Stabilizer formalism for qubits
2014 September 7

These are my evolving notes about the stabilizer formalism for qubits.

1. Pauli group and subgroups: Elementary properties

The Pauli group on N qubits (under matrix multiplication) is the set

PN:{<::|:|:1)JQ1®---®JO¢N, ak:0,1,2,3}. (1)

1. |PN‘ — gN+1 — 22(N—|—1).
2. Elements of Py either commute or anticommute.
3. Only the four phasings of the identity operator have nonzero trace:

tr(g) = 2N591 - 2N59,—I + ZQng,z‘I - i2N5g7—z‘1 .

4. All g € Py are unitary, ie., ggt = I. If g> = I, g has eigenvalues +1, and if ¢g> = —I, ¢ has
eigenvalues +1:

92:I = g=TF04, R Q04 g:g_lng,

FP=—1 = g==4i0,, @ R0y <> g=—g =—g'.

For any state [v¢), [(¥]g|v)| < 1, with equality iff |) is an eigenstate of g; moreover, (¢|g|) =1
i glo) =).

5. Trivial, but important abelian and normal* subgroups of Py are J = {+1} and K = {£I,+il}.
The coset gK = Kg = {+g, +ig}, and thus the quotient group Py /K is the abelian group whose
product is Pauli matrix multiplication, but with the phases ignored.

6. Every element of Py conjugates to itself or its negative under all elements of Py: hgh™! =
hgh' = +¢, with the upper (lower) sign holding if g commutes (anticommutes) with h.

7. We can make the following trivial statement about any subgroup S of Py: —I € S iff there
exists g € S such that —g € S (and then for all g € S, —g € S). [Proof: = —I € S implies
IeSand —I€S;«<=1fg?>=—1I,then —I € S, and if g*> = I, then g(—g) = —1 € S.] We can
summarize as follows:

(—Ies — EIgESsuchthat—gES) — Vges, —ges. 2)

or, contrapositively,
—I1¢S <= geSimplies—g¢S5. (3)

* H is a normal (invariant) subgroup of G if ghg™* € HV g € G and h € H. Normal subgroups
are important because left and right cosets are the same, and one can define a group operation for
cosets and thus the quotient group G/H. All subgroups of an abelian group are normal.

1

10.

11.

. If 3 g € S satisfying g = —1I, then —I € S. The converse of this statement is not true, as is

shown by the subgroup S = {£I, £X}. Contrapositively, if —I ¢ S, then S contains no elements
g satisfying g2 = —I and, hence, all the elements of S satisfy g = I (and g # —1I).

. If S contains anticommuting elements g and h, then —I € S. [Proof: If g> = —1I or h? = —1I,

then —I € S, and if g> = I and h? = I, then (gh)? = —g?h? = —I, implying again that —I € 5]
The converse of this statement is not true, as is shown by the abelian subgroup S = {£+I, +X}.
Contrapositively, if —I ¢ S, then S is abelian.
Combining 7, 8, and 9, we can elaborate Eq. (3) as follows:
(—IgZS = gGSimplies—g¢S>
—> Sisabelianand g? =T andg# -1V gecS.

A subgroup of Py is normal iff it contains —1.

Stabilizer subgroups and stabilized subspaces
A vector |¢) is stabilized by g € Py if gltp) = |¢). If |[¢) is stabilized by g, then it is also

stabilized by g2. The vectors stabilized by all the elements of a subgroup S form a subspace Vg. S is
called the stabilizer of Vg. Vg is the intersection of the subspaces stabilized by each of the elements
of S. We let Ps denote the projector onto V.

e .

The only vector stabilized by —I is the zero vector.

The only vector stabilized by ¢ satisfying g = —1I is the zero vector.

The only vector stabilized by g and —g is the zero vector.

The only vector stabilized by anticommuting g and h is the zero vector. (Proof: |¢) = ghl|y) =
—hglv) = —[).)

If S stabilizes a nontrivial subspace, then —I ¢ S, which implies that S is an abelian subgroup
such that Vg€ S, g? =T and —g ¢ S.

. If g = I, g has eigenvalues +1, giving g = Py 41 — P _1, where Py 4 = 1(I £g) is the projector

onto the +1 eigensubspace.
The projector onto the stabilized subspace Vg is

Zg (5)

gES

Proof: First note that if S contains an element that squares to —I, then —I € S and g € §

implies —g € S; in this case, S stabilizes only the zero vector, i.e., Ps = 0, which is what the sum
gives. Now we can suppose that S contains only elements such that g2 = I; in this case, Ps is a
projector since it is a Hermitian operator that squares to itself:

Ps = |S|229h_ |2229h |Zh Ps .

,heS ges hES hesS

:Zh

heS

Then, to show that Pg projects onto Vg, notice that for any vector |¢),

Psly) = [¢) <= |5| = [S[($|Ps|v) =

Zwmw' < 3" @wlgle)] < 15|

geSs ges
= (Ylglp) =1V ges (6)
= glp)=W) VgeSs
= |¢) e Vs.

7. If —1 € S, then since g € S implies —g € S, Eq. (5) gives Ps = 0, consistent with what we
already know. If —I ¢ S, then the only traceful operator g in the sum (5) is g = I, so

N

dimension 2
(of VS) N tr(PS) N E ’

(7)
thus establishing that —I ¢ S implies that S stabilizes a nontrivial subspace of dimension 2% /|S].
8. Using 4 and 7, we can elaborate Eq. (4) yet further:

(—1¢S <= geSimplies—g¢S <= S stabilizes a nontrivial subspace)
(8)
— Sisabelianand g? =T and g# -1V g€ S.

The subgroups that stabilize a nontrivial subspace are the ones we are mainly interested in.

8. The subgroup generated by elements g1, ..., g is denoted (g1,...,q;) = S. Some examples for
one and two qubits, with the projector onto Vg (and basis vectors for Vs when it is nontrivial)
also listed, are the following:

(i) (X)={I,X} Ps=5(I+X) |+
(i) (X, —X)={£I,+X} Ps =0
(iii) (iX) ={£l,+iX} Pg =
(iv) (X,Z) ={+I,+X,+7, +iY} Ps =0
V) (X Y,Z) =P Ps =0
(vi) (XX)={II,XX} Ps=3(I1+ XX)
(|00> +]11))/v2, (|01) + [10))/v2
(vii) (XX,ZZ)={I1,XX,ZZ,~YY} Ps=1(I1+XX+ZZ-YY)
=1(II+XX)i(II+ZZ)
(100) + |11>)/f
(viii) (=XX)={II,-XX} Ps =1(II - XX)
(100) — [11))/v2, (01) — |10))/v2
(ix) (-XX,Z22)={I1,-XX,ZZ,YY} Ps=3(II-XX+ZZ+YY)
=1(II-XX)1II1+2Z)
(100) — |11>>/f

(x) (XX, ZZYY)={+II,+XX,+Z7,+YY} Ps=0
(xi) (XI,YI,ZI,IX,IZ)="Ps Ps=0

By convention, we never include the identity operator in the set of generators, and we say that
the subgroup generated by an empty generator set is the trivial subgroup consisting of the
identity operator. The entire group Py is generated by the single-qubit Pauli operators for each
qubit. Indeed, as the last example illustrates, an independent generator set consists of X, Y,
and Z for one qubit and X and Z for the other qubits, for a total of 2N + 1 generators.

3. Check-vector representation

A useful representation of a Pauli group element g is in terms of a 2/ N-dimensional check vector
r(g). We develop this representation in this section.

The check vector is based on the binary representation of the numbers 0,1,2, and 3, which are
used to specify the Pauli matrices: 0 - 0=00,3=2—-1=01,1=2—-2=10,2=y — 3 = 11.
This representation can be written formally as o — 71 (@)re(a) = r(«a), where

(0, a=0
0, a=3==z
rl(a):5ma+5ya: 17 Oé:l:)
\ 1, a = 2 -
(0, a=0 (10)
1, a=3==z2
(@) =0t =30 fo1=y
(1, a=2=y
We can reconstruct a Pauli matrix from its representation using
Op = jri(e)rz(a) yri(a) zra(a)
- Z’Tl(a)Tz(a)(_1)T1(G)Tz(a)Zfz(a)Xﬁ(a) (11)

= (—i) ri(a)rz(a) zra(e) yri(a)

We could use the indices r; and ro to label Pauli matrices, thus using a quadruple-valued represen-
tation in which r; and ry take on values 0,1,2,3 (i.e., their values are taken mod 4). This is the
standard approach when talking about discrete displacement operators in arbitrary dimensions. For
qubits this representation works in the following way:

1 7 1 Z
lownll=|5 2, 5
iz 1 —-Z 1 —Z
X -Y -X Y

(12)

In situations where we can afford to let the phases fall where they may, this representation is cer-
tainly the most convenient. In the considerations here, however, we are concerned with the actual
phase in front of a tensor product of Pauli operators. We can’t afford to let a Pauli operator have
different phases multiplying it depending on the circumstances. Thus we insist throughout that in
the representation (11), 7 and 7o are either 0 or 1 (i.e., their values are taken mod 2).

4

Multiplication of Pauli matrices corresponds to bitwise mod-2 addition of the two-bit represen-
tations, plus some additional phase information:
0a0p = jr1(@)r2(a)+ri(B)r2(B) xri(a) zra(a) xri(B) 7r2(8)
— (_1)7"2(007"1 (8)jri(@)r2(a)+r1(B)r2(B) xri(a)+ri(B) Zra(a)+r2(B)

_ i ri(@)ra(B)+r2(a)ra (8); (r1 () +71(8)) (r2 (@) +72(8)) xr1()+71(8) 7ra(e)+72(8) (13)

i —r(@AT(B); (11 (@471 (B) (ra(e)4+72(8)) X7 (@) +71(8) gra(a)+7a(8)

The two-bit representations are added bitwise mod 2 automatically because of their appearance in
the exponents of X and Z, but the phases involve mod-4 arithmetic in the exponents of 7. The phases
in Eq. (13) are given by a symmetric product (r1(a) +71(8)) (r2(a) + r2(3)) and an antisymmetric
(skew) product

r(a) Ar(B) = ri(a)ra(B) — r2(a)ri(B)
= (0za + Oya) (028 + 0y8) — (620 + Oya) (0up + 6y3)

= 5ma5z,8 + 5$a5yﬁ + 5ya5z6 - 5zo¢5:cﬁ - 5zoz5y6 - 5ya5m,8 (14)
0, it 0, and o are not different “spatial” Pauli matrices,

= { +1, if af =xy, yz, or xz,
-1, if af =yzx, zy, or zx.

The skew product, calculated mod 2,

0, if 0, and op are not different “spatial” Pauli matrices,

r(a) Ar(B) mod2 = { 1, if oo and op are different “spatial” Pauli matrices, (15)

determines whether o, and og commute or anticommute. Once we're calculating the skew product

mod 2, the minus sign in the definition can be changed to a plus sign without any effect. If we let o,

denote the Pauli operator produced by the product, then we have 71(v) = (r1(a) +71(3)) mod 2 and

ra(7) = (r2(@) + r2(8)) mod2, ie., r(y) = r(a) + r(3) mod 2, where the addition is done bitwise.
To extract the phase in front of 0., we note that

o, =im (Mrz(v) x71(7) Zr2(7) — ; [(r1(@)+r1(B)) mod 2][(r2(a)+r2(8)) mod 2] yrri(a)+ri(B) Zra(a)+r2(B)

= j (r(@)+71(B))(r2() +72(B)) mod 2 yrri(a)+r1(B) ra(a)+r2(6) (16)
where we use the fact that
(@ mod 2)(b mod2) = abmod?2 , (17)
a property that is special to mod-2 arithmetic. What modular arithmetic implies is that
(a modn + b modn) modn = (a+ b) modn , (18)

[(a modn)(b modn)] modn = abmodn .

What these say is that once you mod the result of a set of arithmetic operations, you are entitled to
do the entire set of operations mod n. On the other hand, it is not generally true that

a modn + bmodn = (a+b) modn ,

19
(e modn)(b modn) = ab modn . (19)

5

The only case where these properties hold is for the case of multiplication mod 2, as in Eq. (17).

In particular, it is not true that @ mod2 4+ b mod2 = (a 4+ b) mod2. We need Eq. (17) to simplify

Eq. (16) to the last line, because arithmetic in the exponent of 7 is done mod 4, not mod 2.
Plugging Eq. (16) into Eq. (13) gives

G0 = i T OATE) (1@ () (2 (@)+r2(B) (1 (@)1 (B)(ra(@)+72(8)) mod 2]

— —r(@Ar(B); (ri(a)+r1(B))(r2(@)+r2(B)) = (r1(a)+r1(B)) (r2(@)+r2(8))
y -

(20)

Here we introduce the notation a = a mod 2, which we use throughout the following whenever it is
convenient. The phase of the product is the factor in front of o,. Whereas the first phase factor can
have any of the four possible values, the second factor is always +1. To see this, define the map

En)=n—-n, (21)

which takes the even part of n, i.e., subtracts 1 if n is odd and 0 if n is even, thereby mapping n to
the nearest even integer less than or equal to n. Notice that

ZE(nj):an—Zﬁj:an—(# of odd n;’s) . (22)

Using this notation, we can write

Gy = ;—T(@)AT(B);Bl(r (oz)-l—h(5))(7"2((1)"‘7’2(5))]07 , (23)

The multiplication table for (r1(«) + r1(8))(r2(a) + r2(B)) is

I3 0 3=z 1=z 2=y
a ri(a)r(a)
0 00 0 0 0 1 - (24)
3=z 01 0 0 1 2
1=z 10 0 1 0 2
92—y 11 1 2 p 4

Notice that (r1(a) 4+ r1(8))(r2(a) + r2(5)) is odd iff 0., = Y'; this property generalizes in ways that
we return to repeatedly below. The multiplication table gives us

2, af =uzy, yx, yz, or 2y,
E[(ri(a) +ri(8))(r2(a) + r2(8))] = { 4, af=uyy, (25)

0, otherwise.

It is clear from Egs. (14) and (25) how this method manages to get the phase right: the skew-
product term gets the right phase except for giving the wrong sign in the cases aff = xy, yx, yz,
and zy, a sign that is reversed by the term involving the symmetric product. At this point this is

6

an absurdly complicated way of writing the phase, but the method becomes more useful when we
consider arbitrary products of Pauli group elements.
Going one step further to a triple product of Pauli operators, we get

Talp0y = i —r(@Ar(B)=r(@)Ar(y)=r(B)Ar(v) ; (ri(a)+ri(B)+r1 (7)) (r2 (@) +r2(B)+r2(7))

w XTri(@)+ri(B)+ri(v) zra(a)+r2(B)+r2(v) 7 (26)
and at this point we can use induction to show that the general product is given by
Ony " O, =10 2j<k r(ag)Ar(ar) Z%k r1(a)r2 (o) Xrl(al)"_""i_rl(an)ZT2(O¢1)+"‘+T2(0¢TL)
— ZNC n(aj)rz(ak)aﬂ
(27)
i ZKk T(Oéj)/\T(Olk:)i ZM r1(aj)re(ag)— ZM Tl(aj)Tz(ak)aﬂ
- — Zj<k T(O‘j)/\r(ak)iE(zg‘,k 7‘1(043‘)7“2(0411@)) op
where

r(8) = Y r(a). (28)

The phase in front of o3 now has an explicit formula in terms of the two-bit representations. The
product
> rilag)ralar) = > rilag) Y raa) (29)
J.k J k

is odd iff both 3 r1(a;) and }; ra2(ay) are odd, which is equivalent to saying that
ri(B) =Y rilay) =1="> ra(a;) =ra(B) (30)
J J

i.e., op = Y.
To define the check vector, we write a group element as

g:isga1®...®gaN .

Ignoring the phase i®* and using the two-bit representation, we now define two N-dimensional row
vectors, r1(g) and r2(g), whose kth components are the two bits of the representation of o, :

[r1(9)]k = ri(ar) = dzay + dyay

[r2(9)]k = 72(0k) = b2y + By - (31)

The check vector is simply the 2N-dimensional row vector formed by stringing r1(g) and ra(g)
together along a single row:

r(g) =(ri(g) r29))=C(lr1(@) - [M@ln [r209)r - [r2(9)ln) - (32)

Using Eq. (11), we can write the arbitrary Pauli group element g in terms of its check vector:

N
g= isizk r1(ak)re (k) ®Xr1 (ak)ZT'2(0¢k)] (33)
k=1

The relation between Pauli matrix multiplication and addition in the two-bit representation
gives us immediately that

r(gh) = (r(g) + r(h)) mod2 = r(g) +r(h) (34)

where the addition is done bitwise mod 2. With this natural kind of addition, the check-vector space
is a 2N-dimensional vector space over the binary field {0, 1}, which we call Ry; the 22V vectors in
this vector space are in 1-1 correspondence with the 4"V products of Pauli matrices, i.e., with the 4V
elements of the quotient group Py /K. The check vectors make up a group under vector addition
that is isomorphic to the (abelian) quotient group Py /K. They allow us to analyze products in Py,
modulo the phases, in terms of linear algebra in the check-vector space.

To get the phase of a product, we have to be more careful. The phase of the product of
g = i%04, @ - ® 0qy and h = ifop, ® --- ® 0g, can be extracted from the following general
expression:

N
gh = j 5+t —r(@Ar(h); (ri(g)+ri(h))e(r2(g)+r2(h)) ® xi(ar)+ri(Br) zra(ak)+ra(Br)

k=1
;. (3)
— ;i 5tt; —r(@Ar(h); (ri(g)+ri(h))e(rz2(g)+r2(h)) ®X[h(g)]k+[r1(h)]k Zlr2(@lktr2(h)]k
k=1
Here the symmetric part of the phase is given by the ordinary dot product
N N
ri(g) era(h) = ri(g)ry (h) = > _[r(@)llr2(W)]k = Y ri(aw)r2(Br) , (36)
k=1 k=1
and the skew product is the symplectic product
_ T r1(h)
r(g) Ar(h) =r(g)Ari(h) = (—r2(g) ri(9))
Tg(h)
=11(g) ®r2(h) — 12(g) @ 71(h)
= D _[r(@klr2(M)]k = [r2(g)lklri(h)]k
(37)

r1(ok)r2(Br) — ra(ar)ri(Be)

Il
M= M= T

r(ag) Ar(Bk)

e
I
—

where we introduce the fundamental 2N x 2N symplectic matrix

A:(_OI é) . (38)

Calculated mod 2, the skew product determines whether the number of anticommuting elements in
the Pauli products of g and h is even or odd and thus determines whether g and h commute:

—————~ [0, if g and h commute,
r(g) Ar(h) = { 1, if g and h anticommute. (39)

Once we're calculating the skew product mod 2, we can change the minus sign in the symplectic
matrix to a plus sign without changing the skew product.
Now we're ready to get the phase in front of the product by writing

gh =1i°T% —r(g)Ar(h) ;(ri(g)+ri(h))o(r2(g)+r2(h))

N
% ® i (@] +ri (M) ([r2(9)] s +[r2 ()] xIr (9)]k+[7”1(h)}kZ[Tz(g)]kﬂrz(h)]
k=1

where we define a special sort of dot product, called the circle product,

N N
aob= ZE(akbk) = Zakbk - akbk
k=1

k=1

N

=aeb— > arbg (41)
k=
‘1:’—_’
=aeb

= a eb— (# of k such that a, = 1 = by,) ,

which is clearly symmetric. Notice that aob # a e b — a e b; this is precisely the step we cannot take
in an exponent of ¢, where arithmetic is done mod 4. Obviously, the circle product is always even.
Since the circle product is symmetric, it is obvious that the commutation of g and h is determined
by whether the skew product is even or odd, as already noted.

We can write the circle product of Eq. (40) as

(r1(g) +71(h)) o (r2(g) +12(h)) = (r1(g) + r1(h)) ® (r2(g) + r2(h))
—r1(g) +r1(h) e r2(g) +r2(h)
= (r1(g) + r1(h)) ® (r2(g) + r2(h)) — r1(gh) @ r2(gh)
= (r1(g) +r1(h)) (7“2(9)+7°2(h))
— (# t [ri(gh)
((

of k such tha

= (r1(9) +71(h)) & (r2 g) +"“2(h)) — (# of Ysin gh) .

9

We can use Eq. (27) to write an expression for an arbitrary product of Pauli group elements.
Letting g = g1 -+ - gn, With g; = %04, ® -+ ® 04,,, We have

n

g = i4~i=1 Si;T Zj<k T(gj)/\r(gk)i (ri(g1)+-+ri(gn))e(ra(gi)+-+ra(gn))

N
% ®Xrl(alk)+"'+rl(ank)ZT2(a1k)+"'+r2(ank)
k=1

n

2 %9 2y TIDATIR) (1 (1) (gn))e(r2 (91) 72 (gn)

N
% ®X[T1(91)1k+"'+[7‘1(9n)]kZ[Tz(gl)}k-i-"'-i-[?"z(gn)}k
k=1

n

2 53T 2ok TIDAT(9R) 1 (1 (1) 1 (9n))0 (P2 (91) 42 (gm)

N
x Qi T lon)lit -+ Coml) (ralon)l - +Era(gn)le) X {ra ol +ra(omli Zlra(gu)lact+[ra(gn)ls
k=1
— }Lﬁji—ZM7"<9J'W<gk>i<m<g1>+~~~+n(gn»o(rz<g1>+-~~+r2<gn>)051 R Qog, .
(43)
We have _
N N
r(g) = <Z 7"(gj)) mod2 =Y r(g;) , (44)
j=1 j=1

with [r(g)]x = r(Bx) and with the three factors in front of the tensor product giving the phase in
front of the product of Pauli operators in g. Once again, we can re-write the circle product in a
variety of forms:

(r1(g1) + - +71(gn)) © (ra(g1) + - +12(gn))
= (r1(g1) + - +71(gn)) ® (r2(g1) + - +12(92))
—71(g1) + - +71(gn) ®r2(g1) + - +72(gn))
= (r1(g1) + - +711(gn)) ® (r2(g1) + - +72(gn)) — 71(9) @ 12(9)
N———

= (# of Ysin g) (45)
=3 rilgy) e ralgi) — 71(g) @ 7a(g)
gk
—Zf’l gg o 72(gk +Z7“1 gg o 72(gr +Z7“1 gj '7’2(%)—7"1(9)'7“2(9)-
i<k J>k J

This result allows us to manipulate the phase factor in Eq. (43),

n

F = j4uj=1 Sji_2j<k T(gf)/\r(gk)i(h(91)+"'+T1(gn))O(T2(91)+“'+T2(gn)) , (46)

into other, often more useful forms. Noting that

Z (95) A7 (9k) Zﬁ gj)er2(gk) —r2(g;) ®r1(gr) Zm g;)®r2(9k) Zﬁ gj)era(gr) , (47)

i<k i<k i<k i>k

10

we have

= r(g5) Ar(ge) + (ri(g) + -+ 71(gn)) 0 (r2(g1) + - -~ +72(gn))

Ik (48)
=2 ri(gj) e ralgr) + > r1(g;) @ 2(g;) — r1(g) @ r2(g) -
Ji>k J
Thus the phase factor becomes
Ja ;1:1 sz.2 th 1 (gj)orz(gk)z- Zj Tl(gj)orz(gj)i—rl (9)er2(g) (49)

In this form, which reverses the steps we took to put the phase factor in terms of symmetric and
skew products, we can do mod-2 arithmetic in the exponent of i = —1, which turns out to be useful
in some contexts.

Throughout the remainder of this document, we generally assume that check-vector arithmetic
is done mod 2, without explicitly noting it. The exception occurs when we are dealing with phases,
where we do not do modular arithmetic except where it is noted explicitly.

4. Stabilizer formalism. Basics

Our objective now is to characterize the subgroups that stabilize nontrivial subspaces in terms
of properties of an independent set of generators or, better yet, in terms of the check vectors of an
independent set of generators.

We can immediately rephrase Eq. (4) in terms of generators as follows:

The generators commute
(—I¢S:<gl,...,gl> < —g]-§ZS‘v’gj) — and (50)
gj#—Iandg]?:Ing.

This is a trivial rephrasing, which is not very useful, because to use it one must verify for each
generator that —g; is not in the entirety of S. It is not sufficient just to verify that —g; is not among
the generators, as examples (iii), (iv), (v), (x), and (xi) in Eq. (9) show. Moreover, example (x)
also shows that adding the further conditions on the right of Eq. (50) does not make it sufficient
to verify that —g; is not among the generators. Nonetheless, this rephrasing corrects Nielsen and
Chuang’s Exercise 10.34, which is manifestly false, as is shown by examples (ii), (iv), (v), (x), and
(xi) in Eq. (9).

For any subgroup, a set of generators is independent if removing any generator changes the
subgroup generated (by making it smaller). Independence means that no generator can be written
as a product of the others. In the examples of Eq. (9), the generators are independent.

An element g of any subgroup S = (g1,. .., ¢;) can be written as g = +¢{" - - - ¢}, where a; = 0, 1,
since any product of generators can be permuted into the standard order by using the commutation
and anticommutation properties of the generators, at the expense of introducing a minus signs at
the anticommutations. This gives r(g) = 3, a;r(g;), showing that the check vector r(g) for any
subgroup element can be expanded in terms of the generator check vectors r(g;).

For any subgroup, if the check vectors corresponding to a set of generators g; are linearly
independent, then the generators are independent. Suppose the generators are not independent.

11

This means that we can generate one generator, call it g1, from the others, i.e., g1 = g3* - - - g;" with

at least one a; # 0. This gives r(g1) = 2222 a;7r(gj), contradicting the linear independence of the
generators. The converse is not true, i.e., independence of a set of generators does not imply linear
independence of the corresponding check vectors, as one can see from examples (ii), (v), (x), and
(xi) in Eq. (9). For the subgroups that stabilize a nontrivial subspace, however, i.e., those such that
—1 ¢ S, the converse does hold. This is the content of Nielsen and Chuang’s Proposition 10.3, which
we now get to by a somewhat different route.

Let’s specialize to subgroups S = (g1, ..., ;) whose generators commute, satisfy g; # —I and
g]2~ = I (notice that none of the generators can have a zero check vector), and have linearly independent
check vectors. We can conclude immediately that the generators are independent, giving us the
following result:

Generators commute,
g; # —1 and gjz =1V g;,and
generator check vectors 7(g;)
are linearly independent

= Generators g; are independent (51)

We can simplify the hypothesis here, since linear independence of the generator check vectors implies
that none of the generators is —I (or I for that matter). Thus we are left with

Generators commute,
g? =1V gj, and
generator check vectors 7(g;)

are linearly independent

=> Generators g; are independent (52)

The converse of this statement is not true, of course, as is demonstrated by examples (ii), (iii), (iv),
(v), (x), and (xi) in Eq. (9).

Now let’s suppose instead that —I € S, so that we can write —I = gi" ---g;"* for some set
of a; with at least one a; # 0 (for if all a; = 0, then the product gives I, not —I). This gives
0=r(-1I)=> j a;7r(g;j), implying that the generator check vectors are not linearly independent. We
can rewrite this as the contrapositive:

Generators commute,
gjz- =1V g;, and
generator check vectors 7(g,)
are linearly independent

— ¢S (53)

The converse of this statement is also not true, since we can always use an overcomplete set of
generators whose check vectors are thus not linearly independent.
Putting together the necessary conditions in Eqgs. (52) and (53) does give sufficient conditions:

Generators commute,
gJQ- =1V g;, and
generator check vectors 7(g,)
are linearly independent

—1¢5
= and (54)
generators g; are independent

12

Proof in reverse direction: By Eq. (50), —I ¢ S gets us the first two implications. Now suppose
the check vectors are not linearly independent. This implies that one check vector, say, for g;, can
be expanded in terms of the others, i.e., r(g1) = 22:1 a;r(g;). Now consider the subgroup element
h = H§.:2 g;-lj, which satisfies r(h) = r(¢1), implying that h = +g; or h = +ig;. All but h = ¢4
are ruled out by Eq. (4): the latter possibilities are ruled out by h? = I for all elements of S, and
h = —g; is ruled out by —h ¢ S for all elements of S. Thus we have g; = h, contradicting our
assumption that the generators are independent.
In view of Eq. (50), we can also write

Generators g; are independent
Generator check-vectors r(g;) are linearly independent

This is Nielsen and Chuang’s Proposition 10.3, but Eq. (54) is strictly stronger in the forward
direction.

We already know that S stabilizes a nontrivial subspace iff —I ¢ S. These are thus the interesting
subgroups. We now understand from Eq. (54) that to generate a subgroup with —I ¢ S, we should
use commuting Hermitian generators g¢i,...,g; whose check vectors are linearly independent, for
this is equivalent to having an independent set of generators that generate a subgroup such that
—1 ¢ S. To specify an interesting stabilizer, we thus have to give | generators, each of the form
+04, @+ ®04,. This requires 1 bit for the 4+ and 2 bits for each Pauli matrix, for a total of 2V +1
bits per generator and (2N + 1) for all the generators and, hence, the entire stabilizer.

Each element of such an S can be written as a product of generators, g = ¢i*---g;", with
aj = 0,1. All such products are distinct, as we can easily see in the following way: if two different
products yield the same element, i.e., g = ¢ --- g/ = glfl ---glbl, then I = ¢7* ---g;", where ¢; =
aj — bj, with at least one c¢; being nonzero; we then have 0 = r(I) = >_, ¢;r(g;), contradicting the
linear independence of the generator check vectors. This means that |S| = 2!, with each element of
S specified by an [-bit string a; ... a;, and thus also establishes that

dimension 2N N_I
=—_ =9 i 26
(") = 0)

Notice that these conclusions are consistent with our convention that an empty generator set (I = 0)
generates the trivial subgroup consisting of the identity operator, which stabilizes the entire Hilbert
space. Each independent generator halves the size of the stabilized subspace.

If we let Rg be the [-dimensional subspace spanned by the check vectors r(g) for g € S, these
considerations tells us that the check vectors for a set of independent generators are a linearly
independent basis for Rg, and the 2! check vectors for all g € S exhaust all the vectors in Rg.

We can also rewrite the projector (5) for such an S as the product of the +1 projectors P,, =
(I + g;) associated with the generators:

l l

Pomg o=y X atdt=I[50+a)=T]P . (57)

ges at,...,a;=0,1 j=1 j=1

13

This is illustrated in a nontrivial way by examples (vii) and (ix) of Eq. (9).
All of the information about a set of generators, except the + in front of the Pauli products, is
encoded in the check matrix,

r(g1) r1(g1) | r2(g91)
G=| + |=| : Lo = (G Ge), (58)

r(gr) ri(g) | 2(g1)
i.e, the [x 2N matrix whose rows are the check vectors of the generators. The conditions for a
suitable set of generators are that the rows of G be linearly independent and that the mod-2 skew
product (39) of different rows be zero (commuting generators), i.e.,
0 I\ /[/GT GT
T _ 1) —(_ L) =

GAG —(G1 GQ)(_I 0> (Gg)_(G2 Gl)(Gg) 0 mod?2 . (59)
To get the generators, one constructs the corresponding products of Pauli operators and puts +1 in
front of each one. Notice that for an arbitrary subgroup element g = g7* - - - g;", we have

l
r(9) Zzaﬂ“(gj) =(a - w)G. (60)

We occasionally find it useful to refer to the subgroup S = {+g,+ig | g € S}, of order |S| =
2!+2 which is just S augmented by all the rephasings of its elements (formally, S is isomorphic
to the quotient group S /K). Clearly the check vectors of all the elements of S lie in Rg, since
rephasings do not affect the check vectors. Moreover, if g ¢ S, then r(g) does not lie in Rg. [Proof:
Suppose r(g) € Rg, so that we can write it as r(g) = 23:1 a;r(g;), giving g = +g7" ... g/ € S or
g==+igl"...g" e8]

Let’s get a little more mileage out of what we can say about stabilizer subgroups and their
eigensubspaces. Let S = (g1,. .., g;) be a stabilizer with —I ¢ S, generated by independent generators
g1,-..,91- The subspace stabilized by these generators is the 2V ~!-dimensional subspace Vg. The
generators (—1)'gy,...,(—1)%g;, obtained by rephasing the original generators, generate a group

that stabilizes the subspace Vs(cl'”cl) of simultaneous +1 eigenstates of these new generators. We

let Pécl'”cl) denote the projector onto Vécl'”cl). An equivalent way of describing Vécl”'cl) is that
it is the subspace of simultaneous eigenstates of the original generators g¢i,..., g, with eigenvalues
(—1)°1,...,(=1)%, respectively. The 2! subspaces Vécl'”cl) are the simultaneous eigensubspaces of the
original generators and, hence, of the whole stabilizer S; these subspaces are orthogonal, each having
2N =1 dimensions. Each I-dimensional subspace Rg, consisting of check vectors whose pairwise skew
products vanish, corresponds to a way of decomposing the N-qubit Hilbert space into 2! orthogonal

.cr)

subspaces VS(CI“ , each of dimension 2V,

5. Stabilizer formalism. Further considerations
The centralizer® of a subgroup S in Py is the set of elements in Py that commute with all

* The centralizer Z(H|G) of a subgroup H of G is defined as the set of elements of G that commute
with all elements of H. The centralizer is a subgroup of G; if H is abelian, H is a (normal) subgroup of
the centralizer. We generally omit the group designation in the notation for the centralizer, allowing
context to fill it in.

14

elements of S:
Z(S)={z€Pn|zh=hzV heS}. (61)

For any S, the centralizer Z(5) is a normal subgroup of Py, because for any g € Py and z € Z(95),
h € S commutes with z and either commutes or anticommutes with g and ¢!, so gzg~'h = hgzg™!
and hence gzg~—1 € Z(S).

For a subgroup S with —I ¢ S, notice that Z(S) = Z(S) and also that S is a (normal) subgroup
of Z(5). A group element z is in Z(.9) iff it commutes with all the generators of S, so according to
Eq. (39), z is in Z(9) iff it satisfies r(h)ArT(z) mod2 = 0V h € S or, equivalently,

GAr'(z) mod2 =0, where GA=(—-G2|G1), (62)

i.e., ArT(2) is in the null subspace of G. The rows of GA are linearly independent iff the rows of
G are linearly independent, so these are [linearly independent conditions on 7(z). Thus the check
vectors 7(z) span a (2N — [)-dimensional subspace, containing 22V ~! vectors. Taking into account
the four phases for each check vector, the number of elements in the centralizer is

|Z(5)] = 22N 27t = 4Nt~ (63)

In particular, this means that (i) half of Py commutes with any particular group element g # +1, +il
(the other half anticommutes), (ii) adding an independent generator cuts the size of the centralizer
in half, and (iii) when there are N independent generators, the size of the centralizer is 2V*+2, which
means that Z(5) = S is just S augmented by the rephasings of each element in S.

Now we're in a position to calculate the number of distinct stabilizer subgroups and also the
number of distinct independent generators sets for each stabilizer (I learned how to do this from
Jim Harrington of Caltech when we were both at the PASI on the Physics of Information in Buzios,
Brazil, for the first two weeks of 2003 December). Suppose we have S, = (g1, ..., gx) generated from
independent generators, and we want to know how many choices there are for adding an additional
independent generator. The new generator must be chosen from the g2 = I part of Z(S)), which
makes available |Z(Sy)|/2 = 22N F1=F possibilities, but we have to exclude elements of Sy, or their
negatives, thus reducing the number of possibilities by 2|Sy| = 2¥*1. Thus the number of possibilities
for the (k + 1)th generator is |Z(S)|/2 — 2|Sk| = 22N 1=k — ok+1 = gk+1(22(N=k) _ 1) This means
that the number of distinct (independent) l-element generator sets is

1 o kE+1 (92(N—k) 21/ T 2(N—k) 2l+1)/2 T N-k N—k
g 1[2e -1 =——1]C 1) ==——[[E""+1)E""-1), (69)
k=0 k=0 k=0

where the ! takes into account the fact that the above counting includes all permutations of a given
set of generators. Equation (64) is also 2! times the number of sets of [linearly independent check
vectors in Ry whose pairwise skew products vanish (the factor of 2! takes into account the two
possible signs in going from check vectors to generators).

Using the same sort of counting, we can find the number of (independent) l-element generator
sets for a particular stabilizer subgroup S. If we’ve already accumulated k generators, the number
of choices for the (k + 1)th (independent) generator is the number of elements in S, |S| = 2!, minus

15

the number of elements, 2, in the group generated by the first k generators. Thus the number of
distinct sets of independent generators for S is

L YT ok ol—k 2l-1)/2 o I—k
I CICEEE (R g
k=0 k=0

where again the I! removes the overcounting of different permutations of the same generator set. This
same number is, of course, the number of linearly independent basis sets in Rg.

Dividing Eq. (64) by Eq. (65) gives the number €; of distinct stabilizer groups of size 2! (which
is also the 2! times the number of subspaces Rg of dimension [):

22<N ’f>—1 (2N~ ’f+1 2Nk 1
k=0

For [= N, this simplifies to

N-1 N N
Oy =2 T (@V*+ H (28 +1) =2V TT (1 +27%) | (67)
k=0 k=1 k=1

which is also the number of distinct states stabilized by stabilizer groups. The first few values of {2y
are 17 = 6, {2y = 60, Q3 = 1,080, Q4 = 36,720, and Q5 = 2,423,520. Since the product on the far
right in Eq. (67) is an increasing function of k, we also have 1.5 = Q; /2N (N+3)/2 < (), /2N(N+3)/2
Qoo /2NINH3)/2 = 9 38423,

Now recall that any element g € Py either commutes or anticommutes with a generator g;:
9;9 = (—1)%gg;. From this we get g;g|v) = (—1)%gg;[v) = (=1)%g|y) for |¢) € Vg, meaning that
gly)y € Vécl“'q). This is a property of a coset of Z(.5), since all elements of a coset commute or
anticommute with the same generators in S [g;(g9z) = (—1)%(gz)g; for z € Z(S)] and thus all of

which map Vg to the same subspace Vs(cl”'cl). If z € Z(95), then z|¢)) € Vg, i.e., the centralizer
preserves V.

For any choice of the binary variables c¢;, j = 1,...,[, we can find an element g € Py and,
hence, a coset of Z(S), such that gjg = (—1)%gg;, j = 1,...,1. To show this, let c = (¢1 -+ ¢)
be the [-dimensional row vector given by the binary variables. Since the [rows of the check matrix

G are linearly independent, there exist 22V~=! column vectors a7 satisfying GAz? = ¢¥'. (This is

not a subspace, but the 22V ~! solutions of GAz”T = ¢’ each with four possible phasings, produce
the 22N¥+2=1 clements of the coset.) Pick one solution, and let g be such that r(g) = =z, giving
GAr(g) = ¢T. This is equivalent to r(g;) A r(g9) = ¢;, implying that gg; = (—1)%g;g. In terms
of check vectors, the coset property is that the general solution of GAz? = ¢’ can be written as
x =r(g) + r(z), where g is a particular member of the appropriate coset of the centralizer [r(g) is a
particular solution of GAzT = c!], and z € Z(S) [GArT (z) = 0].

What we have shown is that the 2! cosets of Z(S), each containing |Z(9)| = 22V 2= elements,
are in 1-1 correspondence with the binary variables ci,...,¢;; the coset elements are those whose
check vectors satisfy

C1

GArT(g)=c" = | : , (68)

a

16

(Cl...cl)

which is equivalent to saying that gg; = (—1)%g,g, i.e., that g maps Vs to Vg . We can write
this as gPsg’ = Pécl'”cl).

Notice that we can find representatives for all the cosets by starting with check vectors for the
cosets that have only one 1 in the vector c¢. Let r(h;) be a solution of Eq. (68) for the case where ¢
has a 1 at the jth site. Then a solution for an arbitrary c is r(g) = >_, ¢;r(h;), which means that a
coset representative for the coset ¢ is g = h{' --- ;.

The normalizer® of a stabilizer subgroup S in Py is the set of elements of Py that conjugate
all elements of S to elements of S:

N(S|Py)={g9€Pn|gSg'=5}. (69)

Generally, the normalizer is different from the centralizer, but in the case of stabilizer subgroups
of Py, they are the same. This is obvious because any g ¢ Z(S) anticommutes with at least one
generator g;, giving gg;9~ ' = —g; ¢ S, meaning that g ¢ N(S).

Now suppose that we switch from an initial generator set, ¢1,...,g;, to a new generator set,
gis..., 9], where

l
g;c — 9(1%1 ,__glakz — H g;tm) (70)
j=1

The requirement that the new generators be independent is that the new check vectors,

l
r(gh) = > anyrlgy) (7)

be linearly independent, which means that the [x [matrix A, whose matrix elements are Ay; = ax;,
must have linearly independent rows and thus be invertible. We can write the check matrix for the
new generators as

G = AG . (72)

The independent generator sets are thus in 1-1 correspondence with invertible [x [matrices A,
and hence the number of such matrices is given by Eq. (65) multiplied by ! (we remove the !
from the denominator because the matrices include permutation matrices, which simply reorder the
generators).

6. Canonical generator sets

We now consider independent generator sets for the entire Pauli group. For this purpose, consider
2N Pauli-group elements g;, j = 1,...,2N, whose check vectors r(g;) are linearly independent, and
let S = (g1,...,92n) be the subgroup these elements generate. We want to show that S consists of
the elements +g{* - - - g33 and that all of these elements are distinct, thus making |S| = 22V *1. First,
all the products g7 - - - g9a¥ are clearly in S, and they are all distinct because the linear independence

* The normalizer N'(H|G) of a subgroup H of G is the set of elements of G that conjugate all
elements of H to elements of H. The normalizer is a subgroup of G, and H and Z(H|G) are normal
subgroups of the normalizer.

17

of the generator check vectors guarantees that their check vectors 2351 a;r(g;) are different. Second,
since there are anticommuting generators, we have —I € S, which implies that —g7* --- g53) € S;
these elements with a minus sign in front of the product are all distinct and different from the elements
with a plus sign. Finally, any product of the generators can be brought into the standard order at
the expense of introducing minus signs at each anticommutation, so there are no other elements in
S than those listed. What all this means is that S contains two of the four phasings of each Pauli
product and thus has half of the elements of Py. To get the entire Pauli group, we have to add one
generator, which can be taken to be 7 times any element of S. An example of this procedure is the
set of generators discussed at the end of Sec. 2: start with X and Z for each qubit, and then add
1XZ =Y for one qubit.

Now suppose the 2N generators fall into two sets, ¢g1,...,gx and hy,...,hy, each of which is a
set of independent (Hermitian) generators for a stabilizer group. Moreover, suppose that [g;, hi] = 0
except when j = k. In terms of the check vectors, we have that the 2N vectors r(g;) and r(h) are
linearly independent and r(g;) A7(gx) mod2 = 0, r(h;) Ar(hy) mod2 = 0, and r(g,) Ar(hi) mod2 =
djk. We define the 2N x 2N matrix of check vectors for both generator sets:

7= ()= (i %) ™

Throughout we generally use upper-case script letters for matrices of check vectors that do not
correspond to generators for a stabilizer subgroup. The conditions on G are that the rows be linearly

independent and that
r (Gi1 G GT HT
GAGT = (Hl Hy A Gy Hjy

- (S) (Gr ar)

~H, Hi)\Gj Hj (74)
[GiGE — GoGY GyHT — G,HT

~ \ WG} — H,GT H,HT — H,HT

=Amod?2.

We call 2N-element generator sets of this sort canonical because the corresponding matrix G preserves
the fundamental simplectic matrix A. An example of a canonical generator set is the set of Xs and
Zs for all qubits; we call this the fiducial canonical generator set.

What we want to do now is to count the number of (ordered) canonical generator sets. In
counting the number of stabilizer-generator sets, we have already done the first part of this counting,
i.e., the part that assembles the generators gi,...,gn, but we repeat this counting here in check-
vector language. Suppose we have assembled generators g1, ...,gr and want to add the generator
gr+1- The linear independence of r(gr1) says that we cannot use any of the 2¥ vectors in the k-
dimensional subspace spanned by 7(g1),...,7(gx), and the commutation condition on gx41 is that
GrArT(grs1) mod 2 = 0, which is satisfied by the 22V ~F vectors in a (2N — k)-dimensional subspace,
which includes all of the vectors in the k-dimensional subspace spanned by 7(g1), ..., 7(gx). Thus the
number of check vectors available at this point is 22V ~% — 2% which when one takes into account the
two possible signs for the corresponding group element, gives 2(22 ~* — 2¥) available group elements.

18

Thus the number of ordered generator sets is

N—1 N-1 N-—1
H 2(22N—k o Zk) — 2N H 2k 22(N k) H Q(N—k))
k=0 k=0 k=0 =
—1 N
k=0 k=1
N1 o N (75)
k=0 k‘:l
N
— 23N(N+1)/2 H(l o 2—2k)]
k=1

The difference between this result and [= N version of Eq. (64) is that here we are interested in
ordered sets, so there is no factorial in the denominator.

We're ready now to assemble the second set of generators. Suppose we have assembled the
generators hi,...,h; and want to add the generator hyy;. Requiring that hyy; anticommute with
gr+1 guarantees that hg4; is not in the group generated by g1,...,9n,h1,. .., hi, because all these
generators commute with giy1. Thus the only condition we need to impose is the commutation

condition
G T . 6{
<Hk:> Ar (hk-i-l) - (Okz) ’ (76}

where ey, is a N-dimensional vector that has zeroes at all sites except for a 1 at the kth site and 0y, is
the k-dimensional zero vector. Equation (76) imposes N + k linearly independent conditions, which
are satisfied by 22N ~N—F = 2N=F check vectors; this gives 2V % +1 available group elements. Notice
that we can characterize hyy1 as a Hermitian element of the centralizer of (hq,...,h;) and of the
coset of (g1,...,gn) corresponding to the vector ey.

The result is that the number of canonical generator sets is

N N-—1

TN — 23N(N+1)/2 H(]- o 2—2k) H 2N—k—|—1
k=1 k=0
N N

k=1

22N +3N H — 9= 2k

It is easy to calculate the first few values of YTn: T; = 24, Ty = 11,520, T3 = 92,897,280, and
T, = 12,128,668,876,800. Since the final product in Eq. (77) is a decreasing function of k, we also
have 0.688538 = Yoo /22N 3N < 1\ /22N°+3N < v, /92N +3N — 75,

19

7. Stabilizer formalism. Gates

A particularly important role is played by the unitary operators that preserve the Pauli group
under unitary conjugation. These unitary operators make up a group, which is the normalizer of the
Pauli group in the group of unitaries on N qubits,

N (Pn|U@RY)) ={U e U@N) |UgUT € Py ¥V g € Py} . (78)

This normalizer is also called the Clifford group. Clifford-group elements take stabilizer groups to
stabilizer groups and thus stabilizer states to stabilizer states. A Clifford unitary can be multiplied
by a phase without changing how it conjugates operators. We don’t care about these phases, so
throughout our discussion of the Clifford group, we ignore them, regarding two unitaries that differ
by a phase as the same unitary. What we are actually talking about is thus the quotient group with
the phases mod’ed out.

The Clifford group is generated by one- and two-qubit unitaries. One generator set is the
following: (i) the Hadamard gate,

- . 1 1 /1 1
H — je—il(X+2)/Val(x/2) _ S5+ 2) == (1 _1> , (79)
and the S gate,
)) im/4
S = e/ teTiEm/A = e\/i (I-iZ)= ((1) ?)) (80)

for each qubit; and (ii) the controlled-NOT (or controlled-PHASE) for each pair of qubits. In this
section, we will use the notation C j for a controlled-NOT where qubit j is the control and qubit &
is the target.

To show that these unitaries generate the Clifford group, we use the notion of canonical generator
sets introduced at the end of the preceding section. Our strategy is to show that the elements of the
Clifford group are in one-to-one correspondence with the canonical generator sets. This establishes
that the number of elements of the Clifford is given by T . As part of this demonstration, it emerges
that any element of the Clifford group can be generated from the set of generators above.

Since unitary conjugations preserve commutators, it is clear that any Clifford unitary takes
canonical generator sets to canonical generator sets. In particular, any Clifford unitary U transforms

the fiducial canonical generator set {X,;,Z; | j = 1,..., N} to some other canonical generator set
{g],hj ’j: 1,...,N}, i.e.,
UX;U'=g; and UZU' =h;, j=1,...,N. (81)

Since the fiducial set generates all Pauli products, these transformation equations specify how U
transforms any Pauli product. Since the Pauli products are a complete set of operators, a linear map
on operators is specified by how it maps Pauli products. This means that all elements of the Clifford
group map the fiducial canonical generator set to different canonical sets, thus establishing that the
number of canonical generator sets is an upper bound on the number of Clifford unitaries.

What remains to be shown is that there is a Clifford unitary that gives every transformation
of the form (81). To show this, we use a method devised by Bryan Eastin, which shows that every

20

transformation of the the form (81) is generated by a product of the generators listed above. This
establishes that the Clifford unitaries are in one-to-one correspondence with the canonical generator
sets, while also showing that the generators listed above generate the entire Clifford group.

The first fact we need is that the desired result holds for one qubit, i.e., that the 24 trans-
formations of the form (81) for a single qubit are generated by H and S. These transformations
are rotations that preserve the six cardinal directions. Any such transformation is represented by
a positive-determinant 3 x 3 permutation matrix, with arbitrary signs. There are 6 permutation
matrices and 8 sets of signs for each, giving the 48 elements of the octahedral group. We want only
the half of these that have positive determinant, which are the required 24 transformations. Here we
give the Clifford unitary, generated by H and S, for each of these transformations:

U UXU' UYU' UZU' Description

I X Y Z Identity

X=HZH X -Y —Z 180° about x

Z -X -Y Z 180° about z

iY =ZX = ZHZH -X Y —~7 180° about y

SHS X —7 Y 90° about x

XSHS = HZHSHS X Z ~Y 90° about —x

ZSHS -X —Z ~Y 180° about (z — ¥)/v2
iYSHS = ZHZHSHS —X Z Y 180° about (2 +¥)/v2

H Z -Y X 180° about (z + %)/v/2
XH=HZ ~7Z Y X 90° about y

ZH A Y —X 90° about —y

iYH=ZHZ ~Z -Y —X 180° about (2 —) /\/‘

SH Z X Y 120° about (—z — % —¥)/V3
XSH = HZHSH —Z X ~Y 120° about (~z+ % +7)/v3
ZSH Z ~X =Y 120° about (2 + —y)/V3
iYSH =ZHZHSH -7 -X Y 120° about (z —x+79)/V3
S Y -X Z 90° about z

XS=HZHS -Y -X —~7Z 180° about (x —y)/v2

zZ8 -Y X Z 90° about —z

iYS =ZHZHS Y X —Z 180° about (X + y)/v2

HS -Y —7Z X 120° about (-2 —%+9)/V3
XHS =HZS Y A X 120° about (2 -+ %+ y)/ V3
ZHS Y ~Z —X 120° about (z — %X —y)/V3
iYHS = ZHZS -Y Z ~X 120° about (—z+%x —y)/V3 (82)

This listing shows explicitly that, given a pair of anticommuting Pauli operators, including signs,
there is a Clifford unitary (generated by H and S) that transforms the first to X and the second to
Z and, given a pair of commuting Pauli operators, there is a Clifford unitary (generated by H and
S) that transforms the two so that each becomes an X or an I.

21

For the second fact, we consider four pairs of two-qubit Pauli products, X1 and ZI, XX and Z1,
X1 and ZX, and XX and ZX, and display explicitly for each pair that there is a Clifford unitary
(generated by Hs and controlled-NOTSs) that transforms the pair to X7 and Z1I:

XI

Z1

XX X1

21 o ZI

X1 oz ozl XI

ZX m XX ¢, XI o w ZI

XX X1 Z1 Z1 XI

ZX o ZX m XX . XI m ZI (83)

For the third fact, we consider three qubits and display explicitly a Clifford unitary (generated by
controlled-NOTSs) that transforms X XX to XII and ZZZ to ZII:

XXX XXI XXI XII

7227 cut ZIZ cn) ZIT onl ZIT (84)

These three facts are all we need to get to the main result. Consider first two Pauli products (up
to sign), g and h, that anticommute (and thus that anticommute at an odd number of sites, which
means there is at least one such site). We want to show that there is a Clifford unitary V' (generated
by Hs, Ss, and controlled-NOTs) such that VgV = X; and VAVT = Z;. We can associate any
minus sign in front of the Pauli product in g or h with one of the anticommuting sites.

The first fact then shows that there is a Clifford unitary that transforms g and h so that at
anticommuting sites, the transformed g has an X and the transformed h has a Z and at commuting
sites, g and h have Xs or Is. If the first site is not anticommuting, choose an anticommuting site
and swap it with the first site (using a sequence of three controlled-NOTs). The second fact shows
that there is a Clifford unitary that transforms the first site and each commuting site to the required
form. There being an even number of anticommuting sites other than the first, we can partition
these anticommuting sites into pairs, and then the third fact shows that there is a Clifford unitary
that transforms the first site and each such pair of anticommuting sites to the required form. This
demonstrates the existence of the required Clifford unitary V.

Consider now an arbitrary canonical generator set {g;,h; | j =1,..., N}. As we have just shown,
there is a Clifford unitary that transforms ¢; to X; and h; to Z1, since ¢g; and h; anticommute. Since
unitaries preserve commutators, the transformed versions of all the other generators commute with
X7 and 77, which means they must all have I; at the first site. We can now forget about the
first site and apply the same procedure to the second site in the transformed versions of g, and hs.
Proceeding in this way, we end up with a Clifford unitary that transforms an arbitrary canonical
generator set to the fiducial canonical generating set. The inverse Clifford unitary transforms in the
opposite direction and provides an explicit construction of a Clifford unitary, generated by Hs, Ss,
and controlled-NOTs, that demonstrates our main result.

8. Stabilizer formalism. Measurements

Suppose we measure an element g of the Pauli group. We must have g2 = I so that ¢ is an
observable. In this discussion of measurements, we will assume that S is generated by /N independent

22

generators so that there is a single stabilized state 1)) on which we are making measurements. There
are two possibilities: (i) g commutes with all the generators, i.e., g € Z(.9); (ii) g anticommutes with
at least one of the generators, i.e., g ¢ Z(5). We consider each possibility in turn.

e If g commutes with all the generators, i.e., g € Z(5), g|t)) € Vs and thus is equal to |¢) up to a
phase. Since the phase can only be +1, we have g|¢)) = %), so that g (upper sign) or —g (lower
sign) is an element of S. The result of the measurement is predictable, but we need, of course,
a way of determining whether to predict +1 or —1. We know that g = £¢7" - -- g3/ and, hence,
that r(g) = Zjvzl a;r(gj). The linear independence of the check vectors implies immediately
that the coefficients a; are unique. Formally, we can write a matrix equation

r(g) = aG , (85)
where G is the generator check matriz (58) and
a=(a; -+ an) . (86)

Since the rows of G are linearly independent, we can invert it to give a N x 2N right matrix
inverse G~!. Although this inverse is not unique, the product #G~! is unique for any row vector
r that lies in the subspace spanned by the rows of G. Thus a is uniquely determined by

a=r(g)G". (87)

Given a, we simply calculate gi" ---gj" and determine whether it is equal to g or —g. The
post-measurement state is Piy[¢)) = (I £ g)|)) = |[¢), and thus the measurement does not
change the stabilizer generators.

e If g anticommutes with at least one generator, call it g1, then

(Wlgly) = (Plggrlv) = —(Wlgrglv) = —(Plgl¥) , (88)

which implies that (¢|g|)) = 0 and thus that the probability for getting either +1 or —1 is
1/2, which can be simulated by a coin flip with a fair coin. The post-measurement state is
Pygly) = %(1 + g)|v), the upper (lower) sign applying if the result of the measurement is +1
(—1). We can get at these results—and also find generators for the post-measurement state—by
writing ¢g;9 = (—1)%gg; (c1 = 1 by our assumed ordering of the generators, although other

c;’s might also be 1), which implies, according to the discussion above, that g|) € VS(CI"'CN).

Since Vécl”'CN) is orthogonal to Vg, we get immediately that (¢|g|)) = 0. It is clear that the
N — 1 commuting generators gi?gs, ..., 97" gy are independent; moreover, g; and g commute
with these generators and are independent of them. Thus these generators stabilize the two-
dimensional subspace spanned by the states Pig, [¢)) = (1 £ g1)[t)) or by the states Py,l¢p) =
%(1 + g)|v). Adding g; to these generators gives a set of generators that stabilizes the original
state |¢). Adding +g to this set gives an independent set of generators that stabilizes the post-
measurement state Pig|y) = %(1 + g)|¥), so a set of generators for the post-measurement state

is +¢, 97292, .-, 91" gn.

23

9. Gottesman-Knill theorem

This section needs to be finalized.

Assumptions:
e N qubits initially in a product state in the Z basis.
e Allowed gates: Pauli operators X, Y, and Z, plus H, S and C-NOT.
e Allowed measurements: Products of Pauli operators.

There is an efficient (nonlocal) simulation of the states, dynamics, and measurements.

States: We have to give N stabilizer generators, each of the form +o0,, ®---®0o,, . This requires
1 bit for the + and 2 bits for each Pauli matrix, for a total of 2N +1 bits per generator and N (2N +1)
for all the generators and, hence, the entire stabilizer. This is actually an overestimate, since the
number of possible states is, according to Eq. (67), ~ 2NWV+3)/2 hut either way, about O(N?) bits
are required to specified a stabilized state.

Dynamics:

Measurements: which of the possibilities, commuting with all generators or anticommuting with
at least one generator, holds can be determined by calculating GAr(g), requiring O(IN?) operations,
and determining if the result is zero.

In practice, we could compute the inverse in O(N?) operations using Gaussian elimination on
the columns. Knowing a, we can compute the product g --- g% [using O(N?) operations| and
determine whether the product is equal to +g or to —g, thus settling which is the predictable result
of the measurement.

Since the check-vector formalism typically requires us to deal with nonsquare matrices, it is
useful here to review properties of such matrices. We want to allow for vector spaces over finite
fields, so in the following we consider matrices over arbitrary fields.

Let
ai aip 0 Aim
A== (39)
a, Uni Gpm
be an n x m matrix (n < m), with the vectors a;, j = 1,...,n, being m-dimensional row vectors. We

suppose throughout the following that the rows of A, i.e., the vectors a;, are linearly independent. Let
V' be the n-dimensional subspace spanned by the vectors a;, and let Vj, be the (n — 1)-dimensional
subspace spanned by the vectors a; with ay left out. The linear independence of the vectors is
equivalent to saying that aj does not lie in Vi for k = 1,...,n. There are two kinds of equations
involving A that we want to solve:

Azt =T and yA =z, (90)

where x is an m-dimensional row vector and y is an n-dimensional row vector.
The first of these equations can be rewritten as

Y1 a11T1 + -+ A1 Tm a,ex
=Y yief =y = A" = 5 = . (91)
J

Yn, an1T1 + e + ApmITm ap ® T

24

where e; is the n-dimensional row vector that has zeroes in each position except the jth, where there
is a 1. In this form A defines a linear map from an m-dimensional space to an n-dimensional space.
Using Gaussian elimination on the linearly independent rows of A, it is easy to show that Eq. (91)
always has a solution.

The kernel (or null subspace) of A is the subspace of vectors v satisfying

0 ap ev
=0= AT = : : (92)

0 Qp, ® VU

The kernel is thus the subspace V| of vectors orthogonal to V. It is not true that VNV, = 0,
because for vector spaces over finite fields, there are generally vectors that are self-orthogonal. T'wo
vectors z and ' map to the same vector under A, i.e., AzT = Az'T, iff they differ by an element of
V.

Consider now a special case of Eq. (91),

a1 e by
ey = Ab} = : = ajeb,=0;. (93)
Qn @ bk

The m-dimensional row vectors by, k = 1,...,n, are determined only up to addition of an element of
V| . If we pick a particular solution by, for each k, these solutions are linearly independent (O => ;T b;
— 0= Zj rjAb;—-F = Zj Tje;—-F = r;=0,7=1,... ,n) and thus span an n-dimensional subspace
W. Since nontrivial elements of W do not map to zero, it is clear that W NV, = 0.

Now consider any vector x. We can write

ArT =3 yjel =y Abf =AY yb (94)
j j j

which implies that x =) y y;b; + v, where v is a unique element of V. This means that the entire
vector space is the direct sum of W and V|, and this further implies that V| is m-dimensional.
Finally, we now see that the general solution of Eq. (91) can be written as

z=> ybj+v, (95)
J

where v is an arbitrary element of V| .
The second of the equations in Eq. (90) takes the form

x=yA= Zyjaj , (96)
j=1

which has a solution for y only if x € V| in which case the solution is unique because of the linear
independence of the vectors a;.

25

We can write the solutions explicitly in terms of matrix inverses. Let
B=(b{ - by) (97)

be an m X n matrix whose columns are m-dimensional row vectors that satisfy Eq. (93). It is easy
to see that
(AB)jk =a;e bk = 5jk <~ AB = 1, ; (98)

i.e., B is a right inverse of A. The columns of B are only determined up to addition of an element
of V. Nonetheless, because x € V', the equation x = yA has a unique solution

(y1 -+ yYyn)=y=aB=(xeby --- xeb,). (99)

Now let the vectors w;, j = n+1,...,m, be added to the vectors a;, j = 1,...,n, to make a
basis for the entire vector space. The vectors w; span a subspace W ; clearly the direct sum of V'
and W is the entire vector space. The matrix

a
~ a
A= " 100
W11 (100)
Wm
obviously has linearly independent rows and thus is invertible. The inverse,
A= b el e (101)
satisfies
a; ® bk = 5jk
-~ - =0
AAV =1, = Uk . (102)

Each choice of the vectors w; leads to a unique choice for the vectors by. The subspace W, is the
subspace of vectors orthogonal to W. The freedom in choosing the vectors w; is that we can add to
each w; an arbitrary element of V. This freedom corresponds to the freedom to add elements of V|
to the vectors by.

The equation

apex
Y1
D = AT = wi:fx (103)
Ym
Wy, ® T

26

has the unique solution

S S YR SRS 109
Y j=1 j=n+1

The second sum on the right is the arbitrary element of V| that appears in the solution (95).

27

