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“Well, why not say that all the things which should be handled in theory
are just those things which we also can hope to observe somehow.” ...
| remember that when | first saw Einstein | had a talk with him about
this. ... [H]e said, ~"That may be so, but still it's the wrong principle in
philosophy." And he explained that it is the theory finally which
decides what can be observed and what can not and, therefore, one

cannot before the theory, know what is observable and what not.
Werner Heisenberg, recalling a conversation with Einstein in 1926,
interviewed by Thomas S. Kuhn, February 15, 1963

This work was carried out with Christopher S. Jackson, 2
whose genius and vision inform every aspect. -
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A brief glimpse info a whole new world

Examples
Any set of Hermitian observables, Single observable X
T — {X1,...,Xn}, Position @ and momentum P

. . Three components of angular momentum,
can be measured (differential) weakly and ; andpJ .
Iy Y z

simultaneously in an infinitesimal incre-
: Two components of angular momentum,
ment dt, without regard to commutators. 7. arid J

Concatenating these differential weak measurements continuously
should tell one what it means to measure the same observables
strongly and simultaneously. And so it does, except that it also
leads to ...

A magic carpet ride

Into a whole new world.

A new, fantastic point of view,

A thrilling chase,

A wondrous space,

And now we bring this whole new world to you.
Big-time apologies to Aladdin
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A magic carpet ride
Into a whole new world.
A new, fantastic point of view,
A thrilling chase,
A wondrous space,
And now we bring this whole new world to you.
Big-time apologies to Aladdin

The details in three long papers
C. S. Jackson and C. M. Caves

“Simultaneous measurements of noncommuting observables: Positive
transformations and instrumental Lie groups,” Entropy 25, 1254 (2023). (a.k.a.
1-2-3), https://doi.org/10.3390/e25091254

“Simultaneous momentum and position measurement and the instrumental
Weyl-Heisenberg group,” Entropy 25, 1221 (2023). (a.k.a. SPQM),
https://doi.org/10.3390/e25081221

“How to perform the coherent measurement of a curved phase space by
continuous isotropic measurement. I. Spin and the Kraus-operator geometry of
SL(2,C),” Quantum 7, 1085 (2023), arXiv:2107.12396v3. (a.k.a ISM),
https://doi.org/10.22331/9-2023-08-16-1085




A brief glimpse info a whole new world

Any set of observables can be measured simultaneously if measured differential weakly.
Commutators can be disregarded for differential weak measurements.

Differential weak measurements define a fundamental incremental Kraus operator, a
differential positive transformation, which is the positive-operator analogue of an infinitesimal
unitary transformation and equally fundamental.

Instrument (Kraus-operator) evolution is autonomous, temporal, and stochastic.

Instrument Manifold Program. The instrument evolution occurs on the manifold of an
instrumental Lie group, which is generated by the measured observables.

Motion of the Kraus operators on the instrumental Lie group is described using the three
faces of the stochastic trinity: Wiener path integrals, stochastic differential equations, and a
diffusion equation for a Kraus-operator distribution function.

Universal instruments. The instrumental Lie group is generated universally, detached from
and independent of Hilbert space.

Principal instruments (e.g., measure position and momentum or three components of spin)
have a low-dimensional universal instrumental group: they limit to coherent-state POVMs—
collapse within irrep—and thus define a phase space, which is connected to the identity
across a symmetric space. These instruments are special and universal (pre-quantum) and
structure any Hilbert space in which they are represented; principal instruments are what
Heisenberg and Einstein meant when they talked about identifying what is observable.
Chaotic instruments (e.g., measure two components of spin) have an infinite-dimensional
universal instrumental group: these are generic, evolve chaotically, and have no universal
limiting strong measurement.

Not about making better measurements, this talk is about thinking of measurements

in a new way, which places them at the foundation of quantum mechanics.
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100 years of quantum measurements.
The founding (1925-32)

Matrix mechanics, commutators, and uncertainty principle
Wave mechanics (the Schrodinger equation)
Linear algebra of square-integrable functions
Dirac-Jordan transformation theory
Born probability rule
von Neumann measurement

von Neumann'’s synthesis: inner products of Hermitian observable

and Hilbert space, unitary transformations
(Hamiltonian dynamics), and A= Z Ajli) Gl = Z Aj By

measurements of Hermitian observables ] j
g, pj = |{G[¥)1? = (¥|Pjlv)

‘ Born rule
(pure statey 19} — e~ 44/ X —— Pil)/v/Bi = i)
(pure state) € J J
unitary (Hamiltonian) dynamics Collapse
Temporal: Autonomous: Physics by fiat:
(continuous) process independent of state no simultaneous
Temporal Autonomous  Transformation Group TS BIETSC)
noncommuting
No Yes Yes No observables

Drop |¢) from description.



100 years of quantum measurements.
The desert (1932-60)

Quantum measurement theory withered under the desert sun, whereas the unitary side of
gquantum mechanics thrived with constant and well-deserved nurturing.

Everybody used the Born rule, though how to interpret its probabilities and the quantum state
remains a source of discussion and debate today. Nobody used and next to nobody bought
von Neumann’s collapse because there were no repeated measurements on the same
system.

All measurements were actually von Neumann’s indirect measurements and analyzed using
the Born rule without using von Neumann measurements of Hermitian observables.

Mathematical developments
Unitary Lie groups: symmetry groups and representation theory
Functional and harmonic analysis
Functional (path) integration
Transformation groups
Differential geometry of complex Lie groups
Measures and probability theory, stochastic processes, and stochastic calculus

First three and a bit of the fourth fell on fertile soil in
the unitary sector of quantum mechanics and
quantum field theory.

None of this got into (or was needed in) the
desiccated quantum measurement theory.

We use all these.



100 years of quantum measurements.
Generalized measurement theory (1960-85)

Overcomplete-basis measurements (measurements of
noncommuting observables, coherent states, heterodyne)

Hint of repeated measurements

Wigner
Generalized measurement theory. Taking advantage of  Davies
von Neumann'’s indirect measurements Ludwig
Kraus
Meter (ancilla) Born rule
0) ——  O— 4, oy = trs(KG) (I K] = trs(EBl) ()
U
) —— U0 ) /\/Pj = Kjl|¥)/\/P;
System

“Gentler” collapse
(Kraus operator) = K; = (j|U|0)
7, pj = (V| E;|¢) (POVM element) = E; = KIK; >0
P — H (Completeness): Y E; =1 I

[Y) —— Kj —— KjW)/\/p_j J Positive




100 years of quantum measurements.
Generalized measurement theory (1960-85)

Concatenating measurements 0) [ D: o
0) —— =
U
) — U K Kj|1) /\/Pk;

KyKjly) K K;

oy

J k VP /PR /P
) — K; Ky —— KiKj|Y)/\/Dr;
Temporal Autonomous  Transformation Group
Gettin’ there ? Yes No

To normalize or not to normalize?

i k
| |
— Ky —— KiK;




100 years of quantum measurements.
Continuous weak measurements (1980-2010)

We are interested in differential weak measurements: Davies . Doherty
Kraus operators close to the identity. Barchielli Mabuchi
Carmichael Jacobs
Differential weak measurement of X in increment dt  Milburn Brun
; Wiseman Steck
- —¢? /202 Goetsch/Graham
Meter wave function: (g|0) = \/ el
(q|0) s
meter [0) —— ' Q — q, dp(q) = p(q)dq
e—tH dt/h
[¥) —— Vdq (gle”"/M|0) ) //dp(q)
Hdt =2VkdtoP® X dW = ¢\/dt/o is a Wiener outcome increment.
Controlled displacement du(dW) = zero-mean Gaussian with (dW?) = dt
of meter position @ by X Kraus operator
Alert: Don't faint at the sight of Vdg (gle4P|0) = /dp(dW) VWX edy
a dW or, even worse, a d(dW). = Lx(dW)
AW dp(q) = du(dW ) (| Lx (W) Lx (dW)[4)

) ——— Lx(dW) —— Lx(dW) ) // (| Lx (dW )T Lx (dW)|¢)




100 years of quantum measurements.
Continuous weak measurements (1980-2005)

Concatenating: Continuous, differential weak-measurement of X over finite time T.

dWoa dW1ia dWr_at

| H |

) ——| Lx(@Woa) - Lx(@Wia) |- + + + —— Lx(@Wr_a) | LxldWior)]I$)/\/$ILx1aWio )] Lx [dWio 1)

(incremental Kraus operator) = Lx(dW;) = &% = X VE AW, — Xk dt

(forward generator) = &; = Xk dW; — X2k dt

T/dt—1
(overall Kraus operator) = L{dWjory| =T H Lx(dWkat)
k=0

T —dt
— Texp(/ Xk dW; — X2k dt)
0

Temporal Autonomous  Transformation Group
Yes ? Yes ?

Normalizing at each increment gives a stochastic master equation for an
evolving state. Not normalizing, sometimes called a linear quantum
trajectory, gives autonomous instrument evolution and a Lie group.




100 years of quantum measurements.
Continuous weak measurements (1980-2005)

Continuous, differential weak measurement of X over finite time T.

Instrument evolution

dWoay dW1a dWr_a
— Lx(dWoat) Lx(dWiat) — — Lx(dWr_a) — Lx[dWo )] = Lt
Lx(th) = 66' = eXﬁth_Xzﬁdt, 0 = X\/E dWy¢ — X2HJ dt

T/dt—1

T—dt
Lt = L[dW[O’T)] = H Lx(dWga) = ’Texp(/ X\/Eth—X2Ii dt)
k=0 :

Temporal Autonomous  Transformation Group
Yes Yes Yes Yes

Continuous measurements of a single observable are trivial because everything
commutes (time ordering is irrelevant; irreps are 1D). They limit to a strong
measurement that is a von Neumann measurement (standard collapse between irreps).
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Instrument manifold program

The incremental Kraus operator for a differential weak measurement of n
(noncommuting) observables X = {X3,...,X,}, beginning at time ¢t for an
increment dt, is

—dW,-dW,/2dt

X ARy — 1y . . ny € X /k dW,— X2k dt
Vdu(dWh) Lz (dwi) \/d(th) A W) i © |

Exponentials for different observables can be

Commutators can be disregarded combined into a single exponential at order dt—
for differential weak measurements. commutators ignored—because the Wiener
outcome increments are uncorrelated.

Lo(dW;) = €, 8 = X - V/rdW; — X%k dt = (forward generator)

Differential weak measurements define a fundamental incremental
Kraus operator, a differential positive transformation, which is
fundamental in the same way as infinitesimal unitary transformations.

X dW, = ZX“thM’ dW}' = (Wiener outcome increment for X,,)
7

—

X?=X X =) X = (quadratic term).
14



Instrument manifold program

Instrument evolution: “piling up” Kraus operators

dWOdt dW]_dt dWT_dt
| | . |
—— Lg(dWoar) [ Lg(dWias) — —— Lx(dWr_a) — L[dWio )] = Lr

— _’_ = . _'2
LX(th) — 861% — eX Ve dW,—X?k dt

The differential positive transformations “pile up’” as successive incremental
measurements are performed; at time T the Kraus operator is

T—dt T—dt
Lr = L[dW )] = T exp (/ 515) — Texp( X - VrdW; — X%k dt) ,
0 0

where dVT/[O,T) is the Wiener outcome path and 7 denotes a time-ordered
exponential—commutators do count for finite 7T'!' The measuring instrument
is the collection of these Kraus operators for all Wiener paths (more precisely,

the collection of instrument elements Lt © L}LF).

Instrument evolution is a process: autonomous, temporal, and stochastic.




Instrument manifold program

Instrument evolution

dWouas dW1as AW _as
H H .. H
— L (dWoat) L ¢ (dWias) — L (dWr_gt) L|dW )| = Lr

— _'. _'__’2
Lf(th) — 65,5 — GX \/EdVVt Xk dt

Alert: New thinking; new

The quantum circuit becomes a stochastic path _
concepts and techniques.

on the instrumental Lie group manifold.

LT — L[dW[O,T)]

1| SPQM ISM

The Kraus operators Ly = L[dW[O T)} are elements of an instrumental
Lie group G, which is the group generated by the measured observables,
X = {X1,...,X,}, and the quadratic term, X2 = X - X = >, X The
instrument evolves stochastically in the manifold of the mstrumental Lie
group, which is the natural setting for the measurement.

Heart of the Instrument Manifold Program:
Instrumental Lie groups.




Instrument manifold program. How we do it.

The motion of the Kraus operators on the group manifold & is analyzed using the three faces of
the stochastic trinity. The overall quantum operation is given by a Wiener-like path integral oj the
measurement record, Ly = L[dWo.1)]

Zr = /’Dp[d‘/f/[o,:r)] L[dW[O,T)]QL[dW[O,T)]T;

it is the solution of a Lindblad equation in which the measured observables are the Lindblad operators.
The Kraus-operator paths satisfy a stochastic differential equation (SDE),

Maurer-Cartan form (Stratonovich): dL, Lt‘jdt/z =86 =X - VredW — X%k dt,

1
Modified MC stochastic differential (I1td): dL;L;* — 5(st Lyt = 5;.

Stochastic differential equation

A Kraus-operator distribution function (KOD) is defined by a Wiener path integral,

Alert: New thinking; new B - - . .
concepts and techniques. | Pr(L) = /D”[dW[O,T)] §(L, L[dWjo,n)]) » Wiener path integral

where the é-function is defined relative to the Haar measure of G. The KOD evolves according to a
Fokker-Planck-Kolmogorov equation (FPKE),

10D(L)
Kk Ot

= A[DJ(L), = %Zxﬂxﬂ, Diffusion equation
v

where the underarrows denote right-invariant derivatives,

— lim fE ) f(L),

h—0 h

= d hX
XIAI(L) = —F (L)

h=0

these being the natural vector fields on the instrumental Lie-group manifold. Notice that X_Q describes
ballistic motion and

Ve=S X. X
il

8 Stochastic trinity

is @ Laplacian that describes diffusion.




Instrument manifold program

The Lie algebra for the instrumental Lie group can be processed using the matrices
of a particular representation or processed universally, using only the commutators,
within what is called the universal enveloping algebra. The universal instrumental
Lie group is called the universal covering group; it is detached from Hilbert space.

Universal instruments detached from Hilbert space.

Special measurements, such as simultaneous momentum and position measure-
ment (SPQM) and isotropic measurement of the three spin components (ISM),
have a low-dimensional universal instrumental group; the instrument's POVM
approaches a boundary of coherent states at late times, which is the strong
measurement of the observables (we call this collapse within irrep). These in-
struments we call principal instruments. They connect classical phase space to
the identity across a (type-1V) symmetric space.

Generic measurements—e.g., two components of spin, two squeezing symplectic
generators—have an infinite-dimensional universal instrumental group. The
instrument’s evolution is chaotic; there is no universal (i.e., representation-
independent) strong measurement of the observables. These instruments we
call chaotic instruments.

Principal universal instruments. Very special. Pre-quantum.
Coherent-state POVMs and phase space; collapse within irrep; phase
space connected to the identity across a symmetric space.
Chaotic universal instruments. Generic.

Chaotic evolution and no limiting universal strong measurement.
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Sangre de Cristo Range, northern New Mexico

p— i
A o A e
e ‘1“." ? A
-“-l@ : ¥

v



Simultaneous momentum and position
measurement (SPQM): A principal instrument

Measure position  and momentum P.
Commutator: [Q, P] =il
Quadratic term: Q? + P2 = 2H,

7D instrumental Lie algebra: span{l,:l,:Q,—iP,Q, P, Ho}

7D instrumental Lie group, the Instrumental Weyl-Heisenberg Group,
IWH = CWH x eRHe |

Coordinate manifold with Cartan-like decomposition,
a group-theoretic singular-value decomposition,

Kraus operator L = (Dge''?)e "= D}

Dg and D, are phase-plane displacement operators. @) = Da|0)
POVM element E = L'L =e %!D,e 2" DI 0)
Base manifold of positive transformations ?

(¢, ) = (center normalization and phase)

r = (ruler/purity), dr =2kdt, r = 2kt is ballistic
B = (post-measurement phase-plane)
a = (POVM phase-plane) r=0: E=LL=e¢?*1

_ : — 717 — =20y —Ho2r ot
Write the SDEs and FPKE r=eelhe b = LTL = e_ngae D]
in these codrdinates. r—oo: E=LL=e"|a

v




SPQM: A principal instrument

Kraus operator

POVM element

r = (ruler/purity),

L = (Dﬁeil(/))e—Ho‘r'—leDL

E = L'L = e **'Dpe~"*" D],
(¢, $) = (center normalization and phase)

dr =2k dt, r = 2kt is ballistic

B = (post-measurement phase-plane)
a = (POVM phase-plane)

Work in the coset of the center Z = {el(=(+i®)};
i.e., identify points having different center coordinates ¢ and ¢.

r=2rl: L= Dﬁe_H°2””TD;
E=LL=D., “"D
KOD at ¢t = T is a Gaussian, uniform in
8 + «a, centered on the 2-plane 8 = «,

with mean-square distance between S
and a given by > = kT — tanh kT.

B — «

y

= 2KT
r—oo: L=|8){a], E=LL=|a)
KOD as t — oo is uniform in 4-plane of 2 and
«. Ballistic collapse at » = oo to uniform coverage

of a-plane coherent-state boundary at r = oo.

/B B+ «

™~
-
—

T~

KOD at t = 0 is a uniform distribution

—nN - _ - — rir —
r=0:! L=DgD,=Dg,., E=LL=1 on the 2-plane B = « of identity operators.



Isotropic spin measurement (ISM):
A principal instrument

Measure Jg, Jy, and J,.
Commutators: [Ju, Ju] = tepndy
Quadratic term: J2 4 J2 4+ JZ = J?2 = Casimir invariant = 1,5(j 4+ 1)

7D instrumental Lie algebra: span{—iJ,, —iJy, —iJs, Ju, Jy, J=, J2}
7D instrumental Lie group, the Instrumental Spin Group, ISpin(3) = SL(2,C) x ek’
14, 2)

Coordinate manifold with Cartan decomposition, 7,n) = Dx 3, 2)

group-theoretic singular-value decomposition,
Kraus operator L = (Dpe~"¥)e~Tt+7apt
Dy and D; are spherical displacement operators.
POVM element E = L'L = e7"2!Dye’2* Dl
Base manifold (symmetric space) of positive transformations.
¢ = (center normalization), df = kdt,

¢ = kt is ballistic Write the SDE and FPKE
1) = (geodesic curvature between past and future) in these coordinates.

a = (radial/purity), da; = kdt cotha; + vk dY/,
a is ballistic and diffusive -

(post-measurement Bloch sphere) a=0:E=LL=e"2"

(POVM Bloch sphere) a—00: E=LTILx e—j"‘gﬁﬂj7 n) (4, n|

\ 4

m
n

|



ISM: A principal instrument

Coordinate manifold with Cartan decomposition, o
group-theoretic singular-value decomposition, |J,Z>

byt da ) = D lj, 2
Kraus operator L = (Dﬁ?e—r.]‘y;)e—.f [+.]:(LD;|} Js ) n l], >

POVM element E = LiL = e /"2 D,e’2ep!

v

¢ = (center normalization), df= kdt,
¢ = kt is ballistic
1) = (geodesic curvature between past and future)
a = (radial/purity), da; = kdt cotha; + /kdY}®,
a is ballistic and diffusive

e=01t E=EL—g7

a—o00: E=LTLx efﬁzﬁtb: ﬁ)(j,ﬁ|

(post-measurement Bloch sphere)
(POVM Bloch sphere)

m
n

The base manifold of positive transforma- , _

tions (POVM elements) is a symmetric space, 10 9¢t the induced geometry right, one
in this case a 3-hyperboloid of constant neg-  regards the hyperboloid as embedded in
ative curvature, codrdinated by a and 7. Minkowski space, not Euclidean space.



ISM: A principal instrument

The angular diffusion of the POVM
displacement is overwhelmed by
the area exponentiation.

Nearly ballistic “collapse” to
the coherent-state boundary
at a = infinity.
3-hyperboloid
E = Djel20Dl = 207 Radius a
E—1 at g — On Area 4rsinh?a

N (e

E = eQaﬁ-J

B —> ezaj|j7ﬁ’><j7 ﬁ’l
a—o0

Not flat space Not 3-sphere 3-hyperboloid
Radius a Radius a Radius a
Area 4ma? Area 4rsin?a

Area 4rsinhZa



Principal vs. chaotic instruments

SPQM and ISM are principal universal instruments, for which the universal
instrumental group is finite-dimensional, because the nonlinear quadratic
term has special properties. Principal instruments are very special: they
approach a strong measurement of coherent states asymptotically; these
instruments are thus universal (pre-quantum) and structure any Hilbert
space in which they are represented. They are what Heisenberg and
Einstein meant by identifying what is observable.

Generic measurements—e.g., two components of spin—have an infinite-
dimensional universal instrumental group because of the nonlinear
quadratic term. They do not have a representation-independent strong
measurement, and the evolution of the instrument devolves into

C g



Chaotic instruments
C¢ oo

A universal chaotic instrument evolves stochastically into an increasing
number of Lie-group dimensions. These Lie-group dimensions
correspond to higher and higher powers of the measured observables
and thus to finer and finer scales on a classical phase phase (sensitivity
to initial conditions). Quantum chaos is what happens when the Lie-
group dimensions, the higher powers, and the finer scales are cut off in
a finite-dimensional Hilbert-space representation. All this is might be
quantified by the entropies of the Kraus-operator distribution functions.

Discovery of universal chaotic instruments—and their quantum
counterparts in finite-dimensional representations—promises a new group-
theoretic method for analyzing quantum chaos and dynamical complexity.
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