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Quantum Cramér-Rao Bound (QCRB)

Single-parameter estimation: Bound on the mean-
square error in estimating a classical parameter
that is coupled to a quantum system in terms of
the inverse of the quantum Fisher information.

Multi-parameter estimation: Bound on the covariance
matrix in estimating a set of classical parameters that
are coupled to a quantum system in terms of the
inverse of a quantum Fisher-information matrix.

We are only going to consider the single-parameter
case. An important distinction is that the single-
parameter QCRB is saturable—there is a
measurement that achieves the bound—whereas
the multi-parameter QCRB is generally not.




Fisher information

Estimating a probability p from N
trials (random walk, polling)
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Measuring the “distance” between neighboring
probability distributions in units of their distinguishability
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(Classical) Cramér-Rao bound

For any parameter ¢ that affects a
probability distribution p;(¢),
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Proof of QCRB. Setting

For a more traditional proof of

H.(t) = hvh + H(t the QCRB, including nonunitary
Y B
parameter displacements, see
Parameter « S. L. Braunstein and C. M.
Generator of parameter displacements, h Caves, PRL 72, 3439 (1994).
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Proof of QCRB. Classical CRB
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Proof of QCRB. Classical CRB
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For an unbiased estimator, which has (vyest) = v, (é7v) = 0.



Proof of QCRB.
Classical Fisher information
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The Fisher bound ((§v)?) > 1/F(vy) can be attained
asympotically in many trials by using maximum-likelihood
estimation.
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Proof of QCRB. Quantum mechanics
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Proof of QCRB. Quantum mechanics

The symmetric logarithmic derivative £, is natural for the QCRB. For pure stat
is directly related to the y-generator K., which turn out to be optimal.

There is a trick here. One might think that the natural way to define
the ~-generator is
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which refers the seeingly natural generator 7,(t) to the initial time.
We do this because
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which, since K,(0) = 0, has the straightforward solution
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Proof of QCRB. Quantum mechanics
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Proof of QCRB. Summary
before optimization
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Proof of QCRB. Optimizing the measurement

F(y) <tr(L30,(1)) = Q(7) | QCRB

Saturating the QCRB requires using a measurement that saturates the two in-
equalities that separate F(v) from Q(~v):
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Although this looks like a disaster, it is easy to see that measuring the symmetric
logarithmic derivative, i.e., measuring in the eigenbasis of L.,
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does the job, because
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It is up to you to figure out how to turn the measurement outcome ; into an

estimate of v. Moreover, even though this is an optimal measurement, it might
not be the only optimal measurent.
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Proof of QCRB. Optimizing the state
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If H=0, Uy,(t) = e "M K, =th, h=h, and L, = —2it[h, p,(t)].



Proof of QCRB. Optimizing the s1'a1'e
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|k|| is the seminorm of h, i.e.,
the difference between largest
and smallest eigenvalues of h.
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IA) is the largest-eigenvalue
eigenstate of h or h, and |)\)
IS the smallest-eigenvalue
eigenstate.



The bassackwardness of the QCRB. The final detail
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i(l/\H-I)\)) The bassackwardness of the QCRB is
NG that to make the most sensitive mea-
IA) is the largest-eigenvalue surement possible, you are instructed to
eigenstate of k or h, and |A) make an observable, the generator h or

is the smallest-eigenvalue h, @S Noisy as possible.
eigenstate.
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What the QCRB only whispers to you—and most people don't
even hear the whisper—is that for pure states, there is a very
quiet (conjugate) observable, the symmetric logarithmic deriva-
tive £, and you are instructed to measure that.

When H(t) = 0, with the optimal input state |Wg),
L = —2it[h, e W) (Wole™]

and this is the obvious observable to measure.



The bassackwardness of the QCRB. The final detail

When H(t) = 0, with the optimal input state |Wo) = (|A) + [A\))/V2,
L, = —2it[h,e” | W) (Wol|e],

and this is the obvious observable to measure because this becomes
a qubit problem.
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The End



