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e An optimization problem typically involves finding the minimum (or
maximum) of a function f(x) where x is a vector in R™.

o Gradient vanishes at optimal points. Search through all stationary points
for the one with minimal function value.
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Descent Direction Methods

o Iterative algorithm is of the form:
Tr+1 =Tk +tedy, k=0,1,2,--- (1)

where dj; is the direction and t; is the stepsize.

Descent Direction: Let f : R” — R be a continuous differentiable function
over R™. A vector 0 # d € R™ is called a descent direction of f at x if the
directional derivative f'(z;d) is negative

f'(z;d) = Vf(z)"d <0 (2)
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Descent Directions Method

Descent property of descent directions: Let f be a continuously
differentiable function over R™, and let x € R™. Suppose that d is a descent
direction of f at x then there exists € > 0 such that

f(x+td) < f(=) 3)

for any t € (0, €]

Proof: Since f'(z;d) < 0, it follows that

i J @+ td) — f(a)

t—0+ t

= f'(x;d) <0

.3 an € > 0 such that f(z +td) < f(x) for any t € (0, €.
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Descent Directions Method

Initialization: Pick z( € R™ arbitrarily.
General step: For any £ =0,1,2,--- set

@ Pick a descent direction d.

@ Find a stepsize ¢y satisfying f(xg + trdr) < f(xg).

Q Set zpy1 =z + trdg.

@ If a stopping criterion is satisfied, then STOP and xj; is the output.
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Descent Directions Method: Questions

e What is the starting point?

e Chosen arbitrarily in the absence of an educated guess.
@ What stepsize should be taken?

o f(@rt1) < f(ax)

e Process of finding step size ¢y is called line search.

o What is the stopping criterion?

IV f(zri)ll < e (4)

e How to choose the descent direction?

e Main difference between different methods.
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Stepsize Selection Rules

o Constant stepsize: t; = t’ for any k.

o Exact line search: t; is a minimizer of f along the ray xj + txdg:
ty, € argming f(zr + trpdy). (5)

e Backtracking: The method requires three parameters:
s>0,a€(0,1),8 € (0,1).

e Set t; to be equal to initial guess ’s’.
f(xr) — flar + tedr) < —ati Vf (z1) " di (6)
o Set tj + Bti or tp = sB' where i) is the smallest nonnegative integer s.t.

flae) = fxr + s8%di) > —asB™V f(zi) " ds (7)
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Sufficient Decrease Condition

The sufficient decrease condition is always satisfied for small enough ¢y.

Validity of the sufficient decrease condition: Let f be a continuously
differentiable function over R™, and let x € R™. Suppose that 0 # d € R™ is a
descent direction of f at x and let o € (0,1). Then there exists € > 0 such that

f(z) = f(z+td) > —atVf(z)'d (8)

for any t € (0, €|
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Sufficient Decrease Condition

Proof: Since f is continuously differentiable,
f(x +td) = f(z) + tV f(2z)"d + o(t|ld]])
fla) = flz+td) = —atVf(z)'d — (1 - )tV f(z)"d —olt|dl)  (9)
Since d is a descent direction of f at = we have

L (L= @)tV f() d+ oft]d])

t—0+ t

=(1-a)Vf(x)Td<o.
Hence, there exists ¢ > 0 such that for all ¢ € (0,¢] the inequality
(1 — )tV f(z)'d+o(t]d]]) <0 (10)

holds, which combined with (9) implies the desired result.
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Example: Exact line search for quadratic functions

Let f(x) = 27 Az + 2072 + ¢, where A is an n x n positive definite matrix,
beR™ and c € R. Let z € R® and d € R™ be a descent direction of f at x.
Find an explicit formula for stepsize using line search.

Soln: Find solution of

min f(z +td)

g(t) = f(z +td) = (z + td)" A(z + td) + 2b" (z + td) + ¢
dT Ad)t? 4 2(dT Az + dTb)t + f(x)

=(
Since, ¢'(t) = 2(d* Ad)t + 2d" (Az + b)
and, Vf(x) = 2(Ax +b)
g'(t) = 0 only iff
AV
- 2dTAd

+dTV f(x) < 0, we have £ > 0.
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Gradient Method

Choice of descent direction: di = —V f (k) because for ||V f(zk)|| # 0,

Far; =V () = =V f(ae) 'V (ae) = IV f(a)|* <0

Let f be a continuously differentianle function, and let x € R™ be a
non-stationary point (V f(x) # 0). Then an optimal solution of

min {f(z;d) : [|d]| = 1} (11)

. _ V(=)
s d = — (TG
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Gradient Method

Proof: Using Cauchy-Schwarz inequality,

Vi@)d> ~|IVf@)l-lldll = =V f(2)].- (12)
Thus, —||Vf(z)]| is a lower bound on (11).
Plugging
Vi)
IV f ()]l
we obtain
7 (o= per) = ~Vi@" () = -Ivs@l. a3)
.. the lower bound —||V f(z)]| is attained at d = — VI which implies that

IVi@I>
this is an optimal solution of (11).
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Gradient Method

Input: € > 0 tolerance parameter.
Initialization: Pick zg € R" arbitrarily.
General step: For any £k =0,1,2,--- set

@ Pick a stepsize t; using line search on ¢(t) = f(xy — tV f(zk)).
Q Set w1 = xp — txVf(xk).
Q If |V f(zkt1]| <€, then STOP and x4 is the output.
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Quadratic Function - Example with Code

Find optimal solution of quadratic function

min {zT Az + 2bTx}
reR™

where A € R™*¢ positive definite and b € R™.

Consider the 2D minimization problem

min 22 + 2>
Ty

SR
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Zig-Zag Effect of Gradient Method

Gradient Descent Iterates on Contour Plot of Objective Function
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Condition Number

Let A be an n X n positive definite matrix. Then the condition number of A is
defined by

)\mam (A)

x(A) = m

(16)

Gradient method applied to problems with large condition number might
require large number of iterations and vice versa.

o Matrices with large condition number are called ill-conditioned.

@ Matrices with small condition number are called well-conditioned.
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Example with Code: Role of Condition Number

The Rosenbrock function is the following function:
f(x1,2) = 100(2zg — )% + (1 — 21)% (17)

The optimal solution is (x1,x2) = (1,1) with optimal value 0. The Rosenbrock
function is extremely ill-conditioned at the optimal solution.

[ —400z1 (73 — %) — 2(1 — z1)
2 _( —400z3 + 120023 + 2 —400z4
Vi) = ( —400z, 200 ) (19)

At (z1,20) = (1,1),

) [ 802 —400
VL) = ( —400 200 )
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Sensitivity of Solutions to Linear Systems

Sensitivity of the solution of the linear system to right-hand-side perturbations
depends on the condition number of the coefficients matrix.

Consider a linear system Az = b, and assume that A is positive definite. The
solution is x = A~1b.

Consider a perturbation b 4+ Ab. Solution of the new system is
v+ Ar =AYb+ Ab) =z + ALAD,

A .
H|\;|E|H in terms of

so that Az = A~1Ab. Find a bound on the relative error
[[Ab] .

el
1Azl _ [ATAb] _ JATTIAb _ Amax(A” D[ AD|

: (21)
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the last equality follows from the fact that the spectral norm of a positive
definite matrix D is || D|| = Amax(D). By the positive definiteness of A, it

follows that Apax(A71) = mi
Az _ 1 flAb 1 [|AD 1 I25] (22)
el = ReinlA) [ Hoin(A) A ] = (A A (A0
ax(A) [|A A
_ Amax )M — M (23)

= Rm@ o] AR
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Example with Code - Gradient Method

Consider the problem

min{1000z} + 40z 29 + 3}

1000 20 0
= 3] el
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Diagonal Scaling

Condition the problem by making an appropriate linear transformation of
decision variables. Consider the unconstrained minimization problem

min{ f(z) : x € R"}. (24)

For a given nonsingular matrix S € R™*"™ make the linear transformation
x = Sy and the equivalent problem is

min{g(y) = f(Sy) : y € R"}. (25)

Since Vg(y) = STV f(Sy), the gradient method applied to the transformed
problem is
Yrt1 =Yk — STV (Syr). (26)

Multiplying by S from the left, and using x; = Syx, we obtain

Thtl1 = Tk — tkSSTVf(xk). (27)
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Diagonal Scaling

Define D = SS7, we obtain the scaled gradient method with scaling matrix D:
Tpt1 = T, — te DV f(xg). (28)

By its definition, D is positive definite. The direction —DV f(x) is a descent
direction of f at xp when V f(x) # 0 since

f'(aw; =DV f(ar)) = =V f(ax)" DV f(zx) <0, (29)

because of positive definiteness of D.

The scaled gradient method with scaling matrix D is equivalent to
the gradient method employed on the function g(y) = f(D'/?y).
The gradient and Hessian of g are given by

Vg(y) = DV f(DY?y) = D'V f(x), (30)
V2g(y) = D'/*V?f(D'/?y)D'/? = DY/2V? f(2)D'/?, (31)
where z = D/2y.
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Scaled Gradient Method

Input: € - tolerance parameter.
Initialization: Pick xy € R™ arbitrarily.
General step: For any k£ =0,1,2,... execute the following steps:

@ Pick a scaling matrix Dy > 0.

@ Pick a stepsize t; by a line search procedure on the function

g(t) = f(xr — tDEV f(z1)). (32)

Q Set LTh+1 — Tk — tkaVf(.’Ek).
Q If |V f(zks1)]| < e then STOP, and x4 is the output.
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Diagonal Scaling

The main question is how to choose the scaling matrix Dj.

To accelerate the rate of convergence: Make scaled Hessian D;/ 2 f (:rk)D,i/ 2
to be as close as possible to the identity matrix.

When V2 f(x1) > 0, we can choose Dy, = (V2f(x;))~! and the scaled Hessian
becomes the identity matrix. The resulting method

T = 2 — (V2 f (k) 'V f (2k) (33)

is the Newton’s method.
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Example with Code - Scaled Gradient Method

Consider the problem

min{100022 + 402,z + 22}

1000 20 0
= 3] el

Scaled gradient method with diagonal scaling matrix

19
— | 1000
A=
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Convergence Analysis of the Gradient Method

Lipschitz Property of the Gradient:
Given the unconstrained minimization problem

min{ f(x) : x € R"}

In order for gradient descent to work, we have to assume the object function f
is continuously differentiable and its gradient V f is Lipschitz continuous
over R"

A gradient V f is Lipschitz continuous over R"™ when, for some L > 0:

IVi(x) = V)l < Llx —y| for any x,y € R"
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Convergence Analysis of the Gradient Method

Definition

A gradient Vf is Lipschitz continuous over R™ when, for some L > 0:

IVFi(x) = Vf(y)l < Llx -yl for any x,y € R"

This L is called the Lipschitz constant

e If Vf is Lipschitz with constant L, then it must also be Lipschitz with
constant L for all L > L
@ There are an infinite number of Lipschitz constants, but we are usually
only concerned with the smallest one.
@ The class of functions with Lipschitz gradient with constant L is denoted
by Ci’l(R”) or Cé’l
o C** denotes a Holder space

o k - the left-hand side contains kth-order partial derivatives
e « - the norm on the right-hand side is raised to the power «
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Examples

e Linear functions Given a € R”, the function f(x) = a’x is in C’é’l

IVix) - ViQy)|=a-a=0<0]x-yl

@ Quadratic functions Let A be an n x n symmetric matrix, b € R, and
¢ € R. Then the function f(x) = xTAx +2bTx+cis a C’i’l function,
where L = 2||A]|
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Convergence Analysis of the Gradient Method

Let f be a twice continuously differentiable function over R™. Then the
following two claims are equivalent:

@ feCr'(RY)
Q |V2f(x)|| < L for any x € R"

In other words, the gradient of f is Lipschitz continuous with Lipschitz
constant L iff the norm of the Hessian of f is less than or equal to L
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Example 4.21

Let f: R — R be given by f(z) = V14 22. Then

1
0 < f//(m) = 7(1 +$2)3/2 < 1

for any z € R, so f € 011,1
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The Descent Lemma

CY! functions can be bounded above by a quadratic function over the entire
space, which is fundamental in convergence proofs of gradient-based methods

Let f € C’i’l(R"). Then for any x,y € R™

7)< £+ VI6T(y — %) + 5k yIP
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By the fundamental theorem of calculus,

1
F) = (o) = / (Ve 4 5 = )y = )

Therefore,

1
1) — £ = (VF(x),y — %) + / (VF(x+t(y — %)) — VF(x),y — x)dt

1
F) = FGO) — (VF®),y - %)] = / (VF(x+t(y — %)) — VF(x),y — x)dt

1
< / (VF(x +ty — ) — V(x),y — x)|dt
0

< / IV £(x+ tly — %)) = V)| - lly - xlldt
0

! 2 L 2
< [ tolly - xide = Sy — x|
0
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Sufficient Decrease Lemma

Sufficient Decrease Lemma: Suppose that f € C’i’l(R"). Then for any
x €R" andt >0
Lt )
FO0) = fx=tVi(x) 2 t{ 1= o IV

A sufficient decrease property occurs in each of the stepsize selection
strategies:

@ constant
@ exact line search

e backtracking
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Sufficient Decrease of the Gradient Method: Let f € Ci’l(R”), Let
{xK}x>0 be the sequence generated by the gradient method for solving

min f(x)

with one of the following stepsize strategies:
o constant stepsize t € (0, %)
e exact line search
o backtracking procedure with parameters s € Ryy,a € (0,1),8 € (0,1)
Then,
Flxx) = f(xpe1) 2 M|V f(xp)[I* > 0
Where

|

(1-
M = i ezact line search
amin{s, W} backtracking

ol

) constant stepsize
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Convergence of the Gradient Method

Theorem

Let f € C’i’l(R”) and let {xy}r>0 be the sequence generated by the gradient
method for solving

min f(x)

With one of the following stepsize strategies
o constant stepsize t € (0, 2)
e exact line search
e backtracking procedure with parameters s € Ryy,a € (0,1),8 € (0,1)

Assume that f is bounded below over R™, that is, there exists m € R such that
f(x) > m for all x € R™. Then we have the following:

Q@ The sequence {f(xx)}r>0 is nonincreasing. In addition, for any k > 0,
f(&rt1) < f(xx) unless V f(xg) =0
Q@ Vf(xx) >0 ask— oo
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Rate of Convergence of Gradient Norms

Theorem

Under the setting of the previous theorem, let f* be the limit of the convergent
sequence {f(xx)}k>0. Then for anyn=0,1,2,...

min[V5Ga)] < [ LR =L

k=0,1,... M(n+1)
Where - B
t(1- ) constant stepsize
M = ﬁ ezact line search

amin{s, M} backtracking
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Newton’s Method

Xp+1 = argmin, cpn f(xk) + VF(x) " (x — x5) + %(X —x5) TV f (k) (x = x10)

e While gradient descent has linear convergence (locally), Newton’s method
has quadratic convergence (locally)

e This formula is not well defined unless we assume V2 f(x},) is positive
definite

o When this is the case, we get Pure Newton’s Method

e Each iteration is expensive computationally because it requires solving a
system of linear equations.
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Pure Newton’s Method

Definition

Pure Newton’s Method: Newton’s Method when V?2f(x) is positive
definite. The unique stationary point that minimizes this minimization
problem is:

Vf(xk) + V2 f(xk) (%41 — x%) =0

‘Which is more useful when written as:

Xp41 =X — (V2 f(x£)) 'V f (%)

Definition

Newton Direction: The direction d; the update formula steps in for each
iteration.

di = (V2 (xx)) 'V f(xx)

When V2 f(x}) is positive definite for any k, pure Newton’s method is just a
scaled gradient method and Newton’s directions are descent directions.
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Pure Newton’s Method - Algorithm

Input: € > 0 - tolerance parameter
Initialization: Pick xy € R™ arbitrarily.
General Step: For any k£ =0,1,2,... execute the following steps:

@ Compute the Newton direction dy, which is the solution to the linear
system V2f(xg)dr = —V f(xx).
Q Set Xp+1 = X + d;.

Q If |V f(xk+1)]] <€, then STOP, and xj1 is the output.
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Example 5.1

This example shows how V2 f(x) being positive definite is not enough to
guarantee convergence. The choice of xy can also matter.

Counsider the function f(x) = v/1+ 22 defined over the real line. The
minimizer of f over R is at x = 0. The first and second derivatives of f are

fﬂ(x) = !
VI+a? (14 22)3/2
So Pure Newton’s Method has the form

f' (k)
f//(xk)

fiz) =

=z, —xp(1 —|—.%‘£) = —m%

Tp+1 = Tk —

e When |zg| > 1, the method diverges

e When |zg| < 1, the method converges to z* =0
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Quadratic Local Convergence of Newton’s Method

Let f be a twice continuously differntiable function defined over R™. Assume
that

e there exists m > 0 for which V2 f(x) > ml for any x € R"
e there exists L > 0 for which [|[V2f(x) — V2f(y)| < L||x — y|| for any

x,y €R"
Let {xx}r>0 be the sequence generated by Newton’s method, and let x* be
the unique minimizer of f over R™. Then for any kK =0, 1,... the inequality
* L *
%1 — x| < %ka —x*|? (34)
holds. In addition, if [|xo — x*|| < %, then
2k
2m (1
—x*l < —|( = k=0,1,2,... 35
w2 (5) k=0 (35)
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Example 5.3

f(z,y) =100 * 2* 4 0.01 * y*
(anyO) = (17 1)
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Damped Newton’s Method - Algorithm

Input: «, 8 € (0,1) - parameters for the backtracking procedure.
€ > 0 - tolerance parameter.

Initialization: Pick xo € R™ arbitrarily.

General Step: For any £ =0,1,2,... execute the following steps:

@ Compute the Newton direction dy, which is the solution to the linear
system V2 f(xg)dr = —V f(xx).
@ Set ¢t = 1. While
f(Xk) — f(X;C + tkdk) < —Ozthf(Xk)Tdk

set tk = ﬁtk.
Q Xi+1 = xp + trdy.
Q If |V f(xk+1)|| <€, then STOP, and x4 is the output.
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Example 5.5

flay) = Va2 + 1+ +1
(z0,y0) = (10,10)
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Hybrid Gradient-Newton Method

Input: o, € (0,1) - parameters for the backtracking procedure.

€ > 0 - tolerance parameter.

Initialization: Pick xy € R™ arbitrarily.

General Step: For any k£ =0,1,2,... execute the following steps:

@ If V2f(xz) > 0, then take d as the Newton direction dy, which is the
solution to the linear system V2 f(xy)dy = —V f(xx). Otherwise, set
dk = —Vf(Xk)

@ Set t, = 1. While

F(xk) — fxp + tedi) < —aty, Vf(xx)Tdy,

set ty := Pty.
Q Xi+1 = xp + trdy.
Q If |V f(xk+1)|| <€, then STOP, and x4 is the output.
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Example 5.8 - Rosenbrock Function

f(xlvl'Q) = 100(x2 — x%)2 + (1 _ $1)2

@ When a minimum is found with backtracking, it takes about 6900
iterations.

e With the Hybrid-Gradient Newton Method, it only takes 17 iterations!
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Beck 4.2, 4.3, 4.7, 5.2
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