
Lecture 1
Quantum Mechanics: 

Motivation and Axioms

Goal: motivate QM through comparison with earlier mathematical 
models in physics (for those who know them).   A crash course on 
probability theory.  QM as a generalization of probability theory to 
include interference of amplitudes (“wave mechanics”) and 
noncommuting measurements (“matrix mechanics”).



Mathematical Paradigms in Classical Physics

Classical Mechanics(18th century): describes the motion of rigid bodies

States: position, momentum, angular position/momentum.  For N 
particles phase space is              dim.   E.g.                             .

Newton’s 2nd Law, 
Euler, Laplace, 
Lagrange,Hamilton

Dynamics: systems of
coupled nonlinear ordinary 
differential equations. 

Observables and Measurements:  all components of the state are 
simultaneously measurable and do not update the state.   



Classical Field Theory (19th century): describes the motion of fields e.g. 
fluctuations in a medium, electromagnetism, gravitational fields.

Dynamics: systems of coupled nonlinear partial differential 
equations. Discretization yields             dim state space, finite 
element / difference dynamics yield N coupled nonlinear ODEs with 

Observables and Measurements:  notion of wave amplitudes 
interfering to yield visible magnitudes (double slit experiment)

States: scalar/vector/tensor valued functions on manifolds describing 
uncountably many interacting degrees of freedom



Young’s double slit experiment (light)



Mathematical Paradigms in Classical Physics

Statistical Mechanics (19th century): describes behavior of large numbers of 
microscopic particles, including stochastic effects as simplifying assumption.

(e.g. kinetic theory of gases, Brownian motion, contrast with thermo)

States: probability distributions over phase spaces.  For N particles, state is 
prob distribution over dimensional vec space.

Dynamics: main focus on infinite-time limit (equilibrium).  Noneq
effects described by  stochastic ordinary differential equations. 

Observables and Measurements:  probabilistic theory => observables 
are expectation values.   Measurements can update the state (Bayes)



Summary of Mathematical Physics
Classical Mechanics: simple correspondence of states and observables, focus on 
fine-grained behavior of few-body systems.

Classical Field theory: many interacting degrees of freedom described by PDEs / 
infinite systems of ODEs, amplitudes combine to yield observable magnitudes

Statistical Mechanics: states are prob distributions over phase space of many 
interacting particles.  Observables are expectations.  Stochastic “incompleteness” 
may be ontological (“of nature”) or epistemic (“of knowledge”).

Quantum Mechanics: states are amplitude distributions over space of many 
interacting particles.  Observables are expectations.   Stochastic behavior cannot 
be explained as a lack of knowledge about “hidden variables.”



Electron double slit experiment

Stochastic theory of classical statistical mechanics preceded QM in attempting to describe the 
miscroscopic world, therefore it is mathematical naturally (and somewhat historically accurate)
to view QM as a mininimal generalization of stochastic theory to include amplitude interference.

Motivation for Wave Mechanics: interference pattern for electrons passing through the double slit 
apparatus cannot be explained by mixtures of probability waves, requires amplitude interference.



A bit about bits
Physics has traditionally approximated nature as a continuum.  This was and is 
based on inductive reasoning and our limited scale of observation.

Example: if matter were a continuum and you could use the precision of the real numbers, then 
you could encode an unlimited quantity of data by making a sufficiently precise mark on a rod.   
The standard model treats space as a continuum and fundamental particles as points.

Discrete: all elements of the set are separated by finite distance. (natural numbers, integers)

Dense: contains points arbitrarily close to any given point (e.g. the rationals are dense in     )

Uncountable: being in correspondence with the real numbers, the cardinality of the continuum

Complete: every sequence for which the distance between consecutive pairs of points goes to zero has a limit in the set

(the rationals are not complete.  The real numbers are defined as the unique complete totally ordered field)

A quantitative theory of information that is grounded in the physical world needs 
to avoid non-discrete systems that store unbounded amounts of information.

Dense and uncountable sets are taken as useful approximations in physics, we 
have no good reason to believe in physical infinity (alternative: unbounded).  



Fundamental Discreteness: Particle spin, 
frequencies of atomic transitions

Stern-Gerlach Experiment with spin ½ 



A bit about bits
Once we have accepted discreteness, we may enumerate all possible states and 
events with strings of digits.   

Bits are the simplest choice, with an alphabet of just two symbols “0” and “1”

The number of digits used to express N in base b is , so using any 
larger constant as the base only compresses the representation by a constant factor  

Important notation:  is the set of n-bit strings.

Work this out if it is unfamiliar, e.g.



A bit about bits

The important point is that we cannot learn ε by flipping the coin, even if we are 
allowed to flip identical coins any finite number of times N.  

Consider a coin that is heads with probability ½ + ε , and tails with probability ½ -
ε.   If ε can be any real number, then is this probabilistic bit (pbit) discrete or not?

Exactly similar statements hold in quantum mechanics.   Just like ε in the pbit, we 
sometimes use continuous real parameters to describe states in QM, but this 
doesn’t give them infinite information content because we must look carefully at 
what we can observe and measure about the states. 

Put another way, if we used N pbits to store information, then the most amount 
of information that could be pulled back out of them by measurement is N bits.



A closer look at probability theory
A set of events     , and a probability distribution  

Let .   We can think as a normalized vector in dimensions   

Mathematical terminology: the 1-norm of a vector is the sum (integral) of the 
absolute value of its components.  The mathematical spaces are the set of 
real-valued sequences (functions on domain     ) with a finite 1-norm.   

(“    is a unit vector in the 1-norm”,  “     is little ell one normalized”)

(Get used to “zero-indexing” 
and converting freely between 
bit strings and integers)



A closer look at probability theory
Probability distributions are vectors, but real-valued linear combinations of 
probability distributions will not always be probability distributions.

Instead use convex combinations: 

Convex combinations (aka “mixtures”) preserve nonnegativity and normalization

The nonnegative orthant of a vector space is called a “convex cone” because it is 
closed under convex combinations.



A closer look at probability theory
Let be the state space for a coin (“0” = heads, “1” = tails) 

If we have two coins, the set of possible states is 

A biased coin could be described by a vector 

For two independent copies of this biased coin, the joint distribution is 

00

01

10

11



A closer look at probability theory
Probability theory for composite systems: previous example shows that composite 
state space is the cartesian product of component state spaces.

If the individual components are statistically independent, then the product rule for 
combining independent probabilities means joint distribution is a tensor product.

Product distributions describe 
variables that are uncorrelated.  

Although the number of possible 
events scales exponentially with the 
number of subsystems, independence 
lets us describe them using a number 
of variables that is linear in the 
number of subsystems.



A closer look at probability theory

Suppose the weather qualifies as warm ¾ of the time,

But I always check the forecast and choose my clothes accordingly, then 

("0" = warm, "1" = cold) 

("0" = no jacket, "1" = jacket)    

In general the component subsystems of a composite system are not independent, 
but rather they are correlated.  For example, weather and clothes:

Due to the correlations, it is impossible to factorize this 
distribution into a product of independent distributions.



A closer look at probability theory

Although correlated distributions do not factorize into products, we can still ask 
about the distribution we would see by looking at just one of the subsystems.

The marginal represents the reduced state of the system.  It may be that
records intricate correlations on , even while the marginal       is uniform. 

If       is  a joint distribution on then the marginal on the first subsystem is   

The joint distribution on a composite systems is the tensor product of the 
marginals on the component subsystems iff they are statistically independent.



A closer look at probability theory

Along with the marginal distribution, another important notion for subsystems is 
the conditional distribution. If       is  a joint distribution on then 
conditional probability of given is

The expression in the denominator means that the distribution is “renormalized” 
to account for being held fixed. 

Bayes’ Theorem:



A closer look at probability theory

What are the observables associated with states described by probability vectors?

One could imagine observing a sequence of events drawn 
according to a fixed distribution      .   These are called samples from      . 

A single sample                tells us almost nothing about     .   Strictly speaking, it only 
tells us .   (In some contexts observing      makes us believe      is likely).    

To draw more meaningful conclusions, we need to combine many samples to see 
the average, or expected behavior of the system.  



A closer look at probability theory

The formula for expectation values already includes expectations of the marginals 
as a special case.  In the joint system , we might ask about 
the expected warmth-level of the clothes by defining , so that  

Samples from 
the joint 

distribution Expectations 
of the joint 

system

Samples from 
any marginal 
distribution Expectations 

on marginals / 
subsystems



A closer look at probability theory

What does it mean for probability distributions to be close?   One natural 
condition is to demand closeness of all expectations.  For this it is necessary and 
sufficient to be close in total variation distance:

(“close in the 1-norm”, “close in trace distance”,  “additive error”)  

Operational meaning is closeness of expectations:

Approximate sampling: sampling from a distribution that is close in TVD suffices 
for practical purposes, and can be much easier than exact sampling.  



A closer look at probability theory

Definition of TVD means that distributions can be close, even if the probability 
assigned to some events differs by a large factor.   Example:

The two distributions are exponentially close, even if there is one event (“00…0”) 
that is infinitely many times more likely to occur in        .    Example shows that 
measuring expectations in physics won’t let us see individual probabilities.

Stronger notion of closeness is a multiplicative bound on the probability of events:

(“multiplicative error”).   Exercise: relate multiplicative and additive error in terms 
of the size of the event space       (“a dimension factor”).



A closer look at probability theory

Suppose we flip 100 coins and get 55 heads, and 45 tails.  This has a finite 
probability to occur, if the coin is fair this probability is

We have already seen that verifying closeness of expectations does not verify 
individual probabilities of events.   But how can a finite set of samples ever be 
used to determine expectation values with high accuracy?   Don’t we need to flip 
a coin infinitely many times for it to truly be heads 50% of the time?

Hmm 5%, should we conclude from this experiment that the coin is fair?  

To form a more meaningful statement, lets assume and

say “based on my experiment, I am [some percentage]% confident that the bias     
on this coin is less than [some value]”



A closer look at probability theory

Let be independent samples from a distribution     , and let 
the observable f on      take values in [0,1].    Then the estimator defined by

Many questions of this nature can be answered by Hoeffding’s inequality.

satisfies for all .  

Monte Carlo: learn expectations from relatively few independent samples.  
Named after famous casino, and the idea that one can learn win rates from 
playing relatively few rounds of a game, instead of counting all possible events.



A closer look at probability theory
Let be independent samples from a distribution     , and let 
the observable f on      take values in [0,1].    Then the estimator defined by

satisfies for all .  

Analyze example of 55 heads, and 45 tails. ,  

Suppose we want 95% confidence, so we choose t to make the RHS less than 0.05,


