Lecture 1: Mathematical Preliminaries and Optimality Conditions for Unconstrained Optimization

Cunlu Zhou

Center for Quantum Information and Control University of New Mexico

> CQuIC Summer Course June 5, 2024

Mathematical Preliminaries

In this course, we will focus on the real *n*-dimensional vector space \mathbb{R}^n and the space of real valued $m \times n$ matrices $\mathbb{R}^{m \times n}$.

Important Subsets of \mathbb{R}^n

- → Nonnegative orthant: $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i \ge 0, i = 1, 2, ..., n\}.$
- \rightarrow Positive orthant: $\mathbb{R}^n_+ = \{x \in \mathbb{R}^n : x_i > 0, i = 1, 2, \dots, n\}.$
- \rightarrow The closed line segment between $x, y \in \mathbb{R}^n$:

$$[x, y] = \{x + \alpha(y - x) : \alpha \in [0, 1]\}.$$

 \rightarrow The open line segment between $x, y \in \mathbb{R}^n$:

$$[x,y] = \{x + \alpha(y-x) : \alpha \in (0,1)\}$$

for $x \neq y$ and $(x, x) = \emptyset$.

 \rightarrow Unit simplex: $\Delta_n = \{x \in \mathbb{R}^n : x \ge 0, e^T x = 1\}.$

Inner Products

An inner product on \mathbb{R}^n is a map $\langle \cdot, \cdot \rangle : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ with the following properties:

- 1. (symmetry) $\langle x, y \rangle = \langle y, x \rangle, \ \forall x, y \in \mathbb{R}^n$.
- 2. (additivity) $\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle, \ \forall x, y, z \in \mathbb{R}^n$.
- 3. (homogeneity) $\langle \lambda x, y \rangle = \lambda \langle x, y \rangle$, $\forall \lambda \in \mathbb{R}^n$ and $x, y \in \mathbb{R}^n$.
- 4. (positive definiteness) $\langle x, x \rangle \ge 0$, $\forall x \in \mathbb{R}^n$ and $\langle x, x \rangle = 0$ if and only if x = 0.

Example: the "dot product"

$$\langle x, y \rangle = x^T y = \sum_{i=1}^n x_i y_i, \ \forall x, y \in \mathbb{R}^n.$$

Vector Norms

A norm $\|\cdot\|$ on \mathbb{R}^n is a function $\|\cdot\|: \mathbb{R}^n \to \mathbb{R}_+$ satisfying:

- 1. (Nonnegativity) $||x|| \ge 0$, $\forall x \in \mathbb{R}^n$ and ||x|| = 0 if and only if x = 0.
- 2. (positive homogeneity) $\|\lambda x\| = |\lambda| \|x\|$, $\forall x \in \mathbb{R}^n$ and $\lambda \in \mathbb{R}$.
- 3. (triangle inequality) $||x + y|| \le ||x|| + ||y||, \forall x, y \in \mathbb{R}^n$.
- \rightarrow One natural way to generate a norm on \mathbb{R}^n is to take any inner product $\langle \cdot, \cdot \rangle$ defined on \mathbb{R}^n , and define the associated norm

$$|x|| = \sqrt{\langle x, x \rangle}, \ \forall x \in \mathbb{R}^n.$$

 \rightarrow For example, the Euclidean norm or l_2 -norm:

$$\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2} \,\forall x \in \mathbb{R}^n.$$

*l*_p-norms

→ The l_p -norm $(p \ge 1)$ is defined by $||x||_p \equiv \sqrt[p]{\sum_{i=1}^n |x_i|^p}$. → The l_∞ -norm is

$$\|x\|_{\infty} \equiv \max_{i=1,2,\dots,n} |x_i|.$$

 \rightarrow It can be shown that

$$\|x\|_{\infty} = \lim_{p \to \infty} \|x\|_p.$$

The Cauchy-Schwartz Inequality

For all $x, y \in \mathbb{R}^n$,

 $\left|x^{T}y\right| \leq \|x\| \cdot \|y\|.$

Definition. A norm $\|\cdot\|$ on $\mathbb{R}^{m \times n}$ is a function $\|\cdot\| : \mathbb{R}^{m \times n} \to \mathbb{R}_+$ satisfying

- 1. (nonnegativity) $||A|| \ge 0$ for any $A \in \mathbb{R}^{m \times n}$ and ||A|| = 0 if and only if A = 0.
- 2. (positive homogeneity) $\|\lambda A\| = |\lambda| \|A\|$ for any $A \in \mathbb{R}^{m \times n}$ and $\lambda \in \mathbb{R}$.
- 3. (triangle inequality) $||A + B|| \le ||A|| + ||B||$ for any $A, B \in \mathbb{R}^{m \times n}$.

Induced Norms

→ Given a matrix A ∈ R^{m×n} and two norms ||·||_a and ||·||_b on Rⁿ and R^m respectively, the induced matrix norm ||A||_{a,b} (called (a, b)-norm) is defined by

$$\|A\|_{a,b} = \max_{x} \{ \|Ax\|_{b} : \|x\|_{a} \le 1 \}.$$

 \rightarrow By definition, we have

$$||Ax||_b \le ||A||_{a,b} ||x||_a.$$

 \rightarrow An induced norm is a norm.

Matrix Norms Contd

→ spectral norm: If $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_2$, the induced (2, 2)-norm of a matrix $A \in \mathbb{R}^{m \times n}$ is the maximum singular value of A:

$$\|A\|_{2} = \|A\|_{2,2} = \sqrt{\lambda_{\max}(A^{T}A)} \equiv \sigma_{\max}(A).$$

→ 1-norm: when $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_1$, the induced (1, 1)-norm of a matrix $A \in \mathbb{R}^{m \times n}$ is given by (maximum absolute column sum)

$$\|A\|_{1} = \max_{j=1,2,...,n} \sum_{i=1}^{m} |A_{i,j}|.$$

→ ∞-norm: when $\|\cdot\|_a = \|\cdot\|_b = \|\cdot\|_\infty$, the induced (∞, ∞)-norm of a matrix $A \in \mathbb{R}^{m \times n}$ is given by (maximum absolute row sum)

$$||A||_{\infty} = \max_{i=1,2,...,n} \sum_{j=1}^{m} |A_{i,j}|.$$

The Frobenius Norm

$$\|\boldsymbol{A}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} A_{ij}^{2}}, \ \boldsymbol{A} \in \mathbb{R}^{m \times n},$$

which is not an induced norm (why?).

Basic Topological Concepts

 \rightarrow The open ball with center $c \in \mathbb{R}^n$ and radius *r*:

$$B(c,r) = \{x : ||x - c|| < r\}.$$

 \rightarrow The closed ball with center $c \in \mathbb{R}^n$ and radius *r*:

$$B[c,r] = \{x : ||x - c|| \le r\}.$$

Definition. Given a set $U \subseteq \mathbb{R}^n$, a point $c \in U$ is called an interior point of U if there exists r > 0 for which $B(c, r) \subseteq U$.

 \rightarrow The set of all interior points of a given set U is called the interior of the set and is denoted by int(U):

 $int(U) = \{x \in U : B(x, r) \subseteq U \text{ for some } r > 0\}.$

 \rightarrow Example: int(B[c, r]) = B(c, r)

Open and Closed Sets

- → An open set is a set that contains only interior points, meaning that U = int(U). For example, open balls and the positive orthant \mathbb{R}^{n}_{++} .
- \rightarrow A union of any number of open sets is an open set and the intersection of a finite number of open sets is open.
- → A set $U \subseteq \mathbb{R}^n$ is closed if it contains all the limits of convergent sequences of vectors in *U*, i.e., if $\{x_i\}_{i=1}^{\infty} \subseteq U$ satisfies $x_i \to x^*$ as $i \to \infty$, then $x^* \in U$.
- \rightarrow U is closed iff its complement U^c is open.
- → Examples of closed sets: the closed ball B[c, r], closed line segments, the nonnegative orthant \mathbb{R}^n_+ and the unit simplex $\Delta_n = \{x \in \mathbb{R}^n : x \ge 0, e^T x = 1\}.$

Boundary Points

Definition. Given a set $U \subseteq \mathbb{R}^n$, a boundary point of U is a vector $x \in \mathbb{R}^n$ satisfying the following: any neighborhood of x contains at least one point in U and at least one point in its complement U^c .

- \rightarrow The set of all boundary points of a set U is denoted by bd(U).
- \rightarrow Examples:

$$bd(B(c,r)) = bd(B[c,r]) = \{x \in \mathbb{R}^{n} : ||x - c|| = r\}$$

$$bd(\mathbb{R}^{n}_{++}) = bd(\mathbb{R}^{n}_{+}) = ?$$

$$bd(\mathbb{R}^{n}) = ?$$

$$bd(\Delta_{n}) = ?$$

→ The closure of a set $U \subseteq \mathbb{R}^n$ is denoted by cl(U) and is defined to be the smallest closed set containing *U*:

$$cl(U) = \bigcap \{T : U \subseteq T, T \text{ is closed}\}.$$

 \rightarrow Equivalently,

 $\mathsf{cl}(U) = U \cup \mathsf{bd}(U).$

Boundedness and Compactness

- → A set $U \subseteq \mathbb{R}^n$ is called bounded if there exists M > 0 such that $U \subseteq B(0, M)$.
- \rightarrow A set $U \subseteq \mathbb{R}^n$ is called compact if it is closed and bounded.
- → Examples of compact sets: closed balls, unit simplex, closed line segments.

Definition. Let *f* be a function defined on a set $S \subseteq \mathbb{R}^n$. Let $x \in int(S)$ and let $d \in \mathbb{R}^n$. If the limit

$$\lim_{t \to 0^+} \frac{f(x+td) - f(x)}{t}$$

exists, then it is called the directional derivative of f at x along the direction d and is denoted by f'(x; d).

Directional Derivatives and Gradients

 \rightarrow For any $i = 1, 2, \dots, n$, if the limit

$$\lim_{t\to 0^+} \frac{f(x+te_i)-f(x)}{t}$$

exists, then its value is called the *i*-th partial derivative and is denoted by $\frac{\partial f}{\partial x_i}(x)$.

→ If all the partial derivatives of a function *f* exist at a point $x \in \mathbb{R}^n$, then the gradient of *f* at *x* is

$$\nabla f(x) = \begin{pmatrix} \frac{\partial f}{\partial x_1}(x) \\ \frac{\partial f}{\partial x_2}(x) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x) \end{pmatrix}.$$

Continuous Differentiability

A function *f* defined on an open set $U \subseteq \mathbb{R}^n$ is called continuously differentiable over *U* if all the partial derivatives exist and are continuous on *U*. In that case,

$$f'(x; d) = \nabla f(x)^T d, \ \forall x \in U, \ d \in \mathbb{R}^n.$$

Proposition. Let $f : U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that *f* is continuously differentiable over *U*. Then

$$\lim_{d\to 0}\frac{f(x+d)-f(x)-\nabla f(x)^Td}{\|d\|}=0, \ \forall x\in U.$$

Equivalently, we can write the above result as follows:

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + o(||y - x||),$$

where $o(\cdot) : \mathbb{R}^n_+ \to \mathbb{R}$ is a 1-D function satisfying $\frac{o(t)}{t} \to 0$ as $t \to 0^+$.

Twice Differentiability

→ The partial derivatives $\frac{\partial f}{\partial x_i}$ are themselves real-valued functions that can be partially differentiated. The (i, j)-partial derivatives of *f* at $x \in U$ (if exists) is defined by

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial \left(\frac{\partial f}{\partial x_j}\right)}{\partial x_i}(x).$$

→ A function *f* defined on an open set $U \subseteq \mathbb{R}^n$ is called twice continuously differentiable over *U* if all the second-order partial derivatives exist and are continuous over *U*. In that case, for any $i \neq j$ and any $x \in U$:

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x) = \frac{\partial^2 f}{\partial x_j \partial x_i}(x).$$

The Hessian

The Hessian of *f* at a point $x \in U$ is the $n \times n$ matrix:

$$\nabla^2 f(x) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

For twice continuously differentiable functions, the Hessian is a symmetric matrix.

Theorem. Let $f : U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that *f* is twice continuously differentiable over *U*. Let $x \in U$ and r > 0 satisfy $B(x, r) \subseteq U$. Then $\forall y \in B(x, r)$ there exists $\xi \in [x, y]$ such that

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(\xi) (y - x).$$

Theorem. Let $f : U \to \mathbb{R}$ be defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that *f* is twice continuously differentiable over *U*. Let $x \in U$ and r > 0 satisfy $B(x, r) \subseteq U$. Then $\forall y \in B(x, r)$,

$$f(y) = f(x) + \nabla f(x)^{T} (y - x) + \frac{1}{2} (y - x)^{T} \nabla^{2} f(x) (y - x) + o(||y - x||^{2}).$$

Optimality Conditions for Unconstrained Optimization

Definition. Let $f : S \to \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^n$. Then

- 1. $x^* \in S$ is a global minimum point of f over S if $f(x^*) \leq f(x), \forall x \in S$.
- 2. $x^* \in S$ is a strict global minimum point of f over S if $f(x^*) < f(x), \forall x^* \neq x \in S$.

Definition. The minimum value of f over S is defined as

 $\inf\{f(x): x \in S\}.$

Definition. Let $f : S \to \mathbb{R}$ be defined on a set $S \subseteq \mathbb{R}^n$. Then

- 1. $x^* \in S$ is a local minimum of f over S if there exists r > 0 for which $f(x^*) \le f(x), \forall x \in S \cap B(x^*, r)$.
- 2. $x^* \in S$ is a strict local minimum of f over S if there exists r > 0 for which $f(x^*) < f(x), \forall x^* \neq x \in S \cap B(x^*, r)$.

Example: classify all the global and local optima

Theorem. Let $f : U \to \mathbb{R}$ be a function defined on a set $U \subset \mathbb{R}^n$. Suppose that $x^* \in int(U)$ is a local optimum point and that all the partial derivatives of f exist at x^* . Then $\nabla f(x^*) = 0$.

Proof. Consider the 1-D function $g(t) = f(x^* + te_i)$.

Definition. Let $f : U \to \mathbb{R}$ be a function defined on a set $U \subset \mathbb{R}^n$. Suppose that $x^* \in int(U)$ and that all the partial derivatives of f are defined at x^* . Then x^* is called a stationary point of f if $\nabla f(x^*) = 0$.

Classification of Matrices - Positive Definiteness

- → A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive semidefinite, denoted by $A \ge 0$, if $x^T A x \ge 0$, $\forall x \in \mathbb{R}^n$.
- → A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called positive definite, denoted by A > 0, if $x^T A x > 0$, $\forall 0 \neq x \in \mathbb{R}^n$.
- → A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is called indefinite, if there exists $x, y \in \mathbb{R}^n$ such that $x^T A x > 0$, $y^T A y < 0$.

The Principal Minors Criteria

Definition. Given an $n \times n$ matrix, the determinant of the upper left $k \times k$ submatrix is called the *k*-th principal minor and is denoted by $D_k(A)$. For example,

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

$$D_1(A) = a_{11}, \ D_2(A) = \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \ D_3(A) = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}.$$

Theorem (principal minors criteria). Let A be an $n \times n$ symmetric matrix. Then A is positive definite if and only if $D_1(A) > 0, D_2(A) > 0, \dots, D_n(A) > 0.$

Diagonal Dominance

Definition. Let A be a symmetric n × n matrix.(a). A is called diagonally dominant if

$$|A_{ii}| \geq \sum_{j \neq i} |A_{ij}|, \forall i = 1, 2, \dots, n$$

(b). A is called strictly diagonally dominant if

$$|A_{ii}| > \sum_{j \neq i} |A_{ij}|, \forall i = 1, 2, \dots, n$$

Theorem (positive (semi)definiteness of diagonally dominant matrices).

- (a). If *A* is symmetric, diagonally dominant with nonnegative diagonal elements, then *A* is positive semidefinite.
- (b). If *A* is symmetric, **strictly** diagonally dominant with **positive** diagonal elements, then *A* is positive definite.

Theorem. Let $f : U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that f is twice continuously differentiable over U and that x^* is a stationary point. Then if x^* is a local minimum point, then $\nabla^2 f(x^*) \ge 0$.

Proof. Use the Quadratic Approximation Theorem.

Sufficient Second-Order Optimality Conditions

Theorem. Let $f : U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that *f* is twice continuously differentiable over *U* and that x^* is a stationary point. Then if $\nabla^2 f(x^*) > 0$, x^* is a strict local minimum point of *f* over *U*.

Proof. Since Hessian is continuous, there exists a ball $B(x^*, r) \subseteq U$ for which $\nabla^2 f(x) > 0$, $\forall x \in B(x^*, r)$. By the Linear Approximation Theorem, there exists a vector $z_x \in [x^*, x]$ (and hence $z_x \in B(x^*, r)$) for which

$$f(x) - f(x^*) = \frac{1}{2}(x - x^*)^T \nabla^2 f(z_x)(x - x^*).$$

 $\nabla^2 f(z_x) > 0 \Rightarrow$ for any $x \in B(x^*, r)$ such that $x \neq x^*$, the inequality $f(x) > f(x^*)$ holds, implying that x^* is a strict local minimum point of f over U.

Definition. Let $f : U \to \mathbb{R}$ be a continuously differentiable function defined on an open set $U \subseteq \mathbb{R}^n$. A stationary point $x^* \in U$ is called a saddle point of f over U if it is neither a local minimum point nor a local maximum point of f over U.

Theorem (sufficient condition for saddle points). Let $f : U \to \mathbb{R}$ be a function defined on an open set $U \subseteq \mathbb{R}^n$. Suppose that *f* is twice continuously differentiable over *U* and that x^* is a stationary point. if $\nabla^2 f(x^*)$ is an indefinite matrix, then x^* is a saddle point of *f* over *U*.

Theorem (Weierstrass). Let f be a continuous function defined over a nonempty compact set $C \subseteq \mathbb{R}^n$. Then there exists a global minimum point of f over C and a global maximum point of f over C.

Definition. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a continuous function over \mathbb{R}^n . *f* is called coercive if

$$\lim_{\|x\|\to\infty}f(x)=\infty.$$

Theorem. Let Let $f : \mathbb{R}^n \to \mathbb{R}$ be a coercive and continuous function and let $S \subseteq \mathbb{R}^n$ be a nonempty closed set. Then *f* attains a global minimum point on *S*.

Proof. \rightarrow Pick any $x_0 \in S$. *f* being coercive $\Rightarrow \exists M > 0$ such that

 $f(x) > f(x_0)$ for any x such that ||x|| > M.

- → Since any global minimizer x^* of f over S satisfies $f(x^*) \le f(x_0)$, it follows that the set of global minimizer of f over S is the same as the set of global minimizers of f over $S \cap B[0, M]$.
- → The set $S \cap B[0, M]$ is compact and nonempty \Rightarrow (by the Weierstrass theorem) \exists a global minimizer of *f* over $S \cap B[0, M]$ and hence also over *S*.

Example

Classify the stationary points of the function $f(x_1, x_2) = -2x_1^2 + x_1x_2^2 + 4x_1^4$.

$$\nabla f(x) = \begin{pmatrix} -4x_1 + x_2^2 + 16x_1^3 \\ 2x_1x_2 \end{pmatrix}, \ \nabla^2 f(x_1, x_2) = \begin{pmatrix} -4 + 48x_1^2 & 2x_2 \\ 2x_2 & 2x_1 \end{pmatrix}.$$

 \Rightarrow stationary points are solutions to

$$-4x_1 + x_2^2 + 16x_1^3 = 0,$$

$$2x_1x_2 = 0.$$

 \Rightarrow stationary points are (0, 0), (0.5, 0), (-0.5, 0).

$$\nabla^2 f(0.5,0) = \begin{pmatrix} 8 & 0 \\ 0 & 1 \end{pmatrix}, \ \nabla^2 f(-0.5,0) = \begin{pmatrix} 8 & 0 \\ 0 & -1 \end{pmatrix}, \ \nabla^2 f(0,0) = \begin{pmatrix} -4 & 0 \\ 0 & 0 \end{pmatrix}$$

strict local minimum sadd

saddle point

saddle point (why?)

Theorem. Let *f* be a twice continuously defined over \mathbb{R}^n . Suppose that $\nabla^2 f(x) \ge 0$, $\forall x \in \mathbb{R}^n$. Let $x^* \in \mathbb{R}^n$ be a stationary point of *f*. Then x^* is a global minimum point of *f*.

Proof. By the Linear Approximation Theorem, it follows that for any $x \in \mathbb{R}^n$, there exists a vector $z_x \in [x^*, x]$ for which

$$f(x) - f(x^*) = \frac{1}{2}(x - x^*)^T \nabla^2 f(z_x)(x - x^*).$$

Since $\nabla^2 f(z_x) \ge 0$, we have that $f(x) \ge f(x^*)$, which implies that x^* is a global minimum point of f.

Quadratic Functions

A quadratic function over \mathbb{R}^n is a function of the form

$$f(x) = x^T A x + 2b^T x + c,$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. Its gradient and Hessian can be easily obtained (exercise):

$$\nabla f(x) = 2Ax + 2b,$$
$$\nabla^2 f(x) = 2A.$$

Lemma. Let f(x) be a quadratic function. Then

- 1. *x* is a stationary point of *f* iff Ax = -b.
- 2. If $A \ge 0$, then x is a global minimum point of f iff Ax = -b.
- 3. If A > 0, then $x = -A^{-1}b$ is a strict global minimum point of f.

Lemma. Let $f(x) = x^T A x + 2b^T x + c$, where $A \in \mathbb{R}^{n \times n}$ is symmetric, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then *f* is coercive if and only if A > 0.

Characterization of the Nonnegativity of Quadratic Functions

Theorem. Let $f(x) = x^T A x + 2b^T x + c$, where $A \in \mathbb{R}^{n \times n}$ is symmetric, $b \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then the following two claims are equivalent: (a). $f(x) \ge 0$ for all $x \in \mathbb{R}^n$. (b). $\begin{pmatrix} A & b \\ b^T & c \end{pmatrix} \ge 0$.

Beck: 1.2, 1.14, 2.1, 2.2, 2.9, 2.14, 2.17.v