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Priors in Bayes rule

• Bayes rule:

𝑃 𝜃 𝑥 =
𝑃(𝑥|𝜃)𝑃 𝜃

𝑃(𝑥)
∝ 𝑃 𝑥 𝜃 𝑃 𝜃

• Independently discovered by  Bayes and Laplace in 18th century.

• Priors are part of our assumptions and can affect our conclusions directly or 

indirectly.

• So how do we choose the right priors? Which assumptions are justified to support 

our priors?

parameters observations
priors on 
parameters



Example: flipping a coin

• Task: determine the bias of a coin

• Experiment:

1. Flip the coin

2. Observe: 𝑥𝑖 =  {0,1}

3. Repeat 𝑛 times

• Observations: {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}

• Analysis: Use Bayes rule to estimate the bias. 



Example: flipping a coin

• What is a good prior in this experiment?

• No bias because classical mechanics is deterministic ?

• Suppose we can’t know all the information about the initial conditions, how does 

this lack of information justify a particular prior ? 

• Is uniform prior a good prior ? Uniform in which parameters ?

• What about a prior that has correlations ? Ex: More likely to get a ‘1’ after a ‘0’ 

(coin with a memory)

• When is a conditional IID prior a good prior ? When is it justified ?



Example: flipping a coin

• Starting from different priors can lead to different conclusions.

• Ex: Suppose that we get observations that look like following

01001000100010100010000100101 …. (No ‘11’s)

• Someone starting with a IID prior will converge to a different distribution compared 
to someone starting with a prior that allows for correlations.

• Allowing for a prior with all possible correlations is intractable.

• But what is the operational justification for an IID prior ?

• Operationally, what does it even mean to say that the coin has a bias?

• These are the questions that De Finetti’s theorem tries to answer!!!!



• All probabilities are subjective. Then what is an unknown probability in tomography 
or characterization protocols? Unknown to who?

• What does it mean to talk about expectation values with respect to an unknown 
probability?

• Introducing a third person only complicates the matter further.

• De Finetti’s theorem also helps address this question by giving an operational 
interpretation to the tomography (characterization) experiments.

Tomography with a Bayesian friend



Tomography with a Bayesian friend

• De Finetti’s theorem also justifies the use of parameters in tomography for 
Bayesians.

• Like that of bias for a coin, or a quantum state for a qubit.

• Broadly, De Finetti’s theorem gives an operational understanding of many 
assumptions that we make in probability theory.



Some notations

• In the following slides, we will talk about joint probability of N 
trials of discrete binary random variables each of which can 
assume 2 different values.

𝑝 𝑥1, 𝑥2, … , 𝑥𝑁 𝑥𝑖 ∈ 0,1 ∀ 𝑖 ∈ 1, … , 𝑁

• Permutation of indices (read as re-labelling the indices). As is the 
usual case, we denote permutation as a bijective function from a 
set to itself. 

𝜋 ∶ 1, … , 𝑁 → 1, … , 𝑁 𝜋 𝑖 ≠ 𝜋 𝑗 for 𝑖 ≠ 𝑗



Symmetric Probability Distributions (5 min)

• Symmetric Distributions: Invariant under permutations of variables

𝑝 𝑥1, … , 𝑥𝑁 = 𝑝 𝑥𝜋 1 , … , 𝑥𝜋 𝑁 ∀ permutations 𝜋 on {1, … , 𝑁}

• Operationally, order of outcomes/trials are irrelevant. Only Frequency matters 

• Consider a simple example: 2 trials of coin toss

Correlated distribution

0 1/2 1/2

Anticorrelated distribution

1/2 0 0

Gen i.i.d distribution

𝑝(1 − 𝑝) 𝑝2 (1 − 𝑝)2



Imposing more than SPD’s

• Suppose I have repeated the same coin toss 𝑁 times.  Is it enough 
if I choose a symmetric distribution of 𝑁 variables to ensure a 
conditional iid like distribution ?

• What if I had instead decided to do N+M coin toss?  
• To stay consistent, I would demand that if I had chosen to perform 𝑀 

additional tosses, the prior for 𝑁 tosses (current distribution) should just 
be the marginal distribution of the prior for 𝑁 +  𝑀 tosses (what if 
scenario). 

• I also want the prior for 𝑁 +  𝑀 tosses to be symmetric. 



Exchangeable Probability Distributions

• Exchangeable Distributions: Symmetric and…

𝑝 𝑥1, … , 𝑥𝑁 = 

𝑥𝑁+1,…,𝑥𝑀

𝑝 𝑥1, … , 𝑥𝑁 , 𝑥𝑁+1, … , 𝑥𝑀 ∀ 𝑀 > 0

• Operationally, an exchangeable distribution is one in which the 
order of random variables is irrelevant not only for the trials 
performed but also for any additional trials that might have been 
performed



Symmetric vs Exchangeable 

• By definition, all exchangeable distributions are symmetric. What 
about the reverse ?

• Consider the anticorrelated case plus one more toss.  Since we 
want marginal distribution to be anticorrelated, we only have four 
outcomes with nonzero probability. 

• Exchangeability should imply that the marginal over any two trials 
must be anti-correlated, which is clearly not the case.



De Finnetti's representation theorem for 
binary variables 

• Theorem: Suppose we have an exchangeable probability 
distribution over N random binary variables( 𝑥𝑖 ∈  {0,1}), there 
exists a unique probability distribution P(q) such that, 

𝑝 𝑥1, … , 𝑥𝑁 = න
0

1

𝑃 𝑞 𝑞𝑛 1 − 𝑞 𝑁 −𝑛 𝑑𝑞, න
0

1

𝑃 𝑞 𝑑𝑞 = 1

• Here,  𝑛 = σ𝑖 𝑥𝑖, number of times outcome is one, and 𝑞 can be 
interpreted as the probability of obtaining one.



Implications of De finnetti's theorem

• Provides an objective criterion (exchangeability) that must be 
satisfied under which the conditional i.i.d assumption is valid. 

• Any agent with an exchangeable prior, can now proceed as if  the 
exists of an unknown objective probability q, associated with the 
coin. The ignorance of q is captured by the probability on the 
simplex, P(q). 

• Applying Bayes rule on prior, based on outcomes, makes 𝑃(𝑞) 
sharply peaked at some value. This provides an operational 
description for tomography. 



Proof, step one
• First, since our prior is exchangeable, it is enough to keep count of 

the frequency of ones.
•  Let 𝑝 𝑛, 𝑁  denote probability of 𝑛 ones in 𝑁 trials. Order is 

immaterial, and thus, 
𝑝 𝑛, 𝑁 =

𝑁

𝑛
𝑝 𝑥1 =  1, … , 𝑥𝑛 =  1, 𝑥𝑛+1 =  0, … , 𝑥𝑁 =  0

• Using law of total probability, for any 𝑀 > 𝑁,
𝑝 𝑛, 𝑁 =

𝑁

𝑛


𝑚

𝑝 𝑥1 =  1, … , … , 𝑥𝑁 = 0 |𝑚, 𝑀  𝑝(𝑚, 𝑀) 



Proof, step two 
• Consider, 𝑝  1, … , 1,0, … , 0 |𝑚, 𝑀 . It is independent of ordering and 

only depends on the frequency of 1. 
 

  
• Taking 𝑀 → ∞, 

𝑝 1, … , 1,0 … , 0 |𝑚, 𝑀  ~
𝑚𝑛 𝑀 − 𝑚 𝑁 −𝑛

𝑀𝑁
= 𝑧𝑛 1 − 𝑧 𝑁 −𝑛 ;  𝑧 =

m

M

• Combining everything, 

𝑝 𝑛, 𝑁 =
𝑁

𝑛
න

0

1

𝑃 𝑧  𝑧𝑛 1 − 𝑧 𝑁 −𝑛 𝑑𝑧

 

𝑝 1, … , 1,0 … , 0 |𝑚, 𝑀  ≡ 

= 𝑚 + = 𝑀

n N-n



Di Finetti’s general representation theorem

• We can generalize the representation theorem beyond binary 
variables.

• Theorem: Suppose we have an exchangeable probability 
distribution over N random variables, there exists a unique 
probability distribution P(p) such that, 

• Here, 



Quantum Scenario ?

• Quantize the coin. Goal is to estimate the density matrix, instead 
of the bias. 

• The usual assumption in Quantum State Tomography is just like 
the i.i.d for probabilities. You have access to N copies of the same 
state

 𝜌 𝑁 =  𝜌 ⊗ 𝜌 ⊗ ⋯ ⊗ 𝜌

• When is this assumption really valid ? What is it’s operational 
meaning ?

•  Can we use the techniques that we have just seen ?



Learning from a Bayesian perspective

• Quantum Bayes rule

• Prior distribution over the space of density matrices. Update the 
prior to get the posterior using the bayes rule.

• Define the prior and posterior density matrices as 

𝜌prior = න 𝑑𝜌 𝑃prior 𝜌 𝜌 ; 𝜌posterior = න 𝑑𝜌 𝑃post 𝜌|𝑥 𝜌

𝑃post 𝜌|𝑥 =
𝑃(𝑥|𝜌)𝑃prior 𝜌

∫ 𝑃 𝑥 𝜌 𝑃prior 𝜌 𝑑𝜌
∝ 𝑃 𝑥 𝜌 𝑃prior 𝜌

Density Matrix Outcomes from 
measurements prior on space of 

density matrices

We update the probability distribution over the density matrices, 
not the density matrices themselves! 



Symmetric Quantum Priors 

• State must be invariant under any permutation of indices

• Consider any orthonormal basis  |i1 |i2⟩ … |in⟩}, we  can write

𝜌 𝑁 =  𝑅𝑖1…𝑖𝑛;𝑗1…𝑗𝑛
𝑖1 … 𝑖𝑛 ⟨𝑗1 … 𝑗𝑛|

• The basis dependent condition for symmetric density matrices

𝑅𝑖1…𝑖𝑛;𝑗1…𝑗𝑛
= 𝑅𝜋(𝑖1)…𝜋(𝑖𝑛);𝜋(𝑗1)…𝜋(𝑗𝑛)

𝜌 𝑁 = ො𝜋𝑁 𝜌 𝑁 ො𝜋𝑁
† ∀ 𝜋𝑁 permutations over N indeces



• State must be symmetric 𝜌 𝑁

• For any 𝑀 > 0, we should have a symmetric state 𝜌 𝑁+𝑀  such 
that 𝜌 𝑁  is the marginal, i.e, 

• You can give an equivalent basis dependent condition, which I am 
omitting for brevity.

𝜌 𝑁 = Tr𝑀 𝜌 𝑁+𝑀

Exchangeable  Quantum Priors 



Quantum De finnetti theorem

• Any exchangeable state of N systems can be uniquely written as

𝜌 𝑁 = න 𝑑𝜌 𝑃 𝜌 𝜌⊗𝑁 න 𝑑𝜌 𝑃 𝜌 = 1

• Objective criterion for assuming product state in QST. 
• Assuming exchangeability, priors are only reflected on 𝑃 𝜌 . 
• Learning is making 𝑃 𝜌  sharp.



Informationally complete POVMs

• Pick a POVM ℰ = 𝐸𝛼  𝐸𝛼 ≥ 0, σ𝛼 𝐸𝛼 = 1}, such that the effects 
𝐸𝛼  spans the space of operators. For any operator 𝐴, we can 
always find scalars 𝜆𝛼,  



𝛼

𝜆𝛼𝐸𝛼 = 1 

• Such a POVM is called informationally complete. If ℰ forms a 
basis, then scalars 𝜆𝛼  are unique for any operator 𝐴. Such a POVM 
is called minimal informationally complete. For any mic POVM, we 
have 1-1 correspondence between states and probability 
distribution 

𝜌 → Tr 𝜌 𝐸1 , Tr 𝜌 𝐸2 , … , Tr 𝜌 𝐸𝑛 ≡ (𝑝1, 𝑝2, … , 𝑝𝑛)



Proof procedure

• Choose a minimal informationally complete POVM and collapse 
the state to a probability distribution. 

• Apply the classical De finetti’s theorem. Using the 1-1 
correspondence, elevate the probability distribution to operators

𝜌 𝑁 =  න𝑃 𝒑 𝐴𝒑
⊗𝑁

• In general, 𝐴𝐩, need not be psd. They are Hermitian and trace one. 
Show that 𝑃 𝒑  corresponding to non psd 𝐴𝐩 should go to zero. 



Importance of Exchangeability

• Exchangeability is the key operational idea that justifies using conditional IID prior in 
Bayes rule.

• Priors which do not assume exchangeability can come to very different conclusions. 

• Fundamentally, it justifies the use of parameters in probability theory.

• In the example of flipping a coin, exchangeability is what is needed to assume that 
the property of bias for a coin.

• Same in the quantum case for assuming the property of an unknown ‘quantum 
state’

*Christopher A. Fuchs, Rüdiger Schack; Priors in Quantum Bayesian Inference. AIP Conf. Proc. 10 March 2009; 1101 (1): 255–259. https://doi.org/10.1063/1.3109948



Extensions to Finite Exchangeability

• What if we can don’t have time to repeat our experiment infinite number of times? 

• Finite Exchangeability:

{𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥𝑛+1, … , 𝑥𝑚}

• Implies that distribution is close to IID in variation distance*.

𝑃 𝑥1, 𝑥2, … , 𝑥𝑛 − ∫ 𝜇 𝑝  𝑝𝑘 1 − 𝑝 𝑛 −𝑘  d𝑝 ≤ 4𝑛/𝑚 

* Diaconis, Persi, and David Freedman. "Finite exchangeable sequences." The Annals of Probability (1980): 745-764.



Extensions to Finite Exchangeability

• Quantum version**:     𝜓 ∈ Symm ℂd ,     𝜉𝑛 ≔ trm−n 𝜓 ⟨𝜓|

𝜉𝑛 − ∫ 𝜇(𝜙) |𝜙⟩⟨𝜙|𝑛 𝑑𝜙 ≤ 2
𝑑𝑛

𝑚
 

• Quantum versions of finite exchangeable De Finetti’s theorems provide a natural 
way to quantify monogamy of entanglement in symmetric systems.

** Christandl, Matthias, et al. "One-and-a-half quantum de Finetti theorems." Communications in mathematical physics 273.2 
(2007): 473-498.
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