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Mathematical Preliminaries



In this course, we will focus on the real n-dimensional vector space R”
and the space of real valued m x n matrices R™*",



Important Subsets of R"”

— Nonnegative orthant: R] = {x e R" : x; >0, i=1,2,...,n}.
— Positive orthant: R} = {x e R" : x; >0, i=1,2,...,n}.

— The closed line segment between x, y € R":

X, yl={x+aly —x) : a €[0,1]}.
— The open line segment between x, y € R”":

[x.yl ={x+a(y —x) : @ €(0,1)}

for x # y and (x,x) = @.
— Unit simplex: A, = {x €R" : x > 0,e'x =1}.



Inner Products

An inner product on R” is a map (-, ) : R” X R” — R” with the
following properties:

1. (symmetry) {x,y) ={y,x), ¥x,y € R".

2. (additivity) (x,y +z) = (x,y) +{x,2), Vx,y,z € R".

3. (homogeneity) (Ax,y) = A{x,y), YA e R"and x,y € R".

4. (positive definiteness) (x,x) > 0, Vx € R" and (x, x) = 0 if and

only if x = 0.

Example: the “dot product”

n
.y =xTy =) xiyi, Vx.y € R,

i=1



Vector Norms

A norm ||-]| on R" is a function ||-|| : R” — R, satisfying:

1. (Nonnegativity) ||x|| = 0, Vx € R” and ||x|| = 0 if and only if
x =0.

2. (positive homogeneity) ||Ax|| = |1]||x]|, ¥x € R" and A € R.
3. (triangle inequality) ||x +y|| < |Ix]| +[ly|l, ¥x,y € R".

— One natural way to generate a norm on R” is to take any inner
product (-, -) defined on R”, and define the associated norm

x|l = V{x,x), ¥x € R".

— For example, the Euclidean norm or /o-norm:

n
X2 = 4 Zx,? Vx € R".
i=1



lp-norms

— The Jp-norm (p > 1) is defined by ||x||, = /XL, Ix;[P.

— The IOO-IIOI'III is
X = maXx |Xj|.
|| ”oo i=1.2 nl I|

,,,,,,

— It can be shown that

Ixlleo = Tim [|x]l,.
p—)OO



The Cauchy-Schwartz Inequality

For all x,y € R”,
Xy < lIxIl - Hlyl.



Matrix Norms

Definition. A norm ||-|| on R™" is a function ||-|| : R™" — R,
satisfying
1. (nonnegativity) ||A|| > 0 for any A € R and ||A|| = 0 if and
only if A =0.
2. (positive homogeneity) ||AA|| = ||||A]| for any A € R™*" and
A€eR.

3. (triangle inequality) ||A + B|| < ||A]| + ||B|| for any A, B € R™*".



Induced Norms

— Given a matrix A € R™ and two norms ||-||, and ||-||, on R" and
R™ respectively, the induced matrix norm ||Al|, , (called
(a, b)-norm) is defined by

Al = max{llAx]lp : [Ixla < 1}.
— By definition, we have
IAXlp < llAllapllXIla-

— An induced norm is a norm.
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Matrix Norms Contd

— spectral norm: If |||l ; = ||-llp = ||*|l2, the induced (2, 2)-norm of
a matrix A € R™" is the maximum singular value of A:

[Allz = [|Allz,2 = \[Amax(ATA) = oimax(A).

— 1-norm: when |[|-||; = |||l = [|-||1, the induced (1, 1)-norm of a
matrix A € R™" is given by (maximum absolute column sum)

m
1Al = max > |A|
= n
,,,,,, =
— oo-norm: when ||-||; = [|[lp = |||/, the induced (0, 00)-norm of

a matrix A € R™" is given by (maximum absolute row sum)

i=1,2

.....

Alle = _max > [l
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The Frobenius Norm

m n
Z ZA,.?, A e R™N

i=1 j=1

Al =

which is not an induced norm (why?).
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Basic Topological Concepts

— The open ball with center ¢ € R” and radius r:
B(c,r)={x:|lx—c|| <r}.

— The closed ball with center ¢ € R” and radius r:
Ble,rl={x:|lx—c| <r}.

Definition. Given a set U C R", a point ¢ € U is called an interior
point of U if there exists r > 0 for which B(c,r) C U.

— The set of all interior points of a given set U is called the interior
of the set and is denoted by int(U):

int(U) = {x € U : B(x,r) C U for some r > 0}.
— Example: int(B[c,r]) = B(c,r)
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Open and Closed Sets

1

1

An open set is a set that contains only interior points, meaning
that U = int(U). For example, open balls and the positive orthant
RY,.

A union of any number of open sets is an open set and the
intersection of a finite number of open sets is open.

A set U € R" is closed if it contains all the limits of convergent
sequences of vectors in U, i.e., if {X,-}If’i1 C U satisfies x; — x* as
i — oo, then x* € U.

U is closed iff its complement U° is open.

Examples of closed sets: the closed ball B¢, r], closed line

segments, the nonnegative orthant R and the unit simplex
An={xeR":x>0,e'x=1}.
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Boundary Points

Definition. Given a set U C R", a boundary point of U is a vector
x € R satisfying the following: any neighborhood of x contains at
least one point in U and at least one point in its complement U°.

— The set of all boundary points of a set U is denoted by bd(U).

— Examples:
bd(B(c,r)) =bd(B[c,r]) = {x € R" : ||x —c|| =r}
bd(RY,) = bd(R]) =?
bd(R™) =7
bd(A,) =7
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Closure

— The closure of a set U C R" is denoted by cl(U) and is defined to
be the smallest closed set containing U:

c(U) = ﬂ{T U CT, Tisclosed}.

— Equivalently,
cl(U) =U ubd(U).
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Boundedness and Compactness

— A set U C R" is called bounded if there exists M > 0 such that
U cB(O,M).

— A set U C R is called compact if it is closed and bounded.

— Examples of compact sets: closed balls, unit simplex, closed line
segments.
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Directional Derivatives and Gradients

Definition. Let f be a function defined on a set S C R”. Let
x € int(S) and let d € R". If the limit

. f(x+td)—f(x)
m —=
t—0* t

exists, then it is called the directional derivative of f at x along the
direction d and is denoted by f'(x; d).
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Directional Derivatives and Gradients

— Foranyi=1,2,...,n,if the limit

. f(x+te) —f(x)
im ——=
t—0* t

exists, then its value is called the i-th partial derivative and is
denoted by 8f (x).

— If all the partial derivatives of a function f exist at a point x € R”,
then the gradient of f at x is

A/‘\
\_/v

Vi(x) = ‘9*2

f
aa—xn(X)
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Continuous Differentiability

A function f defined on an open set U C R" is called continuously
differentiable over U if all the partial derivatives exist and are
continuous on U. In that case,

f'(x;d) =Vf(x)'d, ¥x e U, d € R".

Proposition. Let f : U — R be defined on an open set U C R".
Suppose that f is continuously differentiable over U. Then

. f(x+d) —f(x) - Vf(x)"d
lim
d—0 [|d]|

=0, Vx e U.

Equivalently, we can write the above result as follows:

F(y) = () + VE)T (v = x) +o(lly = x1),

where o(-) : R — R is a 1-D function satisfying ﬁtt) — 0ast — 0*.
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Twice Differentiability

— The partial derivatives gf are themselves real-valued functions

that can be partially differentiated. The (i, j)-partial derivatives
of f at x € U (if exists) is defined by

of
Pt - 2 ()
8X,'8Xj a 6X,'

(x).

— A function f defined on an open set U C R” is called twice
continuously differentiable over U if all the second-order partial
derivatives exist and are continuous over U. In that case, for any
i #jandany x € U:

Pl Ot

0x;0x; 0x;0x;

(x).
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The Hessian

The Hessian of f at a point x € U is the n X n matrix:

A .
ox2 9x10x2 OX10Xn
&t P P
OX20X 2 OX20X
V2 f ( X) — 20X1 ox. > 20Xn
o o .. O
OXnOX4 OXnOXo 6)(,2,

For twice continuously differentiable functions, the Hessian is a

symmetric matrix.
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Linear Approximation Theorem

Theorem. Let f : U — R be defined on an open set U C R". Suppose
that f is twice continuously differentiable over U. Let x € U and r > 0
satisfy B(x,r) € U. Then Vy € B(x,r) there exists £ € [x, y] such that

fy) =100 + VF) T (y = x) + %(y =) TVEH(E(y = X).

23



Quadratic Approximation Theorem

Theorem. Let f : U — R be defined on an open set U C R". Suppose
that f is twice continuously differentiable over U. Let x € U and r > 0
satisfy B(x,r) € U. Then Vy € B(x,r),

1) = 100+ 91007 (y =30+ 5y =0 TPF )y =) +ollly = xIP).
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Optimality Conditions for Unconstrained
Optimization
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Global Minima

Definition. Letf : S — R be defined on a set S C R”. Then

1. x* € Sis a global minimum point of f over S if
f(x*) <f(x), ¥x € S.

2. x* € Sis a strict global minimum point of f over S if
f(x*) <f(x), Vx* #x € S.

Definition. The minimum value of f over S is defined as

inf{f(x) : x € S}.
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Local Minima

Definition. Let f : S — R be defined on a set S C R”. Then
1. x* € Sis a local minimum of f over S if there exists r > 0 for
which f(x*) < f(x), Yx € SN B(x*,r).
2. x* € Sis a strict local minimum of f over S if there exists r > 0
for which f(x*) < f(x), Vx* #x € S\ B(x",r).
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Example: classify all the global and local optima
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Fermat’s Theorem - First-Order Optimality Condition

Theorem. Let f : U — R be a function defined on a set U c R".
Suppose that x* € int(U) is a local optimum point and that all the
partial derivatives of f exist at x*. Then Vf(x*) = 0.

Proof. Consider the 1-D function g(t) = f(x* + te;).
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Stationary Points

Definition. Let f : U — R be a function defined on a set U c R".
Suppose that x* € int(U) and that all the partial derivatives of f are
defined at x*. Then x* is called a stationary point of f if Vf(x*) = 0.

30



Classification of Matrices - Positive Definiteness

— A symmetric matrix A € R™" is called positive semidefinite,
denoted by A > 0, if x”Ax > 0, Vx € R".

— A symmetric matrix A € R™" is called positive definite, denoted
by A > 0,if x"Ax > 0, VO £ x € R".

— A symmetric matrix A € R"™" is called indefinite, if there exists
X,y € R" such that x"Ax > 0, yTAy < 0.
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The Principal Minors Criteria

Definition. Given an n X n matrix, the determinant of the upper left
k X k submatrix is called the k-th principal minor and is denoted by
Dy (A). For example,

dyy a2 ag
A=lax azx as|,
azy ds2 dass

asr  ar

ap1  apge

air a2 ais
D1(A) = ay1, D2(A) = det(

),D3(A)=det(a21 axp as|.
d31 ds32 ass

Theorem (principal minors criteria). Let A be an n X n symmetric
matrix. Then A is positive definite if and only if
D{(A) > 0,D2(A) >0,...,D,(A) > 0.
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Diagonal Dominance

Definition. Let A be a symmetric n X n matrix.

(a). Ais called diagonally dominant if

|Ai| > Z |A;

J#

,Vi=1,2,...,n

(b). Ais called strictly diagonally dominant if
|Ai| > Z|A,-,-|, Vi=1,2,...,n
J#i
Theorem (positive (semi)definiteness of diagonally dominant matrices).

(a). If A is symmetric, diagonally dominant with nonnegative diagonal
elements, then A is positive semidefinite.

(b). If A is symmetric, strictly diagonally dominant with positive diagonal
elements, then A is positive definite.
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Necessary Second-Order Optimality Conditions

Theorem. Letf : U — R be a function defined on an open set

U C R". Suppose that f is twice continuously differentiable over U
and that x* is a stationary point. Then if x* is a local minimum point,
then V2f(x*) > 0.

Proof. Use the Quadratic Approximation Theorem. O
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Sufficient Second-Order Optimality Conditions

Theorem. Let f : U — R be a function defined on an open set

U C R". Suppose that f is twice continuously differentiable over U
and that x* is a stationary point. Then if V2f(x*) > 0, x* is a strict
local minimum point of f over U.

Proof. Since Hessian is continuous, there exists a ball B(x*,r) C U
for which V2f(x) > 0, Vx € B(x*,r). By the Linear Approximation
Theorem, there exists a vector zy € [x*, x] (and hence z, € B(x*,r))
for which

’
f(x) —f(x*) = E(x —x)TV2f(z) (x = x¥).
V2f(zy) > 0 = for any x € B(x*, r) such that x # x*, the inequality

f(x) > f(x*) holds, implying that x* is a strict local minimum point of
f over U. O
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Saddle Points

Definition. Let f : U — R be a continuously differentiable function
defined on an open set U C R". A stationary point x* € U is called a
saddle point of f over U if it is neither a local mimimum point nor a
local maximum point of f over U.

Theorem (sufficient condition for saddle points). Letf : U — Rbe a
function defined on an open set U € R". Suppose that f is twice
continuously differentiable over U and that x* is a stationary point. if
V2f(x*) is an indefinite matrix, then x* is a saddle point of f over U.
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Attainment of Minimal / Maximal Points

Theorem (Weierstrass). Let f be a continuous function defined over a
nonempty compact set C C R". Then there exists a global minimum
point of f over C and a global maximum point of f over C.

Definition. Let f : R” — R be a continuous function over R". f is
called coercive if
lim f(x) = co.

lIx[|—e0

Theorem. Let Let f : R™ — R be a coercive and continuous function
and let S C R" be a nonempty closed set. Then f attains a global
minimum point on S.
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Proof. — Pick any xg € S. f being coercive = 3IM > 0 such that
f(x) > f(xg) for any x such that ||x|| > M.

— Since any global minimizer x* of f over S satisfies f(x*) < f(xo),
it follows that the set of global minimizer of f over S is the same
as the set of global minimizers of f over S N B[0, M].

— The set S N B[0, M] is compact and nonempty = (by the
Weierstrass theorem) 3 a global minimizer of f over S N B[0, M]

and hence also over S.
O
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Example

Classify the stationary points of the function f(x1,X2) = —2x2 + x1x5 + 4x7.

—4x1 + X5 +16x]

2X1X2 2x2 2x4

Vi(x) = (

2
)’ sz(X1,X2) — (_4 + 48X1 2X2) )

= stationary points are solutions to

—dxy + x5 +16x3 = 0,

2X1X2 =0.
= stationary points are (0, 0), (0.5, 0), (-0.5,0).

8 0 8 0 -4 0
v2f(o.5,0):(0 1),V2f(—0.5,0)=(0 _1),V2f(0,0)=(0 0)

strict local minimum saddle point saddle point (why?)
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Global Optimality Conditions

Theorem. Let f be a twice continuously defined over R”. Suppose that
V2f(x) = 0, Vx € R". Let x* € R” be a stationary point of f. Then x*
is a global minimum point of f.

Proof. By the Linear Approximation Theorem, it follows that for any
x € R, there exists a vector z, € [x*, x] for which

f(x) - f(x*) = %(x - x))TV2f(z) (x — x¥).

Since V?f(z,) > 0, we have that f(x) > f(x*), which implies that x* is
a global minimum point of f. O
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Quadratic Functions

A quadratic function over R” is a function of the form
fx)=x"Ax+2b"x +c,

where A € R™ is symmetric, b € R”, and ¢ € R. Its gradient and
Hessian can be easily obtained (exercise):

Vf(x) = 2Ax + 2b,
V2f(x) = 2A.

Lemma. Let f(x) be a quadratic function. Then
1. x is a stationary point of f iff Ax = —b.
2. If A > 0, then x is a global minimum point of f iff Ax = —b.

3. If A > 0, then x = —A~'b is a strict global minimum point of f.
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Coerciveness of Quadratic Functions

Lemma. Let f(x) = xT Ax + 2b7x + ¢, where A € R™" is symmetric,
b € R"and ¢ € R. Then f is coercive if and only if A > 0.
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Characterization of the Nonnegativity of Quadratic
Functions

Theorem. Let f(x) = xT Ax +2b" x + ¢, where A € R™" is symmetric,
b € R" and ¢ € R. Then the following two claims are equivalent:

(a). f(x) > 0forall x € R".

(b). (bAT S) > 0.

43



Exercises

Beck: 1.2,1.14,2.1,2.2,2.9,2.14,2.17.v
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