To: Rüdiger Schack

From: C. M. Caves
Subject: Doubly stochastic operations on qubits
1999 January 14; modified 1999 April 6 to include discussion of reflections
Consider a trace-preserving quantum operation \mathcal{A}, i.e.,

$$
\operatorname{tr}(\mathcal{A}(\rho))=1 \quad \text { for all } \rho \quad \Longleftrightarrow \quad \mathcal{A}^{\times}(1)=1
$$

which is also unital, i.e.,

$$
\mathcal{A}(1)=1 .
$$

A trace-preserving, unital operation is called doubly stochastic. Any convex sum of unitary operations, i.e., an operation of the form

$$
\mathcal{A}=\sum_{\alpha} \lambda_{\alpha} U_{\alpha} \otimes U_{\alpha}^{\dagger}
$$

with $\lambda_{\alpha} \geq 0$ and

$$
\sum_{\alpha} \lambda_{\alpha}=1
$$

is doubly stochastic. Our objective is to show that for operations on qubits, any doubly stochastic quantum operation is a convex sum of unitaries. Thus we now restrict \mathcal{A} to be an operation on a single qubit.

Consider a density operator

$$
\rho=\frac{1}{2}(1+\vec{S} \cdot \vec{\sigma})=\frac{1}{2}\left(1+S_{j} \sigma_{j}\right),
$$

where $\vec{S}=\vec{e}_{j} S_{j}$ and $\vec{\sigma}=\vec{e}_{j} \sigma_{j}$. The operation maps this density operator to

$$
\mathcal{A}(\rho)=\frac{1}{2}\left(1+S_{j} \mathcal{A}\left(\sigma_{j}\right)\right) .
$$

The linearity of \mathcal{A} then implies that

$$
\mathcal{A}\left(\sigma_{j}\right)=A_{j k} \sigma_{k}
$$

for some real 3×3 matrix A. Thus we have

$$
\mathcal{A}(\rho)=\frac{1}{2}\left(1+S_{j} A_{j k} \sigma_{k}\right)=\frac{1}{2}(1+\vec{S} \cdot A \vec{\sigma})=\frac{1}{2}\left(1+A^{T} \vec{S} \cdot \vec{\sigma}\right) .
$$

We assume here that A has positive determinant on the grounds that \mathcal{A} must arise continuously from the identity operation.

The polar decomposition of A is $A=G R$, where R is a three-dimensional rotation (unit-determinant orthogonal) matrix and $G=\sqrt{A A^{T}}$ is a positive, real symmetric matrix. (This form of the polar decomposition assumes that A has a positive determinant; if we allowed A to have a negative determinant, then R would have to be replaced by $P R, P$ being a reflection.) Notice first that

$$
R \vec{\sigma}=U_{R}^{\dagger} \vec{\sigma} U_{R} \quad \Longleftrightarrow \quad U_{R}^{\dagger} \sigma_{j} U_{R}=R_{j k} \sigma_{k}
$$

where U_{R} is the unitary operator that corresponds to the rotation R. Now let $\vec{n}_{j}=\vec{e}_{k} Q_{k j}$ be the orthogonal (right-handed) eigenvectors of G, Q being a rotation matrix, and let α_{j} be the corresponding (nonnegative) eigenvalues. Thus we have (where we must now drop the summation convention for expressions involving the eigenvalues)

$$
\sum_{l k} \vec{e}_{l} G_{l k} Q_{k j}=G \vec{n}_{j}=\alpha_{j} \vec{n}_{j}=\alpha_{j} \sum_{l} \vec{e}_{l} Q_{l j} \quad \Longleftrightarrow \quad \sum_{k} G_{l k} Q_{k j}=\alpha_{j} Q_{l j} .
$$

Now notice that

$$
\begin{equation*}
A \vec{\sigma}=G R \vec{\sigma}=U_{R}^{\dagger}(G \vec{\sigma}) U_{R}=\sum_{j} U_{R}^{\dagger}\left(\vec{\sigma} \cdot \vec{n}_{j}\right) G \vec{n}_{j} U_{R}=U_{R}^{\dagger}\left(\sum_{j} \alpha_{j} \vec{n}_{j}\left(\vec{\sigma} \cdot \vec{n}_{j}\right)\right) U_{R} \tag{1}
\end{equation*}
$$

[If we allowed A to have a negative determinant, G would be replaced by $G P$ in Eq. (1). Choosing P to be defined by $P \vec{n}_{j}=\epsilon_{j} \vec{n}_{j}$, where $\epsilon_{1}=\epsilon_{2}=1$ and $\epsilon_{3}=-1$, we would find the only consequence to be a change in the sign of α_{3} in what follows.] This allows us to write the action of the quantum operation as

$$
\begin{aligned}
\mathcal{A}(\rho) & =\frac{1}{2}(1+\vec{S} \cdot A \vec{\sigma}) \\
& =U_{R}^{\dagger}\left(\frac{1}{2}\left(1+\sum_{j} \alpha_{j}\left(\vec{S} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{j}\right)\right)\right) U_{R} .
\end{aligned}
$$

When $\vec{S}=\vec{n}_{j}$, we get

$$
\mathcal{A}(\rho)=U_{R}^{\dagger}\left(\frac{1}{2}\left(1+\alpha_{j} \vec{\sigma} \cdot \vec{n}_{j}\right)\right) U_{R},
$$

from which we can see that the eigenvalues must satisfy $0 \leq \alpha_{j} \leq 1$. Indeed, the requirement that \mathcal{A} map positive operators to positive operators is equivalent to $0 \leq G \leq 1$.

The operation \mathcal{A} maps any spherical surface within the Bloch sphere to an ellipsoidal surface that lies inside the spherical surface, followed by the rotation R^{-1}. The principal axes of the ellipsoidal surface are the \vec{n}_{j}, and the principal radii are the eigenvalues α_{j}. Let us define the operation that describes the contraction onto ellipsoidal surfaces:

$$
\mathcal{B}(\rho) \equiv \frac{1}{2}\left(1+\sum_{j} \alpha_{j}\left(\vec{S} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{j}\right)\right) .
$$

The action of \mathcal{A} is obtained by composing \mathcal{B} with the unitary transformation U_{R}^{\dagger}.
Now we're set. Notice that

$$
\left(\vec{\sigma} \cdot \vec{n}_{k}\right)\left(\vec{\sigma} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{k}\right)= \begin{cases}\vec{\sigma} \cdot \vec{n}_{j}, & \text { for } j=k, \\ -\vec{\sigma} \cdot \vec{n}_{j}, & \text { for } j \neq k,\end{cases}
$$

which is just the statement that a 180° rotation about \vec{n}_{k} inverts the two axes orthogonal to \vec{n}_{k} while leaving \vec{n}_{k} fixed. Defining $\vec{\sigma} \cdot \vec{n}_{0} \equiv 1$, we can use this result to write

$$
\begin{align*}
\sum_{\alpha, j} \lambda_{\alpha}\left(\vec{S} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right)\left(\vec{\sigma} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right)= & \underbrace{\left(\lambda_{0}+\lambda_{1}-\lambda_{2}-\lambda_{3}\right)}_{\equiv \alpha_{1}}\left(\vec{S} \cdot \overrightarrow{n_{1}}\right)\left(\vec{\sigma} \cdot \vec{n}_{1}\right) \\
& +\underbrace{\left(\lambda_{0}-\lambda_{1}+\lambda_{2}-\lambda_{3}\right)}_{\equiv \alpha_{2}}\left(\vec{S} \cdot \vec{n}_{2}\right)\left(\vec{\sigma} \cdot \vec{n}_{2}\right) \tag{2}\\
& +\underbrace{\left(\lambda_{0}-\lambda_{1}-\lambda_{2}+\lambda_{3}\right)}_{\equiv \alpha_{3}}\left(\vec{S} \cdot \vec{n}_{3}\right)\left(\vec{\sigma} \cdot \vec{n}_{3}\right) \\
= & \sum_{j} \alpha_{j}\left(\vec{S} \cdot \vec{n}_{j}\right)\left(\vec{\sigma} \cdot \vec{n}_{j}\right) .
\end{align*}
$$

We can now write the action of \mathcal{B} in the form

$$
\begin{equation*}
\mathcal{B}(\rho)=\sum_{\alpha} \lambda_{\alpha}\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right) \rho\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right), \tag{3}
\end{equation*}
$$

provided that the coefficients satisfy

$$
\begin{equation*}
\sum_{\alpha} \lambda_{\alpha}=1 \tag{4}
\end{equation*}
$$

Equation (4), together with the definitions in Eq. (2), allows us to invert the relation between the α 's and the λ 's to get

$$
\begin{aligned}
& \lambda_{0}=\frac{1}{4}\left(1+\alpha_{1}+\alpha_{2}+\alpha_{3}\right), \\
& \lambda_{1}=\frac{1}{4}\left(1+\alpha_{1}-\alpha_{2}-\alpha_{3}\right), \\
& \lambda_{2}=\frac{1}{4}\left(1-\alpha_{1}+\alpha_{2}-\alpha_{3}\right), \\
& \lambda_{3}=\frac{1}{4}\left(1-\alpha_{1}-\alpha_{2}+\alpha_{3}\right) .
\end{aligned}
$$

Written in the abstract, Eq. (3) says that \mathcal{B} has the form

$$
\begin{equation*}
\mathcal{B}=\sum_{\alpha} \lambda_{\alpha}\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right) \otimes\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right) . \tag{4}
\end{equation*}
$$

The operators $\vec{\sigma} \cdot \vec{n}_{\alpha}$ are orthogonal (unitary) operators. Thus Eq. (4) is the eigendecomposition of \mathcal{B} relative to the left-right action. The operators $\vec{\sigma} \cdot \vec{n}_{\alpha} / \sqrt{2}$ are the normalized eigenoperators of \mathcal{B}, with corresponding eigenvalues $2 \lambda_{\alpha}$. The condition in Eq. (4) is true for any trace-preserving operation, i.e.,

$$
2 \sum_{\alpha} \lambda_{\alpha}=\operatorname{Tr}(\mathcal{B})=\operatorname{Tr}\left(\mathcal{B}^{\times}\right)=\operatorname{tr}\left(\mathcal{B}^{\times}(1)\right)=\operatorname{tr}(1)=2 .
$$

We haven't yet used the requirement that \mathcal{A} (and \mathcal{B}) be completely positive. Complete positivivity is equivalent to the requirement that \mathcal{B} be positive relative to the left-right action or, equivalently, that its eigenvalues be nonnegative, i.e., that $\lambda_{j} \geq 0$. These further requirements on the eigenvalues α_{j} of G are examples of how complete positivity is a stronger requirement than that the operation map positive operators to positive operators.

This brings us to the finish, for we have shown that we can write \mathcal{A} as a convex combination of unitary operations:

$$
\begin{equation*}
\mathcal{A}=\sum_{\alpha} \lambda_{\alpha} U_{R}^{\dagger}\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right) \otimes\left(\vec{\sigma} \cdot \vec{n}_{\alpha}\right) U_{R} \tag{5}
\end{equation*}
$$

Indeed, we have the stronger result that \mathcal{A} can be written as a convex combination of the identity transformation and 180° rotations about three orthogonal axes, followed by an overall rotation.

