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Mathematical Preliminaries
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In this course, we will focus on the real n-dimensional vector space Rn

and the space of real valued m × n matrices Rm×n.
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Important Subsets of Rn

→ Nonnegative orthant: Rn
+ = {x ∈ Rn : xi ≥ 0, i = 1, 2, . . . , n}.

→ Positive orthant: Rn
+ = {x ∈ Rn : xi > 0, i = 1, 2, . . . , n}.

→ The closed line segment between x, y ∈ Rn:

[x, y] = {x + 𝛼(y − x) : 𝛼 ∈ [0, 1]}.

→ The open line segment between x, y ∈ Rn:

[x, y] = {x + 𝛼(y − x) : 𝛼 ∈ (0, 1)}

for x ≠ y and (x, x) = ∅.
→ Unit simplex: Δn = {x ∈ Rn : x ≥ 0, eT x = 1}.
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Inner Products

An inner product on Rn is a map ⟨· , ·⟩ : Rn × Rn → Rn with the
following properties:

1. (symmetry) ⟨x , y⟩ = ⟨y , x⟩, ∀x, y ∈ Rn.
2. (additivity) ⟨x , y + z⟩ = ⟨x , y⟩ + ⟨x , z⟩, ∀x, y, z ∈ Rn.
3. (homogeneity) ⟨𝜆x , y⟩ = 𝜆⟨x , y⟩, ∀𝜆 ∈ Rn and x, y ∈ Rn.
4. (positive definiteness) ⟨x , x⟩ ≥ 0, ∀x ∈ Rn and ⟨x , x⟩ = 0 if and

only if x = 0.
Example: the “dot product”

⟨x , y⟩ = xT y =

n∑︁
i=1

xiyi , ∀x, y ∈ Rn.
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Vector Norms

A norm ∥·∥ on Rn is a function ∥·∥ : Rn → R+ satisfying:
1. (Nonnegativity) ∥x∥ ≥ 0, ∀x ∈ Rn and ∥x∥ = 0 if and only if

x = 0.
2. (positive homogeneity) ∥𝜆x∥ = |𝜆 |∥x∥, ∀x ∈ Rn and 𝜆 ∈ R.
3. (triangle inequality) ∥x + y∥ ≤ ∥x∥ + ∥y∥, ∀x, y ∈ Rn.

→ One natural way to generate a norm on Rn is to take any inner
product ⟨· , ·⟩ defined on Rn, and define the associated norm

∥x∥ =
√︁
⟨x , x⟩, ∀x ∈ Rn.

→ For example, the Euclidean norm or l2-norm:

∥x∥2 =

√√ n∑︁
i=1

x2
i ∀x ∈ Rn.
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lp-norms

→ The lp-norm (p ≥ 1) is defined by ∥x∥p ≡ p
√︃∑n

i=1 |xi |p.
→ The l∞-norm is

∥x∥∞ ≡ max
i=1,2,...,n

|xi |.

→ It can be shown that

∥x∥∞ = lim
p→∞

∥x∥p.
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The Cauchy-Schwartz Inequality

For all x, y ∈ Rn, ��xT y
�� ≤ ∥x∥ · ∥y∥.
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Matrix Norms

Definition. A norm ∥·∥ on Rm×n is a function ∥·∥ : Rm×n → R+
satisfying

1. (nonnegativity) ∥A∥ ≥ 0 for any A ∈ Rm×n and ∥A∥ = 0 if and
only if A = 0.

2. (positive homogeneity) ∥𝜆A∥ = |𝜆 |∥A∥ for any A ∈ Rm×n and
𝜆 ∈ R.

3. (triangle inequality) ∥A + B∥ ≤ ∥A∥ + ∥B∥ for any A,B ∈ Rm×n.
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Induced Norms

→ Given a matrix A ∈ Rm×n and two norms ∥·∥a and ∥·∥b on Rn and
Rm respectively, the induced matrix norm ∥A∥a,b (called
(a, b)-norm) is defined by

∥A∥a,b = max
x

{∥Ax∥b : ∥x∥a ≤ 1}.

→ By definition, we have

∥Ax∥b ≤ ∥A∥a,b∥x∥a.

→ An induced norm is a norm.
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Matrix Norms Contd

→ spectral norm: If ∥·∥a = ∥·∥b = ∥·∥2, the induced (2, 2)-norm of
a matrix A ∈ Rm×n is the maximum singular value of A:

∥A∥2 = ∥A∥2,2 =

√︃
𝜆max(AT A) ≡ 𝜎max(A).

→ 1-norm: when ∥·∥a = ∥·∥b = ∥·∥1, the induced (1, 1)-norm of a
matrix A ∈ Rm×n is given by (maximum absolute column sum)

∥A∥1 = max
j=1,2,...,n

m∑︁
i=1

��Ai ,j
��.

→ ∞-norm: when ∥·∥a = ∥·∥b = ∥·∥∞, the induced (∞,∞)-norm of
a matrix A ∈ Rm×n is given by (maximum absolute row sum)

∥A∥∞ = max
i=1,2,...,n

m∑︁
j=1

��Ai ,j
��.
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The Frobenius Norm

∥A∥F =

√√√ m∑︁
i=1

n∑︁
j=1

A2
ij , A ∈ Rm×n,

which is not an induced norm (why?).
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Basic Topological Concepts

→ The open ball with center c ∈ Rn and radius r:

B(c, r) = {x : ∥x − c∥ < r}.

→ The closed ball with center c ∈ Rn and radius r:

B[c, r] = {x : ∥x − c∥ ≤ r}.

Definition. Given a set U ⊆ Rn, a point c ∈ U is called an interior
point of U if there exists r > 0 for which B(c, r) ⊆ U.
→ The set of all interior points of a given set U is called the interior

of the set and is denoted by int(U):

int(U) = {x ∈ U : B(x, r) ⊆ U for some r > 0}.

→ Example: int(B[c, r]) = B(c, r)
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Open and Closed Sets

→ An open set is a set that contains only interior points, meaning
that U = int(U). For example, open balls and the positive orthant
Rn
++.

→ A union of any number of open sets is an open set and the
intersection of a finite number of open sets is open.

→ A set U ⊆ Rn is closed if it contains all the limits of convergent
sequences of vectors in U, i.e., if {xi}∞i=1 ⊆ U satisfies xi → x∗ as
i → ∞, then x∗ ∈ U.

→ U is closed iff its complement Uc is open.
→ Examples of closed sets: the closed ball B[c, r], closed line

segments, the nonnegative orthant Rn
+ and the unit simplex

Δn = {x ∈ Rn : x ≥ 0, eT x = 1}.
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Boundary Points

Definition. Given a set U ⊆ Rn, a boundary point of U is a vector
x ∈ Rn satisfying the following: any neighborhood of x contains at
least one point in U and at least one point in its complement Uc.
→ The set of all boundary points of a set U is denoted by bd(U).
→ Examples:

bd(B(c, r)) = bd(B[c, r]) = {x ∈ Rn : ∥x − c∥ = r}
bd(Rn

++) = bd(Rn
+) =?

bd(Rn) =?
bd(Δn) =?

15



Closure

→ The closure of a set U ⊆ Rn is denoted by cl(U) and is defined to
be the smallest closed set containing U:

cl(U) =
⋂

{T : U ⊆ T , T is closed}.

→ Equivalently,
cl(U) = U ∪ bd(U).
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Boundedness and Compactness

→ A set U ⊆ Rn is called bounded if there exists M > 0 such that
U ⊆ B(0,M).

→ A set U ⊆ Rn is called compact if it is closed and bounded.
→ Examples of compact sets: closed balls, unit simplex, closed line

segments.
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Directional Derivatives and Gradients

Definition. Let f be a function defined on a set S ⊆ Rn. Let
x ∈ int(S) and let d ∈ Rn. If the limit

lim
t→0+

f (x + td) − f (x)
t

exists, then it is called the directional derivative of f at x along the
direction d and is denoted by f ′(x; d).
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Directional Derivatives and Gradients

→ For any i = 1, 2, . . . , n, if the limit

lim
t→0+

f (x + tei) − f (x)
t

exists, then its value is called the i-th partial derivative and is
denoted by 𝜕f

𝜕xi
(x).

→ If all the partial derivatives of a function f exist at a point x ∈ Rn,
then the gradient of f at x is

∇f (x) =
©­­­­­«

𝜕f
𝜕x1

(x)
𝜕f
𝜕x2

(x)
...

𝜕f
𝜕xn

(x)

ª®®®®®¬
.
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Continuous Differentiability

A function f defined on an open set U ⊆ Rn is called continuously
differentiable over U if all the partial derivatives exist and are
continuous on U. In that case,

f ′(x; d) = ∇f (x)T d, ∀x ∈ U, d ∈ Rn.

Proposition. Let f : U → R be defined on an open set U ⊆ Rn.
Suppose that f is continuously differentiable over U. Then

lim
d→0

f (x + d) − f (x) − ∇f (x)T d
∥d∥ = 0, ∀x ∈ U.

Equivalently, we can write the above result as follows:

f (y) = f (x) + ∇f (x)T (y − x) + o(∥y − x∥),

where o(·) : Rn
+ → R is a 1-D function satisfying o(t )

t → 0 as t → 0+.
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Twice Differentiability

→ The partial derivatives 𝜕f
𝜕xi

are themselves real-valued functions
that can be partially differentiated. The (i, j)-partial derivatives
of f at x ∈ U (if exists) is defined by

𝜕2f
𝜕xi𝜕xj

(x) =
𝜕

(
𝜕f
𝜕xj

)
𝜕xi

(x).

→ A function f defined on an open set U ⊆ Rn is called twice
continuously differentiable over U if all the second-order partial
derivatives exist and are continuous over U. In that case, for any
i ≠ j and any x ∈ U:

𝜕2f
𝜕xi𝜕xj

(x) = 𝜕2f
𝜕xj𝜕xi

(x).
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The Hessian

The Hessian of f at a point x ∈ U is the n × n matrix:

∇2f (x) =

©­­­­­­­«

𝜕2f
𝜕x2

1

𝜕2f
𝜕x1𝜕x2

· · · 𝜕2f
𝜕x1𝜕xn

𝜕2f
𝜕x2𝜕x1

𝜕2f
𝜕x2

2
· · · 𝜕2f

𝜕x2𝜕xn

...
...

...
𝜕2f

𝜕xn𝜕x1
𝜕2f

𝜕xn𝜕x2
· · · 𝜕2f

𝜕x2
n

ª®®®®®®®¬
For twice continuously differentiable functions, the Hessian is a
symmetric matrix.
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Linear Approximation Theorem

Theorem. Let f : U → R be defined on an open set U ⊆ Rn. Suppose
that f is twice continuously differentiable over U. Let x ∈ U and r > 0
satisfy B(x, r) ⊆ U. Then ∀y ∈ B(x, r) there exists 𝜉 ∈ [x, y] such that

f (y) = f (x) + ∇f (x)T (y − x) + 1
2
(y − x)T∇2f (𝜉) (y − x).
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Quadratic Approximation Theorem

Theorem. Let f : U → R be defined on an open set U ⊆ Rn. Suppose
that f is twice continuously differentiable over U. Let x ∈ U and r > 0
satisfy B(x, r) ⊆ U. Then ∀y ∈ B(x, r),

f (y) = f (x) + ∇f (x)T (y − x) + 1
2
(y − x)T∇2f (x) (y − x) + o(∥y − x∥2).
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Optimality Conditions for Unconstrained
Optimization
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Global Minima

Definition. Let f : S → R be defined on a set S ⊆ Rn. Then
1. x∗ ∈ S is a global minimum point of f over S if

f (x∗) ≤ f (x), ∀x ∈ S.
2. x∗ ∈ S is a strict global minimum point of f over S if

f (x∗) < f (x), ∀x∗ ≠ x ∈ S.
Definition. The minimum value of f over S is defined as

inf{f (x) : x ∈ S}.
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Local Minima

Definition. Let f : S → R be defined on a set S ⊆ Rn. Then
1. x∗ ∈ S is a local minimum of f over S if there exists r > 0 for

which f (x∗) ≤ f (x), ∀x ∈ S
⋂

B(x∗, r).
2. x∗ ∈ S is a strict local minimum of f over S if there exists r > 0

for which f (x∗) < f (x), ∀x∗ ≠ x ∈ S
⋂

B(x∗, r).

27



Example: classify all the global and local optima
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Fermat’s Theorem - First-Order Optimality Condition

Theorem. Let f : U → R be a function defined on a set U ⊂ Rn.
Suppose that x∗ ∈ int(U) is a local optimum point and that all the
partial derivatives of f exist at x∗. Then ∇f (x∗) = 0.

Proof. Consider the 1-D function g(t) = f (x∗ + tei). □
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Stationary Points

Definition. Let f : U → R be a function defined on a set U ⊂ Rn.
Suppose that x∗ ∈ int(U) and that all the partial derivatives of f are
defined at x∗. Then x∗ is called a stationary point of f if ∇f (x∗) = 0.
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Classification of Matrices - Positive Definiteness

→ A symmetric matrix A ∈ Rn×n is called positive semidefinite,
denoted by A ⪰ 0, if xT Ax ≥ 0, ∀x ∈ Rn.

→ A symmetric matrix A ∈ Rn×n is called positive definite, denoted
by A ≻ 0, if xT Ax > 0, ∀0 ≠ x ∈ Rn.

→ A symmetric matrix A ∈ Rn×n is called indefinite, if there exists
x, y ∈ Rn such that xT Ax > 0, yT Ay < 0.
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The Principal Minors Criteria

Definition. Given an n × n matrix, the determinant of the upper left
k × k submatrix is called the k-th principal minor and is denoted by
Dk (A). For example,

A =
©­«
a11 a12 a13
a21 a22 a23
a31 a32 a33

ª®¬ ,
D1 (A) = a11, D2 (A) = det

(
a11 a12
a21 a22

)
, D3 (A) = det

©­«
a11 a12 a13
a21 a22 a23
a31 a32 a33

ª®¬ .
Theorem (principal minors criteria). Let A be an n × n symmetric
matrix. Then A is positive definite if and only if
D1(A) > 0,D2(A) > 0, . . . ,Dn(A) > 0.
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Diagonal Dominance

Definition. Let A be a symmetric n × n matrix.
(a). A is called diagonally dominant if

|Aii | ≥
∑︁
j≠i

��Aij
��, ∀i = 1, 2, . . . , n

(b). A is called strictly diagonally dominant if

|Aii | >
∑︁
j≠i

��Aij
��, ∀i = 1, 2, . . . , n

Theorem (positive (semi)definiteness of diagonally dominant matrices).

(a). If A is symmetric, diagonally dominant with nonnegative diagonal
elements, then A is positive semidefinite.

(b). If A is symmetric, strictly diagonally dominant with positive diagonal
elements, then A is positive definite.
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Necessary Second-Order Optimality Conditions

Theorem. Let f : U → R be a function defined on an open set
U ⊆ Rn. Suppose that f is twice continuously differentiable over U
and that x∗ is a stationary point. Then if x∗ is a local minimum point,
then ∇2f (x∗) ⪰ 0.

Proof. Use the Quadratic Approximation Theorem. □
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Sufficient Second-Order Optimality Conditions

Theorem. Let f : U → R be a function defined on an open set
U ⊆ Rn. Suppose that f is twice continuously differentiable over U
and that x∗ is a stationary point. Then if ∇2f (x∗) ≻ 0, x∗ is a strict
local minimum point of f over U.

Proof. Since Hessian is continuous, there exists a ball B(x∗, r) ⊆ U
for which ∇2f (x) ≻ 0, ∀x ∈ B(x∗, r). By the Linear Approximation
Theorem, there exists a vector zx ∈ [x∗, x] (and hence zx ∈ B(x∗, r))
for which

f (x) − f (x∗) = 1
2
(x − x∗)T∇2f (zx) (x − x∗).

∇2f (zx) ≻ 0 ⇒ for any x ∈ B(x∗, r) such that x ≠ x∗, the inequality
f (x) > f (x∗) holds, implying that x∗ is a strict local minimum point of
f over U. □
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Saddle Points

Definition. Let f : U → R be a continuously differentiable function
defined on an open set U ⊆ Rn. A stationary point x∗ ∈ U is called a
saddle point of f over U if it is neither a local mimimum point nor a
local maximum point of f over U.

Theorem (sufficient condition for saddle points). Let f : U → R be a
function defined on an open set U ⊆ Rn. Suppose that f is twice
continuously differentiable over U and that x∗ is a stationary point. if
∇2f (x∗) is an indefinite matrix, then x∗ is a saddle point of f over U.
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Attainment of Minimal / Maximal Points

Theorem (Weierstrass). Let f be a continuous function defined over a
nonempty compact set C ⊆ Rn. Then there exists a global minimum
point of f over C and a global maximum point of f over C.

Definition. Let f : Rn → R be a continuous function over Rn. f is
called coercive if

lim
∥x ∥→∞

f (x) = ∞.

Theorem. Let Let f : Rn → R be a coercive and continuous function
and let S ⊆ Rn be a nonempty closed set. Then f attains a global
minimum point on S.
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Proof. → Pick any x0 ∈ S. f being coercive ⇒ ∃M > 0 such that

f (x) > f (x0) for any x such that ∥x∥ > M.

→ Since any global minimizer x∗ of f over S satisfies f (x∗) ≤ f (x0),
it follows that the set of global minimizer of f over S is the same
as the set of global minimizers of f over S ∩ B[0,M].

→ The set S ∩ B[0,M] is compact and nonempty ⇒ (by the
Weierstrass theorem) ∃ a global minimizer of f over S ∩ B[0,M]
and hence also over S.

□
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Example

Classify the stationary points of the function f (x1, x2) = −2x2
1 + x1x2

2 + 4x4
1 .

∇f (x) =
(
−4x1 + x2

2 + 16x3
1

2x1x2

)
, ∇2f (x1, x2) =

(
−4 + 48x2

1 2x2
2x2 2x1

)
.

⇒ stationary points are solutions to

−4x1 + x2
2 + 16x3

1 = 0,
2x1x2 = 0.

⇒ stationary points are (0, 0), (0.5, 0), (−0.5, 0).

∇2f (0.5, 0) =
(
8 0
0 1

)
, ∇2f (−0.5, 0) =

(
8 0
0 −1

)
, ∇2f (0, 0) =

(
−4 0
0 0

)
strict local minimum saddle point saddle point (why?)
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Global Optimality Conditions

Theorem. Let f be a twice continuously defined over Rn. Suppose that
∇2f (x) ⪰ 0, ∀x ∈ Rn. Let x∗ ∈ Rn be a stationary point of f . Then x∗

is a global minimum point of f .

Proof. By the Linear Approximation Theorem, it follows that for any
x ∈ Rn, there exists a vector zx ∈ [x∗, x] for which

f (x) − f (x∗) = 1
2
(x − x∗)T∇2f (zx) (x − x∗).

Since ∇2f (zx) ⪰ 0, we have that f (x) ≥ f (x∗), which implies that x∗ is
a global minimum point of f . □
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Quadratic Functions

A quadratic function over Rn is a function of the form

f (x) = xT Ax + 2bT x + c,

where A ∈ Rn×n is symmetric, b ∈ Rn, and c ∈ R. Its gradient and
Hessian can be easily obtained (exercise):

∇f (x) = 2Ax + 2b,
∇2f (x) = 2A.

Lemma. Let f (x) be a quadratic function. Then
1. x is a stationary point of f iff Ax = −b.
2. If A ⪰ 0, then x is a global minimum point of f iff Ax = −b.
3. If A ≻ 0, then x = −A−1b is a strict global minimum point of f .
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Coerciveness of Quadratic Functions

Lemma. Let f (x) = xT Ax + 2bT x + c, where A ∈ Rn×n is symmetric,
b ∈ Rn and c ∈ R. Then f is coercive if and only if A ≻ 0.
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Characterization of the Nonnegativity of Quadratic
Functions

Theorem. Let f (x) = xT Ax + 2bT x + c, where A ∈ Rn×n is symmetric,
b ∈ Rn and c ∈ R. Then the following two claims are equivalent:
(a). f (x) ≥ 0 for all x ∈ Rn.

(b).
(

A b
bT c

)
⪰ 0.

43



Exercises

Beck: 1.2, 1.14, 2.1, 2.2, 2.9, 2.14, 2.17.v
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