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1. Introduction

Bungle Bungle Range, Purnululu National Park, The Kimberley, Western Australia
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WEER One question... >

What makes a quantum computer tick?
Superpositions/interference?
Information-gain/disturbance tradeoff?

(wave-function collapse)

Universal set of quantum gates?

Entanglement? | Entangling unitaries?




Other quantum information processing tasks

Quantum Key
Distribution

T ceceeee

Information/disturbance

Communication
Complexity
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P g Theory:  Ekert, PRL 67, 661 (1991
Quantum key distribution Exgg:iyment: Naik o1 al., PRL 84,(4733)(2000)

: Tittel et al., PRL 84, 4737 (2000)
using entanglement Jennewein et al, PRL 84, 4729

(2000)

Bell entangled state
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S/ = C(aQ, bl) —+ 0(327 b3) + C(a47 b3) — C(a47 bl) Experiment

C(a,b) = (ca0op)




Entanglement as a resource

Quantum key distribution
Teleportation
Quantum repeaters

Clock synchronization

Quantum communication complexity

Distributed computing

Separate parties perform operations
locally and communicate classically.
Classical resources are realistic and local.
Shared entanglement is an additional
resource not available classically.

For bigger tasks you don’t
entangle more systems;
instead you use more copies of

a basic entangled resource.

In a quantum computer the parts interact
directly quantum mechanically. A classical
simulation is realistic, but need not be local.

The number of systems entangled
increases with problem size.




Quantum computing paradigms

. Unitary Measurement Global Hilbert
Paradigm Gates  (priortoreadout) | Entanglement space
Standard
Circuit Model Y €S No Yes Yes
Nielsen
2003 No Yes Yes Yes

Cluster-state No

computation Yes Yes/prior Yes

KLM Yes Yes Yes Yes
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ANTUM WORLD

Efficient use of physical
resources other than time

Cau

fficient provision of required Tensor-product structure
Hilbert-space dimension of subsystems

(efficient representation of quantum information) Z

A A

No|efficient|realistic description Entangleme mong
/\‘of states and|dynamics all subsystems

1
Efficient use of

\Not local, rather efficient dynamical time as a resource
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Classical Input
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Efficient provision of required
Hilbert-space dimension
+
No efficient realistic description
of states and dynamics
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dimension implies that'the computer must be made of
R. Blume-Kohout, I. H. Delgqugy(g(fylmggund Phys 32, 1641 (2002).




Classical Input
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QUANTUM WORLD

Efficient provision of required
Hilbert-space dimension
+
No efficient realistic description
of states and dynamics

Quantum Classical Output

information

inside

No efficient realistic description of the states and
dynamics implies that the subsystems must become
globally entangled in the course of the computation.

R. Jozsa and N. Linden, Proc. Roy. Soc. London A 459, 2011 (2003).



Physical-resource

requirements

In the Sawtooth range



Hilbert spaces are fungible

ADJECTIVE: 1. Law. Returnable or negotiable in kind or by substitution, as a quantity of
grain for an equal amount of the same kind of grain. 2. Interchangeable.
ETYMOLOGY: Medieval Latin fungibilis, from Latin fung (vice), to perform (in place of).

Hilbert-space dimension D =4
Subsystem division

2 qubits Unary system
O) & O) O)
0) ® |1) 1)
el
1) ® |0) 2)
1) @ |1) 3)
T) ® |y) 2z + y)
) =) coylz) @ |y) {w =) cryl2z+y)
x,Yy x,Y
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x,r' Y,y x,x Y,y




We don,t Iive in Hilbert Space If this is news, see

me after the talk.

A Hilbert space is endowed with structure by the physical system
described by it, not vice versa.

The structure comes from observables associated with spacetime
symmetries that anchor Hilbert space to the external world. These
observables provide the “handles” that allow us to grab hold of a
physical system and manipulate it.

Hilbert-space dimension is determined by physics. The dimension
available for a quantum computation is a physical quantity that costs
physical resources.

oy Questior

What physical resources are required
to achieve a Hilbert-space dimension
sufficient to carry out a given computation?



Hilbert space and physical resources

The primary resource for quantum computation is Hilbert-space dimension.

Hilbert spaces of the same dimension are fungible, but the available
Hilbert-space dimension is a physical quantity that costs physical resources.

Single degree of freedom

uoljeyndwod 1oy ajgejieAe

- Py Planck’s constant h, the quantum Action available
é of action, sets the scale. for computation
o
o
3 hlh|h|h Available .
3 h|h|h|h bert-space | =/ =
5 dimension
@) I
x
Range of positions available for computation




Hilbert space and physical resources

The primary resource for guantum computation is Hilbert-space dimension.

Hilbert spaces of the same dimension are fungible, but the available
Hilbert-space dimension is a physical quantity that costs physical resources.

Single degree of freedom

Action quantifies the
physical resources.

Available . .
(Hilbert—space) ~ A= AwhporA=2nid
dimension

Planck’s constant
sets the scale.




Hilbert space and physical resources

Primary resource is Hilbert-space dimension
Hilbert-space dimension. costs physical resources.

Many degrees of freedom

X35 P3
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Hilbert space and physical resources

Primary resource is Hilbert-space dimension
Hilbert-space dimension. costs physical resources.

Many degrees of freedom

Number of degrees

B ( Available ) Al Ap <A>@‘7 of freedom

Hilbert-space | ~ =

T
dimension h ‘ h P
Ny 2N{T
. . . Identical degrees
Hilbert-space dimension of freedom h

measured in qubit units.

quasilinear growth

N
Scalable resource requirement — ~ poly(N) T ~
h log (poly(IV))
Strictly sca!able T ~ N é ~ D qudits
resource requirement log D h

strictly linear growth



Example: Quantum computing in a harmonic oscillator
(field mode)

Characteristic scales are set by “oscillator units”

Length Momentum Action Energy

Az, = \/b/mw Ap. = Vhmw Ac=ADzxAp.=h Lc="hw

Quantization

A, = nh Aa;nzwi\/?n,—l—l Ap, =/ hmwy/2n+ 1 En:<n—|—%)hw
mw
Poor scaling in this physically unary quantum computer

2h

mw

N __
RN N — Apy, ~ 2V21/ 2hmw

. Phase space En Y 2th

Az, ~ 2N/2




Example: Quantum computing in a single atom .

Experiment

Characteristic scales are set by “atomic units”

Length Momentum Action Energy
h? me? h e’ D2
— — s —_— L.=r —h FEF.—=—= —<
Te o2 ag Pe 7 0 c cPc c g .
Bohr quantization
5 1nh 1 e?
L, = nh rn = Nn-ag Dp = —— E,=—— "
n ag 2n2 ag
Hilbert-space dimension up ton
— 3 degrees
n — @_ f freedom
1 Ly\3 TnP °
=SS e ()= ()
k=1 1=0




Example: Quantum computing in a single atom

Characteristic scales are set by “atomic units”

Length Momentum Action Energy
h? me? h e? D2
p— = = = — L.=r =h E.=—===
Te o2 ag Pe 7 0 c cPc c g .

Bohr quantization
1h 1 e
_ En g

L, = nh Tn = nQCLO Pn >
n ao 2n< ag

Poor scaling in this physically unary quantum computer

n ~ 2V/3 = Tp 22N/3ao

5 times the

N = 100 qubits == r, ~ 10%%5 = 6 x 10° km diameter
of the Sun




Example: Quantum computing in a single atom

Characteristic scales are set by “atomic units”

Length Momentum Action Energy
52 me? h e’ pf
r, — = Q ) —_— L.=r —h FEF.—=—==—7
SR 0 DPc > 0 c cPc © T e -

Bohr quantization

2 1h 1 62
L, = nh rn = N ag Dp = —— E,=—— "
n ag 2n2 ag
Poor scaling in this physically unary quantum computer
e e2
E, ~—272NB___ ANE ~ —
2a0 2a0

Though position range blows up exponentially, energy does not.

There are many ways not to skin a Schrédinger cat.
. Phase space Quantum fields




Grover’s agorithm using classical

Example: Classical linear wave computing e shatacharya van den

Heuvell, and Spreeuw, PRL 88,
137901 (2002).

A single quantum making transitions among field modes is a physically
unary system that requires an exponential number of modes.

Classical (realistic) linear wave (coherent-state) field amplitudes
undergo the same transformations as do the single-quantum
guantum amplitudes in the unary single-quantum computer.

Classical linear waves inherit a demand for an exponential
number of modes from the underlying unary structure.

Classical linear waves make an additional demand for exponential
field strength if the waves are to be truly classical throughout the

*

Particles

Field degrees of freedom

computation.
v |

<+—— Modes —>

Particle degrees of freedom



Classical Input
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QUANTUM WORLD

Efficient provision of required
Hilbert-space dimension

No efficient real.il.stic description | 'l;&()ut)
of states and dynamics J
Quantum Classical Output
information
inside

Efficient provision of the required dimension implies that the computer must

The primary resource for quantum computation is Hilbert-space dimension. /
be made of subsystems.

No efficient realistic description of the states and dynamics implies that the
subsystems must become globally entangled in the course of the computation.



Physical resources: classical vs. guantum

Classical bit

A few electrons on a capacitor
A pit on a compact disk

A 0 or 1 on the printed page

A classical bit typically involves many
degrees of freedom. The scaling analysis
applies, but with a phase-space scale of
arbitrary size. There being no
fundamental scale, conclusions about
resource scaling depend on a phase-
space scale set by noise.

A smoke signal rising from a distant mesa

Quantum bit Mr. Planck’s constant sets the

scale of irreducible resource

) = a|0) + 5|1 requirements.

We still need to determine the
consequences of quantum superposition.




Other requirements for a scalable quantum computer

Avoiding an exponential demand for physical resources requires a
quantum computer to have a scalable tensor-product structure.
This is a necessary, but not sufficient requirement for a scalable
quantum computer. There are certainly other requiremens.

DiVincenzo’s criteria DiVincenzo, Fortschr. Phys. 48, 771 (2000)

1. Scalability: A scalable physical system with well characterized
parts, usually qubits.

2. Initialization: The abillity to initialize the system in a simple
fiducial state.

3. Control: The ability to control the state of the computer using
sequences of elementary universal gates.

NSNS

4. Stability: Decoherence times much longer than gate times,
together with the ability to suppress decoherence through error
correction and fault-tolerant computation.

5. Measurement: The ability to read out the state of the computer \/
In a convenient product basis.



Oljedo Wash, southern Utah



Realistic description and entanglement

T = N/log D qudits

Computer's state: |W) = Z Cir..gn)J1) ® -+ & |g71)

4

JLyeesJT
A realistic description could be a classical-computer
simulation of the evolving quantum amplitudes.
(# of amplitudes) =|DT = 2~
2
N — 17(5) exponentia_l in
One-qudit operations: W) = UMW) problem size

A

exponential in
problem size

Two-qudit operations:

DT-1lapplications of D x D unitary matrix

W) = UGPw)

applications of D? x D? unitary matrix




Realistic description and entanglement

One-qudit operations:

Readout:

T = N/log D qudits

Suppose the computer’s state is a product state throughout the computation.
There are T local qudit processors with no entanglement between them.

Wy =)@ @) = Y @i ® - ®ljr)

J1yeJT

i

(# of amplitudes) =|DT = DN/log D

[¥)) = UD|aby)

I

polynomial in
problem size

application of D x D unitary matrix l

polynomial in

problem size

>

Efficient realistic description

Determine| DT = DN/ log D

amplitudes.




O

QUANTUM WORLD

Efficient provision of required

Hilbert-space dimension
(efficient representation of quantum information)

+

[ No efficient realistic description
of states and dynamics

Efficient realistic description

of states and dynamics

Scalable tensor-product
structure of subsystems

#

M

Entanglement not restricted
to blocks of fixed size

h

Entanglement restricted to
blocks of p qubits,

independent of problem size.

Computer’s state at all times is p-blocked.

V) = [IV1)

a

3¢

Block 1
(p qubits)

[Wo)

a

\(\ssume subsystems are qubits.

® W)

a

Block 2
(p qubits)

N = pM qubits

Gate set of 1-

Block M
(p qubits)

and 2-qubit gates




Realistic description and entanglement

Computer’s state at all times is p-blocked.

W) =

1)

a

Block 1
(p qubits)

3¢

[Wo)

a

Block 2
(p qubits)

&

[War)

a

Block M
(p qubits)

N = pM qubits

Gate set of 1-
and 2-qubit gates

R. Jozsa and N. Linden, Proc. Roy. Soc. London A 459, 2011 (2003).

How many quantum amplitudes need to be simulated?

How many arithmetic operations does it take to

simulate 1- and 2-qubit quantum gates?

How many operations are required for readout?

The hard part of the Jozsa-Linden proof is showing that the complex arithmetic of quantum
amplitudes and unitary matrices can be carried out efficiently using a sufficiently good rational
By ignoring this hard aspect, we reduce the proof to a counting argument.

approximation.



Realistic description and entanglement

Computer’s state at all times is p-blocked.

“W> — |W1> 024 |W2> X |WM> N = pM qubits
Gate set of 1-
Block 1 Block 2 Block M and 2-qubit gates
(p qudits) (p qudits) (p qudits)

How many quantum amplitudes need to be simulated?

How many operations are required for readout?

op
(# of amplitudes) = 2°M =|—N
p

polynomial in
problem size




Realistic description and entanglement

Computer’s state at all times is p-blocked.

(V)= [[W1)]| ® [[W2)
Block 1 Block 2
(p qudits) (p qudits)

&

W)

a

Block M
(p qudits)

N = pM qubits

Gate set of 1-
and 2-qubit gates

How many arithmetic operations does it take

to simulate 1- and 2-qubit quantum gates?

One-qubit operations:

or-1

a

applications of 2 x 2 matrix

polynomial in
problem size

Two-qubit operations acting
on two qubits in same block:

2P—2

applications of 4 x 4 matrix



Realistic description and entanglement

Computer’s state at all times is p-blocked.

W) =

Two-qubit operations
acting on two qubits in

W)

a

Block 1
(p qudits)

3¢

[W2)

a

Block 2
(p qudits)

&

W)

a

Block M
(p qudits)

N = pM qubits

Gate set of 1-
and 2-qubit gates

How many arithmetic operations does it take

to simulate 1- and 2-qubit quantum gates?

different blocks:

(

22p—2

p

a

polynomial in
problem size

applications of 4 x 4 matrix

2p) checks to determine new p-blocks

In the absence of this reblocking,
we have M local qudit processors.




Realistic description and entanglement

Computer’s state at all times is p-blocked.

V) = [IV1)

Block 1
(p qudits)

3¢

|W2)

Block 2
(p qudits)

p-blocked entanglement

description

No efficient realistic

|

&

!

|WM> N = pM qubits

Gate set of 1-

Block M and 2-qubit gates
(p qudits)

Efficient realistic description

Global entanglement




QUANTUM WORLD

Efficient provision of required
Hilbert-space dimension

(efficient representation of quantum information)

Tensor-product structure/
of subsystems

+ RN
"No-efficient realistic description Entanglement among
of states and dynamics all subsystems

Global entanglement
Is the resource that allow

a quantum computert
congmize on resoutrces.




BUT

walt just one minute.

Well, gimme 30.



Blue Latitudes:

Boldly Going Where Captain Cook Has Gone Before
by Tony Horwitz

On his first Pacific voyage, Captain Cook “loaded the Endeavor with
experimental antiscorbutics such as malt wort (a drink), sauerkraut, and
‘portable soup,’ a decoction of ‘vegetables mixed with liver, kidney, heart,
and other offal boiled to a pulp.” Hardened into slabs, it was dissolved
iInto oatmeal or ‘pease,’ a pudding of boiled peas.” (p. 34)

Cook might report to his superiors in London that “these experimental
antiscorbutics are the essential resource that prevents scurvy,” but we
know now that although the soup was indeed awful, only the sauerkraut
was of any value in preventing scurvy.

When we report that “global entanglement is the essential resource
for quantum computation,” are we making a logically similar statement?



1V.

Why we don't know all the answers

Gottesman-Knill circuits
Mixed-state quantum computation

Aspens in the Sangre de Cristo Range
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Gottesman-Knill circuits

e /N qubits in an initial product state in the Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators

Global entanglement

but

Efficient (nonlocal) realistic
description of states, dynamics,
and measurements

Details




Measure XYY, YXY, and YYX: All yield result -1
Local realism-implies =
Quantym mechanigs says XXX=t1

QUANTUM WORLD

O> = H ® 1
—5(1000) +[111))
0) o>
GHZ entangled state
J VA <
0) fan XXX, ZZI.217
T Tl o { I, ZZ1,21Z, 127, }
1 1 TUXXX, —XYY,-YXY,—-YYX
75010) + 11))[00) 250100 + 11)[0)
XII,1Z1,11Z XXI,2Z1,11Z

Efficient (nonlocal) realistic description of
states, dynamics, and measurements




Gottesman-Knill circuits

e /N qubits in an initial product state in Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators

Global entanglement This kind of global entanglement,

when measurements are restricted
but to the Pauli group, is, like the
relation of Captain Cook’s portable
soup to scurvy, not “the essential
resource for quantum computation.”

Efficient (nonlocal) realistic
description of states, dynamics,
and measurements



ZZ| = ZI1Z = 1ZZ = XXX=+1; XYY = YXY = YYX = 1.

To get correlations right requires 1 bit of classical
communication: party 2 tells party 1 whether Y is measured on
qubit 2; party 1 flips her result if Y is measured on either 1 or 2.

QUANTUM WORLD

r1
T2
T3

=

0) H * 1 ,
——(|000) + [111))
0) V2
AN
GHZ entangle\d state
0) ® r oy oz
T T ror3  TiT2T3  T1
. » ) 72 rire2 1
—(|0) +]1))|00) —(]00) + [11))|0) T T T
7 7 | 73 173 1
'\/
T T \\ ro  Trir2 711
T T 1 ~T> T1iT2 T1
rg r3z 1 T3 T3 1

For N-qubit GHZ states, this same procedure gives a local
realistic description, aided by N-2 bits of classical communication
(provably minimal), of states, dynamics, and measurements.
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Local realism implies

SXX=-1.

Quantum mechanics says SXX=+1.

Assume 1 bit of communication between qubits 1 and 2.
Letting S=XX and T=XY, we have SYY=TXY=TYX=-1.

/

J2 l ® ® -
——_(|0000) 4 |1111
\/§(| )+ | ))
\L/
4-qubit GHZ
D entangled state

XXXX,ZZIT,Z1Z1, ZI1Z

D\ '

\L/

-|

IIII,ZZII,ZIZI, ZIIZ,1ZZ1,1ZIZ,I1ZZ
XXXX,-XXYY,-XYXY,-XYYX,
S YXXY,-YXYX,-YYXX,YYYY

L

|

For N-qubit GHZ states, a simple extension of this argument
shows that N-2 bits of classical communication is the minimum
required to mimic the predictions of quantum mechanics.




All GK states are related to graph states by

Z, Hadamard, and S gates. All graph states

have a communication-assisted LHV model
mhm\gm.

/

\NTUM WORLD
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Gottesman-Knill circuits

e /N qubits in an initial product state in Z basis

e Allowed gates: Pauli operators X, Y, and Z, plus H, S, and
C-NOT

e Allowed measurements: Products of Pauli operators

Global entanglement This kind of global entanglement,
when measurements are
but restricted to the Pauli group, is
not “the essential resource for
Efficient (nonlocal) realistic guantum computation” because it
description of states, dynamics, can be simulated efficiently by
and measurements local variables assisted by

classical communication.

Conclusion




Efficient provision of required

Hilbert-space dimension
(efficient representation of quantum information)

+

[ No efficient realistic description
of states and dynamics

QUANTUM WORLD

Scalable tensor-product
structure of subsystems

N
Computer’s state nyt
restricted to be a

] /

Mixed-state quantum computing

\Assume subsystems are qubits.

Entanglement among
all subsystems

ure states

product state of blocks \mixed states

Computer’s state not

\

Efficiemw
|

of states and dynamics

/‘mputer’s state restricted
to be a product state of

blocks of p qubits,

independent of problem size.

restricted to be a product
state of blocks, which does
not imply entanglement

among blocks

mixture of
product states

p not entangled (separable)

J




Power of one qubit

Problem

Let U be a unitary operator on N qubits, which can be imple-
mented efficiently in terms of a universal set of quantum gates.
Find tr(U) /2" to a fixed accuracy.

Power of one qubit
E. Knill and R. Laflamme, PRL 81, 5672 (1998).
R. Laflamme, D. G. Cory, C. Negrevergne, and L. Viola, Quant. Inf. Comp. 2, 166 (2002).
D. Poulin, R. Blume-Kohout, R. Laflamme, and H. Ollivier, PRL 92, 177906 (2004).



Power of one qubit

(Z) = tr(ZHpH) = tr(@ ,,o>

Many repetitions

Re(tr(U))

NHtr(UT 4+U) =

2N

0)— H ?

T

—G)—z

e
N

-

N qubits

e (10001 + 01 p

100+ 11)(1) © 1

1
2N+1

(l0)y(0] ® I +]0)(1| ® U

+1)(0l@U + 1)1 1)
1
2N+1

(T® T+ 01U+ |1)(0| 8 U)




Power of one pure qubit

()

(Ut U) = _Im (tr(U))

(Z) =tr(ZHSpS'H) = tr(g’ngHg P = o =

Many repetitions

‘O> — H T S H _@_ / = *1
)
+
o N
S L . l]
@) 2N °

| 1
! — (100l & I+ o)1 U

Swrr (10001 +10)(1] P PN

F11)(0] + [1)(1]) @ I + 10| @ U+ 1)(1]|® 1)

= (e +0aeu+ )0 e v)




Power of one qubit

Problem

Let U be a unitary operator on N qubits, which can be imple-
mented efficiently in terms of a universal set of quantum gates.
Find tr(U) /2" to a fixed accuracy.

o O(1/€?) repetitions are needed to determine (Z) and, hence,
tr(U) /2" with accuracy e.

e If the special qubit has an initial polarization 9§, the output
expectation value is reduced by a factor of 4. The only effect
is to increase the required number of repetitions to O(1/5§%¢2).

e [ he special qubit is not entangled with the other N qubits at
any point during the computation, nor are the other N qubits
entangled among themselves.



Mixed-state quantum computing

Power of one qubit

What should we make of this?

e Given a unitary operator U on N qubits, which can be implemented
efficiently in terms of a universal set of quantum gates, is there a
classical algorithm for finding tr(U)/2N to a fixed accuracy?

e Is the overall state entangled during the course of the computation,
and if so, how much?



Negativity

Mixed-state quantum computing

Power of one qubit

e Is the overall state entangled during the course of the computation,
and if so, how much?

Negativity v. Number of Qubits

1.5 T T T T T
1451 : | . | . | . . | . | . ;
14+
O 0 O 1
v,— [0 1 00
al The achievab\é nég ?lvgt is
13} a vanlshlngly smaII raction
125} ' %ﬂwlapﬁﬁr
12| B : N | bpadgtide
‘ —-@- s=1,2 bound 3rd QUDIt
1.15 : - —— s=1,2,3 bound . 4
[ g —4— Random unitary, (n,1) splitting
: : —& Random unitary, (n/2+1,n/2) splitting
| | —-—I Best known uniltary |
1'10 5 10 15 20 25 30

Number of Qubits



Planck’s constant did appear.

Alice and Bob did not.
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“Ohhhhhh...Look at that, Schuster. .. Dogs are so cute when
they try to comprehend quantum mechanics.”

Before getting too proud of
ourselves, can we say we really
comprehend quantum mechanics?
Or do we just know how to use
the formalism?

Is quantum mechanics a “law of
thought” or a “law of physics”
or some combination of the
two? We need to disentangle
the epistemology from the
ontology.

Can there be a better route to
understanding than studying
how to use quantum phenomena
to accomplish information-
processing tasks that are
Impossible in a classical world?

Quantum information
science Is the place.



Quantum fields

L particles M single-particle states (modes)
K spatial modes _
D internal states M=KD
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Quantum fields
L particles M single-particle states (modes)

K spatial modes

D internal states M=KD

Bose systems
— I
>N — Q) — (L+ M —1)!
(M — 1)!L!

Particle-mode symmetry
L+~ M-—1

*

Particles

Field degrees of freedom

\

<4+—— Modes —

Particle degrees of freedom



Quantum fields
L ...« Particles M single-particle states (modes)

L=0,1,..., Lmax K spatial modes

(L = Lmax, M — M + 1) D internal states M=KD

Bose systems

N _ o — (Lmax + M)
B M Lmax!
Particle-mode symmetry
Lmax < M

<4+—— Modes —

*

Particles

Field degrees of freedom

\

Particle degrees of freedom



Scaling of bose systems. |

L+ M-—1)!
Asymptotics of N — Qp = ((]\;_ 1)|L?

M*E
L fixed, M grows: N — ~ F M grows exponentially
LM
M fixed, L, ., grows: oN — ~ me:x L ..« grows exponentially

Physically unary systems

D=1 Single-photon optics

L =1: QN =g =M
K=1 Single atom or molecule

Single optical mode

. N _ o/ _
M=1: 2N = Qf = Lmax (harmonic oscillator)



Grover’s algorithm using classical waves.

Classical linear wave computing snatnaya vanden rewal, and spresum

PRL 88, 137901 (2002).

Classical (realistic) linear wave (coherent-state) field
amplitudes undergo the same transformations as do the
single-quantum quantum amplitudes in a unary single-
quantum computer.

Classical linear waves inherit a demand for an exponential
number of modes from the underlying unary structure.

Classical linear waves make an additional demand for
exponential field strength if the waves are to be truly
classical throughout the computation.

*

Particles

Field degrees of freedom

\

<4—— Modes —

Particle degrees of freedom




Scaling of bose systems. I

L+ M-1)]
Asymptotics of 2N = Qp = (L + )
(M — 1) L!
L\M M\*
an oth grow: 2 Qg \(1—|—M>j(l—|— L)
fi;Td particle
d.o.f. d.o.f.

Scalable resource requirement

M N Npoly(N)
A POY(N) b~ log(poly(N)) M~ log(poly(N)
or
L N Npoly(N)
M POY(N) M~ log(poly(N)) b~ log(poly(N)



Scaling of bose systems. I

L
L and M both grow: % — p = constant

2N:Q ~ 1_|_ M 1_|_ —1 L:2 S(U):QLS(]-/N)
5~ (14 M (14 gt = 2M60)

N——
field particle
d.o.f. d.o.f. Entropy of a field mode that
has L/M particles on average
Strictly scalable resource requirement
N N _ N «
YN _ BNV

sy 7 sm T s

p>1: 2V =Qp~ M = (particles/mode)”  Field d.o.f.
M ~ N/log pu predominate

p<l: 2¥=Qp~ (1/p)" = (modes/particle)” Particle d.o.f.
L~ N/log(1/u) predominate




Quantum fields
L particles M single-particle states (modes)

K spatial modes

D internal states M=KD

Fermi systems
M!
- LV(M - L)!

Particle-hole symmetry
L — M — L

2N = Qp

f

Particles

l

<4+—— Modes —>

Particle degrees of freedom



Scaling of fermi systems. |
M!
- LV(M - L)!

ML
L fixed, M grows: 2% M grows exponentially

L and M both grow:

1 M—L M L
2N:QF~( ) (-) . L< M

Asymptotics of 2" = Qp

A 1—L/M J L -
h8r|e particle
d.o.f. d.o.f.

Scalable resource requirement

M N Npoly(N)
- POY(N) b~ log(poly(N)) M~ log(poly(N)



Scaling of fermi systems. |l

L
L and Mbothgrow: —=u, p<1

M
2N = Qp ~ &1 _ M)_(l_“)]\f EE—uM — o MHE(k)
hole particle
d.o.f. do.f. binary Shannon entropy

for fraction L/M

Strictly scalable resource requirement

S «
M~ — L~ -2

H(w) H(w)
pn<l: 2V =Qp~ (1/u)r = (modes/particle)” Particle d.o.f.
L~ N/log(1/p) predominate

1—p>1: 2V =Qp~[1/(1 - w]™ L = (modes/hole) "

M—L~N/log[1l/(1—p)] Hole d.o.f.
predominate



Quantum fields

L particles M single-particle states (modes)
Only one particle per spatial .

mode (external state). K spatlal modes M = KD
Spatial label makes particles D internal states N

effectively distinguishable.

“Distinguishable” particles

<
L — K D =1 reduces to the fermi case.
N K For truly distinguishable
20 = QD = particles, the L! is absent.
L) (K — L)!
L = K reduces to the
simple d.o.f. analysis.

K plays the role of the number of d.o.f., T, in the simple d.o.f.
analysis, and D plays the role of A/h, but note that D is raised
not to the power K, as in the simple analysis, but to the power
L, because not all the external states are occupied.




Scaling of “distinguishable” particles. |
_ K! 3
L'(K — L)!

L
L fixed, K grows: 2V ND) K grows exponentially
L

L and K both grow:

1 K—-L KD L
2" =~ ) () =k

Asymptotics of 2N = Qp

Scalable resource requirement

N 1 Npoly(N
P poly(N)

poly(N) L

" log(poly(N)) "~ Dlog(poly(N)



Scaling of “distinguishable” particles. |l

L

L and K both grow: E:M’ pn <1

2N — Qp ~ (1— u)_(l_“)Ku_“KDL — o> K[H(p)Hpulog D]

binary Shannon entropy
for fraction L/K

Strictly scalable resource requirement .
N - uN
H(p) + plog D H(u) + plog D




Quantum fields. Summary

L particles M single-particle states (modes)

K spatial modes

D internal states M=KD

Scalability requires that the number of particles or the
number of modes, whichever (or both) acts as the effective
number of degrees of freedom, must grow quasilinearly
with the equivalent number of qubits, N; if the effective
number of degrees of freedom grows more slowly than
quasilinearly in N, the complementary resource set
demands an exponential supply of physical resources.




Quantum key distribution using entanglement

Entangled state
(geeaHtemtanriedatotes)

) # J9a) © [¥s)) |,
V2

Shared secret key




Quantum key distribution using entanglement

Bell entangled state
1
) = —=

ﬂ(ITU—IlT)) ‘b

Oa Ob
C(a,b) = (o.0p) = —a-b

a

Local hidden variables (LHV) and Bell inequalities

QM: S = 22

ai
bo
‘ LHV: |S| <2
a3z
by

S

C(a1,b2) + C(az,b2) + C(az, bs) — C(a1, ba)
Oa, (Ob, — 0b,) + 0a,(op, + 0p,) = £2




- H H Theory: Ekert, PRL 67, 661 (1991)
Quantum key d IStrlbUtlon Experiment: Naik et al., PRL 84, 4733 (2000)
: Tittel et al., PRL 84, 4737 (2000)

usi ng entanglement Jennewein et al., PRL 84, 4729 (2000)

Bell entangled state

1
ail _ - B b
o v =51 =11 p, b1
a3 b3
a4 b
LANL experiment Lo lAIx{IvJvIPCP]]EB:S
01,012,003,014
Ar" . LC
laser I]] . m AR —
BBO
EVEm LC

B1,02,P3,P4
RaNDOM  BOB




Example: Rydberg atom
http://gomez.physi cs.|sa.umich.edu/~phil/gcomp.htmi

Grover's database search algorithm

Data reqister: Rydberg wave packet

Read-in: phase information Read-out: amplitude information
29p |
Cesium A =——— . |
s |
Decoding pulse
G5 >
Optical pulse or teraherz
Half-cycle Pulse (B)
101 i
(000100)
_ State-selective field
Optical Short Pulse (A) ionization signal




Harmonic-oscillator phase space

p/Vhmw

rmrnn = 0.234

x/r/h/mw




Single-atom phase space

p/(h/ao),




Single-qubit gates u Two-qubit gate

N
Z:(o —1)252 I Z C-NOT

> = |0)(0]

e (1 0)_ . T - Control
_(o z‘)_ J/ I IL. .

0) .

) - .

H=— H— Control T B
f /|~ Ha X B &

damard Target




More single-qubit gates ‘ Y




Another two-qubit gate ‘4 i

1 O
0O 1
O O
O O

C-PHASE =

O OO
oNON®

Control Target

|

10)

L
T

1)

=0)0|@ I+ |1)(1|® Z

Intro

Stabilizer

Control T i A
Target — 7 H—&—H) i

£_HIH_Z

—

||




Stabilizer formalism. States

oo = 1
Pauli group for N qubits: Gy = il. Oa; @+ Q Oay o= 2
+1 o2 =Y
o3 = 4
@ = 1 & g=2404,®  -Qcay < ¢g=g has eigenvalues +1
or 92 — —1 = g — iio—al Q& Oay ~ g — _gT

Elements of Gy are unitary and either commute or anticommute.

i N
Stabilizer: |S = (SUbgrOUD of Gy with 2 )

elements and —1 ¢ S

Elements of § commute, square to I, and if g€ S, —g & S.

State stabilized by S: gl¥) = |[¢) forall ge S

D= > g

ges



Stabilizer formalism. States
Pauli group for N qubits: Gy = {(j;) Ooy R+ ® aaN}

subgroup of Gy with 2N>

Stabilizer: S = ( elements and —1 ¢ S

Stabilized state: g|iy) = [¢) for all g € S, |¥){(¥| = QLN Zg

Examples i
Lqubit 8 ={1,X}, [ =30 +X), ) = (10 + 1)
2 qubits: S = {I[,XX,Z2Z,—-YY}, |d)&|= %(II—I—XX—I—ZZ—YY)
) = j§<|oo> +111)

3 qubits:
S={Ill,XXX,-XYY,-YXY, - YYX IZZ ZIZ,ZZI}
1
) (| = g(IH—I—XXX — XYY - YXY - YYXAIZZ+ZIZ+ ZZI)
et?

\/5(|000> +[111))

) =




Stabilizer formalism. States

Stabilizer generators: 9g1,---,9nN S ={(g1,..-,9nN):
Complete set of commuting Generators CqmmUte'
observables that generate S square to I, are independent

N
1
Stabilized state: g;l¢) = [¥), j=1,..., N, [){| = H 5 +9;)
j=1

Examples

Lqubit S =(X)={I,X}, [¥)|=50+X),

2 qubits: S = (XX,22)={I1,XX,27,—-YY}
)] = 3T+ XX)(UT+22) = (1T + XX + 27 YY)

3 qubits:
S=(XXX,ZZI,ZI1Z) ={1I1,XXX,-XYY,-YXY,-YYX,IZZ ZIZ, ZZI}

) (1| = %(H[ + XXX)UII+ 22D+ ZIZ)

1
— g(III—I—XXX—XYY—YXY—YYX—I—IZZ—I—ZIZ—I—ZZI)



Stabilizer formalism. States

1 bit
g___“o'l(g)...(g)
2N+1 bits 2 bits

N stabilizer generators

2 bits

Efficient realistic, but highly nonlocal
description of stabilized state

N
)l =[50+
j=1

917"’7gN

N(2N+1) bits




Stabilizer formalism. Dynamics

S ={g1,...,9n) — USU" = (Uq U",..., UgnUT)

(Ug;UNU W) = Ugjlyp) = Uly)

Normalizer:

Single-qubit gates

N(Gn) ={U |UGNUT = Gn}

Two-qubit gates

U=X UXUT =X UXQIUT=X®X
U=C-NOT L
UXUT = —-X - UZQIU"=2Z1
U=r UZU" = —Z Ul ZU =28 7
UxyUt = —x | Normalizer generators
U=27 ;
Vaul =2 UX@IUt=X®Z
_ UXU'=Z o~ UIQXU =2Z%X
U=H U7Ut = X U = C-PHASE Uz IUt = 201
:UXUT=Y UIQZU =1 Z
U=5 | yzut =2z

—11
- UXUT _|E(X+Y)|

UzUT = -7 |

What's missing from a

The culprit

A

Gates

universal gate set? .




Stabilizer formalism. Dynamics
Single-qubit U € N(Gy)

Action of U is described by a rule that requires <4 x (142) =
12 bits

To update N generators requires N applications of rule

Two-qubit U € N(Gy)

Action of U is described by a rule that requires < 16x (1+4) =
80 bits

To update N generators requires N applications of rule

Efficient realistic description of dynamics




Stabilizer formalism. Measurements

S=(g1,.--,gn,) stabilizes |))

P
stabilizer
generators

Allowed measurements: Products of Pauli operators

Observables g € Gy such that g? =1, i.e., g =404, @ @ Tan

gy = +gg;|v) = +glv) , if g commutes with g;
939 —gg;|v) = —gly) , if g anticommutes with g;

commutes
anticommutes

gly) is a j_Ll

1 eigenstate of g; if it

with g;



Stabilizer formalism. Measurements

, +1 . e commutes , |
gl)y is.a "1 eigenstate of g; if it _ . L o with g

: =1orp_-1=1and

e glcommutes|with all generators = P11 P-1 .
post-measurement state is |¢)

glv) ==£[Y) & g€ S = £g=g7' gy

The powers aj,...,ay can be determined by solving N linear equa-

tions [O(NN?) operations] and then the product gi*---g%" can be

computed [O(N?) operations] to determine which result is pre-
dictable.

O(N?) operations
L 2

e glanticommutes|with one or more generators (relabel gener-

ators so that g anticommutes with ¢1,...,9; and commutes

with gi+1y .- - 7gN)

post-measurement state (I & g)[¢) is

and stabilized by g,g9192,...,919, gi+1,---, 9N

= p—l—l o p_l e
> [computable in O(N?) operations]

N[+

coin flip
(Dlglv) = (WPlggiv) = —|grg|y) = —(WD|g|v) = (Plg|¥p) =0 .




