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Much more.

FOCUS
ON THIS.

Destination: What “strong” measurement corresponds to weak, 
continuous, measurement of (noncommuting) observables?
Journey: Exploring the space of Kraus operators and POVMs that 
goes with phase space.



Coherent states and geometry 

Moo Stack and the Villians of Ure
Eshaness, Shetland



Coherent states 
Glauber coherent states of a bosonic mode

Lie group: Weyl-Heisenberg
Spin coherent states (SCS)

Lie group: SU(2)

CS are ground states of “easy” integrable Hamiltonians

Lie-group displacement

Phase space



Coherent states 
Glauber coherent states of a bosonic mode

Lie group: Weyl-Heisenberg
Spin coherent states (SCS)

Lie group: SU(2)

Ladder operators (Cartan-Weyl basis)

Tensor miracle (classical limit)

Phase space



Coherent states 
Glauber coherent states of a bosonic mode

Lie group: Weyl-Heisenberg
Spin coherent states (SCS)

Lie group: SU(2)

Resolution of the identity (CS POVMs)

Measure by (single-shot) heterodyne: 
simultaneous, isotropic measurement 

of Q and P.

Measure by ? 
Continuous (weak) isotropic measurement 

of the three spin components. 
E. Shojaee, C. S. Jackson, C. A. Riofrío, A. Kalev, and 
I. H. Deutsch, PRL 121, 130404 (2018).

What’s inside?

Phase space

Not too bad 
so far, Carl.

The journey and the destination.



Geometry 

What’s inside?

Polar decomposition Cartan (singular-value) decomposition

Postmeasurement unitary Premeasurement unitary

Thermal state: inverse temperature 2a

What’s inside?  A type-IV symmetric space, in this case a 3-
hyperboloid, consisting of concentric 2-spheres of thermal 
states with inverse temperature 2a, running from the identity 
operator at a = 0 to the 2-sphere of SCSs at a = infinity.

Our analysis of continuous isotropic measurements is Kraus-operator-centric—state-
independent and representation-independent and thus geometric. Kraus operators are 
the triple entendre (CSJ) or trinity (CMC) of quantum theory, simultaneously 
representing states, measurements (POVMs), and transformations (processes).  To 
include all Kraus operators, one attaches an SU(2) fiber of postmeasurement unitaries
at every point in the 3-hyperboloid.  One is then studying the Kraus-operator geometry 
of the complexification of SU(2), which is SL(2,C).

U can be restricted to displacements. 



Geometry What’s inside?  A type-IV symmetric space, in this case a 3-
hyperboloid, consisting of concentric 2-spheres of thermal 
states with inverse temperature 2a, running from the identity 
operator at a = 0 to the 2-sphere of SCSs at a = infinity.

To get the geometry right, one must 
regard the hyperboloid as embedded in 
Minkowski space, not Euclidean space.

Get to the 
point, Carl.



What’s misleading about
conventional q-p phase space?  

arXiv:1912.12530

The irreducible tensors used for expanding operators 
are identical to the displacement operators.  This is not 
true for generalized coherent states and the curved phase spaces 
of compact semisimple Lie groups.

The near commutativity of q and p gives a nearly trivial operator ordering 
for constructing phase-space correspondences and quasidistributions.  
For compact semisimple Lie groups, these projects are best approached 
in a quite different way.

There is no apparent “inside.”  Because there is a single-shot heterodyne 
measurement, there is little motivation to consider weak, continuous 
measurements.  Nonetheless, you should, for the journey it takes through 
the “inside” symmetric space of displaced thermal states is transformative.



Holstrandir Peninsula overlooking Ísafjarðardjúp
Westfjords, Iceland

Measuring the SCS POVM



Measuring the three spin components 
weakly and simultaneously

The distinctive feature of our analysis is 
that it is Kraus-operator-centric.

Gaussian Kraus operator for weak, simultaneous 
measurement of three spin components lasting time dt.

Element of SL(2,C) 
Submanifold closure



Weiner-like path integral
QOVM after time T is a Wiener-like outcome-path integral.

Semisimple unraveling of trace-preserving, unconditioned QOVM

It is critical to appreciate that we are not dealing with a probability 
distribution for outcomes—that would require an initial state—but 
rather with a distribution over an ensemble of Kraus operators K, 

drawn from SL(2,C) and labeled by outcomes. 

When you see a path integral, you should be thinking diffusion 
equation and stochastic differential equation (SDE). Deriving the 
diffusion equation is hard, but worth it, because it teaches about 

the geometry.  Deriving the SDEs is straightforward, but instead of 
teaching about, is informed by the geometry.  Let’s do SDEs first.

Haar measure



Maurer-Cartan form

Modified Maurer-Cartan stochastic differential (MMCSD).
Submanifold closure.

Stochastic differential equations
QOVM after time T is a Wiener-like outcome-path integral.



Stochastic differential equations

Ballistic term
Omitted from Shojaee et al.

Diffusion

Diffusion

Diffusion

After a few collapse times, 1/γ, 
the radial coördinate moves nearly 
ballistically, with mean and variance 
proportional to γt,

the premeasurement unitary freezes out, 
thereby picking a direction on the 3-hyperboloid,

and the postmeasurement unitary moves randomly on SU(2).

The diffusion of U in 
the angular directions 
is overwhelmed by the 
area exponentiation.



Measuring the SCS POVM

The continuous isotropic measurement of 
spin components collapses to the SCS POVM 

“almost always” and “in no time at all.”

Cool.



Diffusion equations. Advanced course in geometry

Semisimple unraveling of trace-preserving, unconditioned QOVM

Isotropic measurement Laplacian

Right-invariant derivatives.  Moving basis-vector fields on SL(2,C).

SU(2) Killing form

At each K diffusion occurs into a 3-submanifold that looks 
locally like the 3-hyperboloid.  This diffusion is nonintegrable 
and thus explores all of 6-dimensional SL(2,C) because the 
local 3-submanifolds do not mesh to form a global 3-surface.  



Isotropic measurement Laplacian

Cartan expression for isotropic measurement Laplacian

Beltrami form relative to 
3-hyperboloid metric 

Fokker-Planck equation for purity distribution Pt (a)

Ballistic term Diffusion

Diffusion equations. Advanced course in geometry



Kraus-operator geometry 
of SL(2,C)

Fibers: 
Orbits of V; 
U constant

Orbits of U; 
V constant

“Light cone”

Nonintegrable direction of 
diffusion is “Minkowski-

orthogonal” to the fibers. 

Really cool.



Western diamondback rattlesnake
My front yard, Sandia Heights

More and much more



More

1. The properties of physical systems are the generators of these Lie groups.  
2. Weak, continuous, isotropic measurement of the generators limits to measurement in 

the (overcomplete) basis of generalized coherent states, thereby identifying the coherent 
states.  Kraus operators drawn from the (complexified) group describe dynamics; Cartan
decomposition identifies the radial directions on a type-IV symmetric space, the angular 
directions in the premeasurement unitaries (displacement operators), and the fiber of 
postmeasurement unitaries. The phase space of coherent states occupies the boundary 
of the symmetric space, a space of constant curvature, made up of thermal states with 
Hamiltonians linear in the generators.   Kraus operators are the unifying mathematical 
object, the quantum trinity, the triple entendre, encompassing states, transformations, 
and measurements.

3. Putting the Weyl-Heisenberg group and its flat space in the language of curved phase 
spaces, thus elucidating its universal properties and its special properties.

Get out of Hilbert space. The arena of physics, 
classical and quantum, is the (curved) phase spaces 

of compact, connected, semi-simple Lie groups.
What about flat, canonical phase space?  It’s for the bosons, 

misleadingly special, where phase-space quantum mechanics is 
already appreciated, but needs to be recast in our language.

Chris Jackson



Much more

4. Harmonic functions span the space of  phase-space functions.   Associated irreducible 
tensors span the operator space.  Phase-space correspondences and “s-ordered” 
quasiprobabilities, which connect harmonic functions to coherent states, are founded on 
the “quartic twirl” of generalized coherent states. 

5. Quantization is omission of fine-scale harmonic functions (i.e., working in a finite-
dimensional irrep).   The classical limit is keeping all the harmonic functions, down to the 
finest scales (i.e., working in an infinite-dimensional irrep).  Linear Hilbert-space structure 
of quantum mechanics arises naturally from the group representation.

6. Dynamical complexity (nonlinear dynamics and chaos)  is stepping outside the 
complexified group.  Complexity should be measured relative to phase space.  Linear 
evolution, Hamiltonian or dissipative, stays in the group and respects the scales of the 
harmonic functions.  Nonlinear evolution steps outside the group by mixing large and 
small scales, leading to the sensitivity to initial conditions of classical chaos and to 
hypersensitivity to perturbation both classically and quantum mechanically.

Get out of Hilbert space. The arena of physics, 
classical and quantum, is the (curved) phase spaces 

of compact, connected, semi-simple Lie groups.
What about flat, canonical phase space?  It’s for the bosons, 

misleadingly special, but where phase-space quantum mechanics is 
already appreciated.

Chris Jackson
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