 0 ≤ αj ≤ 1. Indeed, the require-
ment that A map positive operators to positive operators is equivalent to 0 ≤ G ≤ 1.

The operation A maps any spherical surface within the Bloch sphere to an ellipsoidal
surface that lies inside the spherical surface, followed by the rotation R−1. The principal
axes of the ellipsoidal surface are the ~nj , and the principal radii are the eigenvalues αj .
Let us define the operation that describes the contraction onto ellipsoidal surfaces:

B(ρ) ≡ 1
2

(
1 +

∑

j

αj

(
~S · ~nj

)(
~σ · ~nj

))
.
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The action of A is obtained by composing B with the unitary transformation U†
R.

Now we’re set. Notice that

(~σ · ~nk)(~σ · ~nj)(~σ · ~nk) =
{

~σ · ~nj , for j = k,
−~σ · ~nj , for j 6= k,

which is just the statement that a 180◦ rotation about ~nk inverts the two axes orthogonal
to ~nk while leaving ~nk fixed. Defining ~σ · ~n0 ≡ 1, we can use this result to write

∑

α,j

λα(~S · ~nj)(~σ · ~nα)(~σ · ~nj)(~σ · ~nα) = (λ0 + λ1 − λ2 − λ3)︸ ︷︷ ︸
≡ α1

(~S · ~n1)(~σ · ~n1)

+ (λ0 − λ1 + λ2 − λ3)︸ ︷︷ ︸
≡ α2

(~S · ~n2)(~σ · ~n2)

+ (λ0 − λ1 − λ2 + λ3)︸ ︷︷ ︸
≡ α3

(~S · ~n3)(~σ · ~n3)

=
∑

j

αj(~S · ~nj)(~σ · ~nj) .

(2)

We can now write the action of B in the form

B(ρ) =
∑
α

λα(~σ · ~nα)ρ(~σ · ~nα) , (3)

provided that the coefficients satisfy

∑
α

λα = 1 . (4)

Equation (4), together with the definitions in Eq. (2), allows us to invert the relation
between the α’s and the λ’s to get

λ0 =
1
4
(
1 + α1 + α2 + α3

)
,

λ1 =
1
4
(
1 + α1 − α2 − α3

)
,

λ2 =
1
4
(
1− α1 + α2 − α3

)
,

λ3 =
1
4
(
1− α1 − α2 + α3

)
.

Written in the abstract, Eq. (3) says that B has the form

B =
∑
α

λα(~σ · ~nα)⊗ (~σ · ~nα) . (4)
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The operators ~σ · ~nα are orthogonal (unitary) operators. Thus Eq. (4) is the eigendecom-
position of B relative to the left-right action. The operators ~σ · ~nα/

√
2 are the normalized

eigenoperators of B, with corresponding eigenvalues 2λα. The condition in Eq. (4) is true
for any trace-preserving operation, i.e.,

2
∑
α

λα = Tr(B) = Tr(B×) = tr
(B×(1)

)
= tr(1) = 2 .

We haven’t yet used the requirement that A (and B) be completely positive. Complete
positivivity is equivalent to the requirement that B be positive relative to the left-right
action or, equivalently, that its eigenvalues be nonnegative, i.e., that λj ≥ 0. These further
requirements on the eigenvalues αj of G are examples of how complete positivity is a
stronger requirement than that the operation map positive operators to positive operators.

This brings us to the finish, for we have shown that we can write A as a convex
combination of unitary operations:

A =
∑
α

λαU†
R(~σ · ~nα)⊗ (~σ · ~nα)UR . (5)

Indeed, we have the stronger result that A can be written as a convex combination of the
identity transformation and 180◦ rotations about three orthogonal axes, followed by an
overall rotation.
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