Gradient Descent and Newton's Method

Samuel Goodwin and Srinidhi Pawar
Center for Quantum Information and Control
University of New Mexico

12 June 2024

Motivation

- An optimization problem typically involves finding the minimum (or maximum) of a function $f(x)$ where x is a vector in \mathbb{R}^{n}.
- Gradient vanishes at optimal points. Search through all stationary points for the one with minimal function value.

Descent Direction Methods

- Iterative algorithm is of the form:

$$
\begin{equation*}
x_{k+1}=x_{k}+t_{k} d_{k}, k=0,1,2, \cdots \tag{1}
\end{equation*}
$$

where d_{k} is the direction and t_{k} is the stepsize.

Definition

Descent Direction: Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a continuous differentiable function over \mathbb{R}^{n}. A vector $0 \neq d \in \mathbb{R}^{n}$ is called a descent direction of f at x if the directional derivative $f^{\prime}(x ; d)$ is negative

$$
\begin{equation*}
f^{\prime}(x ; d)=\nabla f(x)^{T} d<0 \tag{2}
\end{equation*}
$$

Descent Directions Method

Lemma

Descent property of descent directions: Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. Suppose that d is a descent direction of f at x then there exists $\epsilon>0$ such that

$$
\begin{equation*}
f(x+t d)<f(x) \tag{3}
\end{equation*}
$$

for any $t \in(0, \epsilon]$
Proof: Since $f^{\prime}(x ; d)<0$, it follows that

$$
\lim _{t \rightarrow 0^{+}} \frac{f(x+t d)-f(x)}{t}=f^{\prime}(x ; d)<0
$$

$\therefore \exists$ an $\epsilon>0$ such that $f(x+t d)<f(x)$ for any $t \in(0, \epsilon]$.

Descent Directions Method

Initialization: Pick $x_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: For any $k=0,1,2, \cdots$ set
(1) Pick a descent direction d_{k}.
(2) Find a stepsize t_{k} satisfying $f\left(x_{k}+t_{k} d_{k}\right)<f\left(x_{k}\right)$.
(3) Set $x_{k+1}=x_{k}+t_{k} d_{k}$.
(1) If a stopping criterion is satisfied, then STOP and x_{k+1} is the output.

Descent Directions Method: Questions

- What is the starting point?
- Chosen arbitrarily in the absence of an educated guess.
- What stepsize should be taken?
- $f\left(x_{k+1}\right)<f\left(x_{k}\right)$
- Process of finding step size t_{k} is called line search.
- What is the stopping criterion?

$$
\begin{equation*}
\left\|\nabla f\left(x_{k+1}\right)\right\| \leq \epsilon \tag{4}
\end{equation*}
$$

- How to choose the descent direction?
- Main difference between different methods.

Stepsize Selection Rules

- Constant stepsize: $t_{k}=t^{\prime}$ for any k .
- Exact line search: t_{k} is a minimizer of f along the ray $x_{k}+t_{k} d_{k}$:

$$
\begin{equation*}
t_{k} \in \operatorname{argmin}_{t \geq 0} f\left(x_{k}+t_{k} d_{k}\right) . \tag{5}
\end{equation*}
$$

- Backtracking: The method requires three parameters:
$s>0, \alpha \in(0,1), \beta \in(0,1)$.
- Set t_{k} to be equal to initial guess 's'.

$$
\begin{equation*}
f\left(x_{k}\right)-f\left(x_{k}+t_{k} d_{k}\right)<-\alpha t_{k} \nabla f\left(x_{k}\right)^{T} d_{k} \tag{6}
\end{equation*}
$$

- Set $t_{k} \leftarrow \beta t_{k}$ or $t_{k}=s \beta^{i_{k}}$ where i_{k} is the smallest nonnegative integer s.t.

$$
\begin{equation*}
f\left(x_{k}\right)-f\left(x_{k}+s \beta^{i_{k}} d_{k}\right) \geq-\alpha s \beta^{i_{k}} \nabla f\left(x_{k}\right)^{T} d_{k} \tag{7}
\end{equation*}
$$

Sufficient Decrease Condition

The sufficient decrease condition is always satisfied for small enough t_{k}.

Lemma

Validity of the sufficient decrease condition: Let f be a continuously differentiable function over \mathbb{R}^{n}, and let $x \in \mathbb{R}^{n}$. Suppose that $0 \neq d \in \mathbb{R}^{n}$ is a descent direction of f at x and let $\alpha \in(0,1)$. Then there exists $\epsilon>0$ such that

$$
\begin{equation*}
f(x)-f(x+t d) \geq-\alpha t \nabla f(x)^{T} d \tag{8}
\end{equation*}
$$

for any $t \in(0, \epsilon]$

Sufficient Decrease Condition

Proof: Since f is continuously differentiable,

$$
\begin{gather*}
f(x+t d)=f(x)+t \nabla f(x)^{T} d+o(t\|d\|) \\
f(x)-f(x+t d)=-\alpha t \nabla f(x)^{T} d-(1-\alpha) t \nabla f(x)^{T} d-o(t\|d\|) \tag{9}
\end{gather*}
$$

Since d is a descent direction of f at x we have

$$
\lim _{t \rightarrow 0^{+}} \frac{(1-\alpha) t \nabla f(x)^{T} d+o(t\|d\|)}{t}=(1-\alpha) \nabla f(x)^{T} d<0 .
$$

Hence, there exists $\varepsilon>0$ such that for all $t \in(0, \varepsilon]$ the inequality

$$
\begin{equation*}
(1-\alpha) t \nabla f(x)^{T} d+o(t\|d\|)<0 \tag{10}
\end{equation*}
$$

holds, which combined with (9) implies the desired result.

Example: Exact line search for quadratic functions

Let $f(x)=x^{T} A x+2 b^{T} x+c$, where A is an $n \times n$ positive definite matrix, $b \in \mathbb{R}^{n}$, and $c \in R$. Let $x \in \mathbb{R}^{n}$ and $d \in R^{n}$ be a descent direction of f at x. Find an explicit formula for stepsize using line search.
Soln: Find solution of

$$
\begin{aligned}
& \min _{t \geq \mathbf{0}} \boldsymbol{f}(\boldsymbol{x}+\boldsymbol{t d} \mathbf{)} \\
g(t)=f(x+t d)= & (x+t d)^{T} A(x+t d)+2 b^{T}(x+t d)+c \\
= & \left(d^{T} A d\right) t^{2}+2\left(d^{T} A x+d^{T} b\right) t+f(x) \\
\text { Since, } g^{\prime}(t)= & 2\left(d^{T} A d\right) t+2 d^{T}(A x+b) \\
\text { and, } \nabla f(x)= & 2(A x+b)
\end{aligned}
$$

$g^{\prime}(t)=0$ only iff

$$
\bar{t}=-\frac{d^{T} \nabla f(x)}{2 d^{T} A d}
$$

$\because d^{T} \nabla f(x)<0$, we have $\bar{t}>0$.

Gradient Method

Choice of descent direction: $\boldsymbol{d}_{\boldsymbol{k}}=-\nabla \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{k}}\right)$ because for $\left\|\nabla f\left(x_{k}\right)\right\| \neq 0$,

$$
f^{\prime}\left(x_{k} ;-\nabla f\left(x_{k}\right)\right)=-\nabla f\left(x_{k}\right)^{T} \nabla f\left(x_{k}\right)=-\left\|\nabla f\left(x_{k}\right)\right\|^{2}<0
$$

Lemma

Let f be a continuously differentianle function, and let $x \in \mathbb{R}^{n}$ be a non-stationary point $(\nabla f(x) \neq 0)$. Then an optimal solution of

$$
\begin{equation*}
\min _{d \in \mathbb{R}^{n}}\left\{f^{\prime}(x ; d):\|d\|=1\right\} \tag{11}
\end{equation*}
$$

is $d=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$

Gradient Method

Proof: Using Cauchy-Schwarz inequality,

$$
\begin{equation*}
\nabla f(x)^{T} d \geq-\|\nabla f(x)\| \cdot\|d\|=-\|\nabla f(x)\| \tag{12}
\end{equation*}
$$

Thus, $-\|\nabla f(x)\|$ is a lower bound on (11). Plugging

$$
d=-\frac{\nabla f(x)}{\|\nabla f(x)\|}
$$

we obtain

$$
\begin{equation*}
f^{\prime}\left(x,-\frac{\nabla f(x)}{\|\nabla f(x)\|}\right)=-\nabla f(x)^{T}\left(\frac{\nabla f(x)}{\|\nabla f(x)\|}\right)=-\|\nabla f(x)\|, \tag{13}
\end{equation*}
$$

\therefore the lower bound $-\|\nabla f(x)\|$ is attained at $d=-\frac{\nabla f(x)}{\|\nabla f(x)\|}$, which implies that this is an optimal solution of (11).

Gradient Method

Input: $\epsilon>0$ tolerance parameter.
Initialization: Pick $x_{0} \in \mathbf{R}^{n}$ arbitrarily.
General step: For any $k=0,1,2, \cdots$ set
(1) Pick a stepsize t_{k} using line search on $g(t)=f\left(x_{k}-t \nabla f\left(x_{k}\right)\right)$.
(2) Set $x_{k+1}=x_{k}-t_{k} \nabla f\left(x_{k}\right)$.
(3) If $\| \nabla f\left(x_{k+1} \| \leq \epsilon\right.$, then STOP and x_{k+1} is the output.

Quadratic Function - Example with Code

Find optimal solution of quadratic function

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}}\left\{x^{T} A x+2 b^{T} x\right\} \tag{14}
\end{equation*}
$$

where $A \in \mathbb{R}^{n \times s}$ positive definite and $b \in \mathbb{R}^{n}$.
Consider the 2D minimization problem

$$
\begin{gather*}
\min _{x, y} x^{2}+2 y^{2} \tag{15}\\
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gather*}
$$

Zig-Zag Effect of Gradient Method

Gradient Descent Iterates on Contour Plot of Objective Function

Condition Number

Definition

Let A be an $n \times n$ positive definite matrix. Then the condition number of A is defined by

$$
\begin{equation*}
\chi(A)=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)} \tag{16}
\end{equation*}
$$

Gradient method applied to problems with large condition number might require large number of iterations and vice versa.

- Matrices with large condition number are called ill-conditioned.
- Matrices with small condition number are called well-conditioned.

Example with Code: Role of Condition Number

The Rosenbrock function is the following function:

$$
\begin{equation*}
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} . \tag{17}
\end{equation*}
$$

The optimal solution is $\left(x_{1}, x_{2}\right)=(1,1)$ with optimal value 0 . The Rosenbrock function is extremely ill-conditioned at the optimal solution.

$$
\begin{align*}
\nabla f(x) & =\binom{-400 x_{1}\left(x_{2}-x_{1}^{2}\right)-2\left(1-x_{1}\right)}{200\left(x_{2}-x_{1}^{2}\right)}, \tag{18}\\
\nabla^{2} f(x) & =\left(\begin{array}{cc}
-400 x_{2}+1200 x_{1}^{2}+2 & -400 x_{1} \\
-400 x_{1} & 200
\end{array}\right) . \tag{19}
\end{align*}
$$

At $\left(x_{1}, x_{2}\right)=(1,1)$,

$$
\nabla^{2} f(1,1)=\left(\begin{array}{cc}
802 & -400 \tag{20}\\
-400 & 200
\end{array}\right)
$$

Sensitivity of Solutions to Linear Systems

Sensitivity of the solution of the linear system to right-hand-side perturbations depends on the condition number of the coefficients matrix.
Consider a linear system $A x=b$, and assume that A is positive definite. The solution is $x=A^{-1} b$.
Consider a perturbation $b+\Delta b$. Solution of the new system is

$$
x+\Delta x=A^{-1}(b+\Delta b)=x+A^{-1} \Delta b,
$$

so that $\Delta x=A^{-1} \Delta b$. Find a bound on the relative error $\frac{\|\Delta x\|}{\|x\|}$ in terms of $\frac{\|\Delta b\|}{\|b\|}$:

$$
\begin{equation*}
\frac{\|\Delta x\|}{\|x\|}=\frac{\left\|A^{-1} \Delta b\right\|}{\|x\|} \leq \frac{\left\|A^{-1}\right\|\|\Delta b\|}{\|x\|}=\frac{\lambda_{\max }\left(A^{-1}\right)\|\Delta b\|}{\|x\|}, \tag{21}
\end{equation*}
$$

the last equality follows from the fact that the spectral norm of a positive definite matrix D is $\|D\|=\lambda_{\max }(D)$. By the positive definiteness of A, it follows that $\lambda_{\max }\left(A^{-1}\right)=\frac{1}{\lambda_{\min }(A)}$:

$$
\begin{gather*}
\frac{\|\Delta x\|}{\|x\|} \leq \frac{1}{\lambda_{\min }(A)} \frac{\|\Delta b\|}{\|x\|}=\frac{1}{\lambda_{\min }(A)} \frac{\|\Delta b\|}{\left\|A^{-1} b\right\|} \leq \frac{1}{\lambda_{\min }(A)} \frac{\|\Delta b\|}{\lambda_{\min }\left(A^{-1}\right)\|b\|} \tag{22}\\
=\frac{\lambda_{\max }(A)}{\lambda_{\min }(A)} \frac{\|\Delta b\|}{\|b\|}=\kappa(A) \frac{\|\Delta b\|}{\|b\|} \tag{23}
\end{gather*}
$$

Example with Code - Gradient Method

Consider the problem

$$
\begin{aligned}
& \min \left\{1000 x_{1}^{2}+40 x_{1} x_{2}+x_{2}^{2}\right\} \\
& A=\left[\begin{array}{cc}
1000 & 20 \\
20 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Diagonal Scaling

Condition the problem by making an appropriate linear transformation of decision variables. Consider the unconstrained minimization problem

$$
\begin{equation*}
\min \left\{f(x): x \in \mathbb{R}^{n}\right\} \tag{24}
\end{equation*}
$$

For a given nonsingular matrix $S \in \mathbb{R}^{n \times n}$, make the linear transformation $x=S y$ and the equivalent problem is

$$
\begin{equation*}
\min \left\{g(y) \equiv f(S y): y \in \mathbb{R}^{n}\right\} . \tag{25}
\end{equation*}
$$

Since $\nabla g(y)=S^{T} \nabla f(S y)$, the gradient method applied to the transformed problem is

$$
\begin{equation*}
y_{k+1}=y_{k}-t_{k} S^{T} \nabla f\left(S y_{k}\right) . \tag{26}
\end{equation*}
$$

Multiplying by S from the left, and using $x_{k}=S y_{k}$, we obtain

$$
\begin{equation*}
x_{k+1}=x_{k}-t_{k} S S^{T} \nabla f\left(x_{k}\right) . \tag{27}
\end{equation*}
$$

Diagonal Scaling

Define $D=S S^{T}$, we obtain the scaled gradient method with scaling matrix D :

$$
\begin{equation*}
x_{k+1}=x_{k}-t_{k} D \nabla f\left(x_{k}\right) \tag{28}
\end{equation*}
$$

By its definition, D is positive definite. The direction $-D \nabla f\left(x_{k}\right)$ is a descent direction of f at x_{k} when $\nabla f\left(x_{k}\right) \neq 0$ since

$$
\begin{equation*}
f^{\prime}\left(x_{k} ;-D \nabla f\left(x_{k}\right)\right)=-\nabla f\left(x_{k}\right)^{T} D \nabla f\left(x_{k}\right)<0 \tag{29}
\end{equation*}
$$

because of positive definiteness of D.
The scaled gradient method with scaling matrix D is equivalent to the gradient method employed on the function $g(y)=f\left(D^{1 / 2} y\right)$.
The gradient and Hessian of g are given by

$$
\begin{gather*}
\nabla g(y)=D^{1 / 2} \nabla f\left(D^{1 / 2} y\right)=D^{1 / 2} \nabla f(x) \tag{30}\\
\nabla^{2} g(y)=D^{1 / 2} \nabla^{2} f\left(D^{1 / 2} y\right) D^{1 / 2}=D^{1 / 2} \nabla^{2} f(x) D^{1 / 2} \tag{31}
\end{gather*}
$$

where $x=D^{1 / 2} y$.

Scaled Gradient Method

Input: ϵ - tolerance parameter.
Initialization: Pick $x_{0} \in \mathbb{R}^{n}$ arbitrarily.
General step: For any $k=0,1,2, \ldots$ execute the following steps:
(1) Pick a scaling matrix $D_{k}>0$.
(2) Pick a stepsize t_{k} by a line search procedure on the function

$$
\begin{equation*}
g(t)=f\left(x_{k}-t D_{k} \nabla f\left(x_{k}\right)\right) \tag{32}
\end{equation*}
$$

(3) Set $x_{k+1}=x_{k}-t_{k} D_{k} \nabla f\left(x_{k}\right)$.
(1) If $\left\|\nabla f\left(x_{k+1}\right)\right\| \leq \epsilon$, then STOP, and x_{k+1} is the output.

Diagonal Scaling

The main question is how to choose the scaling matrix D_{k}.
To accelerate the rate of convergence: Make scaled Hessian $D_{k}^{1 / 2} \nabla^{2} f\left(x_{k}\right) D_{k}^{1 / 2}$ to be as close as possible to the identity matrix.
When $\nabla^{2} f\left(x_{k}\right)>0$, we can choose $D_{k}=\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1}$ and the scaled Hessian becomes the identity matrix. The resulting method

$$
\begin{equation*}
x_{k+1}=x_{k}-t_{k}\left(\nabla^{2} f\left(x_{k}\right)\right)^{-1} \nabla f\left(x_{k}\right) \tag{33}
\end{equation*}
$$

is the Newton's method.

Example with Code - Scaled Gradient Method

Consider the problem

$$
\begin{aligned}
& \min \left\{1000 x_{1}^{2}+40 x_{1} x_{2}+x_{2}^{2}\right\} \\
& A=\left[\begin{array}{cc}
1000 & 20 \\
20 & 1
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{aligned}
$$

Scaled gradient method with diagonal scaling matrix

$$
A=\left[\begin{array}{cc}
\frac{1}{1000} & 0 \\
0 & 1
\end{array}\right]
$$

Convergence Analysis of the Gradient Method

Lipschitz Property of the Gradient:
Given the unconstrained minimization problem

$$
\min \left\{f(\mathbf{x}): \mathbf{x} \in \mathbb{R}^{n}\right\}
$$

In order for gradient descent to work, we have to assume the object function f is continuously differentiable and its gradient ∇f is Lipschitz continuous over \mathbb{R}^{n}

Definition

A gradient ∇f is Lipschitz continuous over \mathbb{R}^{n} when, for some $L \geq 0$:

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

Convergence Analysis of the Gradient Method

Definition

A gradient ∇f is Lipschitz continuous over \mathbb{R}^{n} when, for some $L \geq 0$:

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\| \leq L\|\mathbf{x}-\mathbf{y}\| \text { for any } \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}
$$

This L is called the Lipschitz constant

- If ∇f is Lipschitz with constant L, then it must also be Lipschitz with constant \tilde{L} for all $\tilde{L} \geq L$
- There are an infinite number of Lipschitz constants, but we are usually only concerned with the smallest one.
- The class of functions with Lipschitz gradient with constant L is denoted by $C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ or $C_{L}^{1,1}$
- $C^{k, \alpha}$ denotes a Hölder space
- k - the left-hand side contains k th-order partial derivatives
- α - the norm on the right-hand side is raised to the power α

Examples

- Linear functions Given $\mathbf{a} \in \mathbb{R}^{n}$, the function $f(\mathbf{x})=\mathbf{a}^{T} \mathbf{x}$ is in $C_{0}^{1,1}$

$$
\|\nabla f(\mathbf{x})-\nabla f(\mathbf{y})\|=\mathbf{a}-\mathbf{a}=0 \leq 0\|\mathbf{x}-\mathbf{y}\|
$$

- Quadratic functions Let \mathbf{A} be an $n \times n$ symmetric matrix, $\mathbf{b} \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$. Then the function $f(\mathbf{x})=\mathbf{x}^{T} \mathbf{A} \mathbf{x}+2 \mathbf{b}^{T} \mathbf{x}+c$ is a $C_{L}^{1,1}$ function, where $L=2\|\mathbf{A}\|$

Convergence Analysis of the Gradient Method

Theorem

Let f be a twice continuously differentiable function over \mathbb{R}^{n}. Then the following two claims are equivalent:
(1) $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$
(2) $\left\|\nabla^{2} f(\mathbf{x})\right\| \leq L$ for any $\mathbf{x} \in \mathbb{R}^{n}$

In other words, the gradient of f is Lipschitz continuous with Lipschitz constant L iff the norm of the Hessian of f is less than or equal to L

Example 4.21

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=\sqrt{1+x^{2}}$. Then

$$
0 \leq f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}} \leq 1
$$

for any $x \in \mathbb{R}$, so $f \in C_{1}^{1,1}$

The Descent Lemma

$C^{1,1}$ functions can be bounded above by a quadratic function over the entire space, which is fundamental in convergence proofs of gradient-based methods

Lemma

Let $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Then for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$

$$
f(\mathbf{y}) \leq f(\mathbf{x})+\nabla f(\mathbf{x})^{T}(\mathbf{y}-\mathbf{x})+\frac{L}{2}\|\mathbf{x}-\mathbf{y}\|^{2}
$$

Proof.

By the fundamental theorem of calculus,

$$
f(\mathbf{y})-f(\mathbf{x})=\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x})), \mathbf{y}-\mathbf{x}\rangle d t
$$

Therefore,

$$
f(\mathbf{y})-f(\mathbf{x})=\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle+\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle d t
$$

Thus,

$$
\begin{aligned}
|f(\mathbf{y})-f(\mathbf{x})-\langle\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle| & =\left|\int_{0}^{1}\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle d t\right| \\
& \leq \int_{0}^{1}|\langle\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x}), \mathbf{y}-\mathbf{x}\rangle| d t \\
& \leq \int_{0}^{1}\|\nabla f(\mathbf{x}+t(\mathbf{y}-\mathbf{x}))-\nabla f(\mathbf{x})\| \cdot\|\mathbf{y}-\mathbf{x}\| d t \\
& \leq \int_{0}^{1} t L\|\mathbf{y}-\mathbf{x}\|^{2} d t=\frac{L}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
\end{aligned}
$$

Sufficient Decrease Lemma

Lemma

Sufficient Decrease Lemma: Suppose that $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Then for any $\mathrm{x} \in \mathbb{R}^{n}$ and $t>0$

$$
f(\mathbf{x})-f(\mathbf{x}-t \nabla f(\mathbf{x})) \geq t\left(1-\frac{L t}{2}\right)\|\nabla f(\mathbf{x})\|^{2}
$$

A sufficient decrease property occurs in each of the stepsize selection strategies:

- constant
- exact line search
- backtracking

Lemma

Sufficient Decrease of the Gradient Method: Let $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$. Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method for solving

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

with one of the following stepsize strategies:

- constant stepsize $\bar{t} \in\left(0, \frac{2}{L}\right)$
- exact line search
- backtracking procedure with parameters $s \in \mathbb{R}_{++}, \alpha \in(0,1), \beta \in(0,1)$ Then,

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k+1}\right) \geq M\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\|^{2} \geq 0
$$

Where

$$
M= \begin{cases}\bar{t}\left(1-\frac{\bar{\tau} L}{2}\right) & \text { constant stepsize } \\ \frac{1}{2 L} & \text { exact line search } \\ \alpha \min \left\{s, \frac{2(1-\alpha) \beta}{L}\right\} & \text { backtracking }\end{cases}
$$

Convergence of the Gradient Method

Theorem

Let $f \in C_{L}^{1,1}\left(\mathbb{R}^{n}\right)$ and let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by the gradient method for solving

$$
\min _{\mathbf{x} \in \mathbb{R}^{n}} f(\mathbf{x})
$$

With one of the following stepsize strategies

- constant stepsize $\bar{t} \in\left(0, \frac{2}{L}\right)$
- exact line search
- backtracking procedure with parameters $s \in \mathbb{R}_{++}, \alpha \in(0,1), \beta \in(0,1)$ Assume that f is bounded below over \mathbb{R}^{n}, that is, there exists $m \in \mathbb{R}$ such that $f(\mathbf{x})>m$ for all $\mathbf{x} \in \mathbb{R}^{n}$. Then we have the following:
(1) The sequence $\left\{f\left(\mathbf{x}_{k}\right)\right\}_{k \geq 0}$ is nonincreasing. In addition, for any $k \geq 0$, $f\left(\mathbf{x}_{k+1}\right)<f\left(\mathbf{x}_{k}\right)$ unless $\nabla f\left(\mathbf{x}_{k}\right)=0$
(2) $\nabla f\left(\mathbf{x}_{k}\right) \rightarrow 0$ as $k \rightarrow \infty$

Rate of Convergence of Gradient Norms

Theorem

Under the setting of the previous theorem, let f^{*} be the limit of the convergent sequence $\left\{f\left(\mathbf{x}_{k}\right)\right\}_{k \geq 0}$. Then for any $n=0,1,2, \ldots$

$$
\min _{k=0,1, \ldots, n}\left\|\nabla f\left(\mathbf{x}_{k}\right)\right\| \leq \sqrt{\frac{f\left(\mathbf{x}_{\mathbf{0}}\right)-f^{*}}{M(n+1)}}
$$

Where

$$
M= \begin{cases}\bar{t}\left(1-\frac{\bar{t} L}{2}\right) & \text { constant stepsize } \\ \frac{1}{2 L} & \text { exact line search } \\ \alpha \min \left\{s, \frac{2(1-\alpha) \beta}{L}\right\} & \text { backtracking }\end{cases}
$$

Newton's Method

$$
\mathbf{x}_{k+1}=\operatorname{argmin}_{\mathbf{x} \in \mathbb{R}^{n}} f\left(\mathbf{x}_{k}\right)+\nabla f\left(\mathbf{x}_{k}\right)^{T}\left(\mathbf{x}-\mathbf{x}_{k}\right)+\frac{1}{2}\left(\mathbf{x}-\mathbf{x}_{k}\right)^{T} \nabla^{2} f\left(\mathbf{x}_{k}\right)\left(\mathbf{x}-\mathbf{x}_{\mathbf{k}}\right)
$$

- While gradient descent has linear convergence (locally), Newton's method has quadratic convergence (locally)
- This formula is not well defined unless we assume $\nabla^{2} f\left(\mathbf{x}_{k}\right)$ is positive definite
- When this is the case, we get Pure Newton's Method
- Each iteration is expensive computationally because it requires solving a system of linear equations.

Pure Newton's Method

Definition

Pure Newton's Method: Newton's Method when $\nabla^{2} f\left(\mathbf{x}_{k}\right)$ is positive definite. The unique stationary point that minimizes this minimization problem is:

$$
\nabla f\left(\mathbf{x}_{k}\right)+\nabla^{2} f\left(\mathbf{x}_{k}\right)\left(\mathbf{x}_{k+1}-\mathbf{x}_{k}\right)=0
$$

Which is more useful when written as:

$$
\mathbf{x}_{k+1}=\mathbf{x}_{k}-\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

Definition

Newton Direction: The direction \mathbf{d}_{k} the update formula steps in for each iteration.

$$
\mathbf{d}_{k}=\left(\nabla^{2} f\left(\mathbf{x}_{k}\right)\right)^{-1} \nabla f\left(\mathbf{x}_{k}\right)
$$

When $\nabla^{2} f\left(\mathbf{x}_{k}\right)$ is positive definite for any k, pure Newton's method is just a scaled gradient method and Newton's directions are descent directions.

Pure Newton's Method - Algorithm

Input: $\epsilon>0$ - tolerance parameter
Initialization: Pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General Step: For any $k=0,1,2, \ldots$ execute the following steps:
(1) Compute the Newton direction \mathbf{d}_{k}, which is the solution to the linear system $\nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
(2) Set $\mathbf{x}_{k+1}=\mathbf{x}_{k}+\mathbf{d}_{k}$.
(3) If $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \epsilon$, then STOP, and \mathbf{x}_{k+1} is the output.

Example 5.1

This example shows how $\nabla^{2} f(\mathbf{x})$ being positive definite is not enough to guarantee convergence. The choice of \mathbf{x}_{0} can also matter.

Consider the function $f(x)=\sqrt{1+x^{2}}$ defined over the real line. The minimizer of f over \mathbb{R} is at $x=0$. The first and second derivatives of f are

$$
f^{\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}, f^{\prime \prime}(x)=\frac{1}{\left(1+x^{2}\right)^{3 / 2}}
$$

So Pure Newton's Method has the form

$$
x_{k+1}=x_{k}-\frac{f^{\prime}\left(x_{k}\right)}{f^{\prime \prime}\left(x_{k}\right)}=x_{k}-x_{k}\left(1+x_{k}^{2}\right)=-x_{k}^{3}
$$

- When $\left|x_{0}\right| \geq 1$, the method diverges
- When $\left|x_{0}\right|<1$, the method converges to $x^{*}=0$

Quadratic Local Convergence of Newton's Method

Let f be a twice continuously differntiable function defined over \mathbb{R}^{n}. Assume that

- there exists $m>0$ for which $\nabla^{2} f(\mathbf{x}) \geq m \mathbf{I}$ for any $\mathbf{x} \in \mathbb{R}^{n}$
- there exists $L>0$ for which $\left\|\nabla^{2} f(\mathbf{x})-\nabla^{2} f(\mathbf{y})\right\| \leq L\|\mathbf{x}-\mathbf{y}\|$ for any $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$
Let $\left\{\mathbf{x}_{k}\right\}_{k \geq 0}$ be the sequence generated by Newton's method, and let \mathbf{x}^{*} be the unique minimizer of f over \mathbb{R}^{n}. Then for any $k=0,1, \ldots$ the inequality

$$
\begin{equation*}
\left\|\mathbf{x}_{k+1}-\mathbf{x}^{*}\right\| \leq \frac{L}{2 m}\left\|\mathbf{x}_{k}-\mathbf{x}^{*}\right\|^{2} \tag{34}
\end{equation*}
$$

holds. In addition, if $\left\|\mathbf{x}_{0}-\mathbf{x}^{*}\right\| \leq \frac{m}{L}$, then

$$
\begin{equation*}
\left\|\mathrm{x}_{k}-\mathbf{x}^{*}\right\| \leq \frac{2 m}{L}\left(\frac{1}{2}\right)^{2^{k}}, k=0,1,2, \ldots \tag{35}
\end{equation*}
$$

Example 5.3

$$
\begin{gathered}
f(x, y)=100 * x^{4}+0.01 * y^{4} \\
\left(x_{0}, y_{0}\right)=(1,1)
\end{gathered}
$$

Damped Newton's Method - Algorithm

Input: $\alpha, \beta \in(0,1)$ - parameters for the backtracking procedure. $\epsilon>0$ - tolerance parameter.
Initialization: Pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General Step: For any $k=0,1,2, \ldots$ execute the following steps:
(1) Compute the Newton direction \mathbf{d}_{k}, which is the solution to the linear system $\nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$.
(2) Set $t_{k}=1$. While

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{\mathbf{k}}\right)<-\alpha t_{k} \nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{d}_{k}
$$

set $t_{k}:=\beta t_{k}$.
(3) $\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}$.
(1) If $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \epsilon$, then STOP, and \mathbf{x}_{k+1} is the output.

Example 5.5

$$
\begin{gathered}
f(x, y)=\sqrt{x^{2}+1}+\sqrt{y^{2}+1} \\
\left(x_{0}, y_{0}\right)=(10,10)
\end{gathered}
$$

Hybrid Gradient-Newton Method

Input: $\alpha, \beta \in(0,1)$ - parameters for the backtracking procedure.
$\epsilon>0$ - tolerance parameter.
Initialization: Pick $\mathbf{x}_{0} \in \mathbb{R}^{n}$ arbitrarily.
General Step: For any $k=0,1,2, \ldots$ execute the following steps:
(1) If $\nabla^{2} f\left(\mathbf{x}_{k}\right)>0$, then take \mathbf{d}_{k} as the Newton direction \mathbf{d}_{k}, which is the solution to the linear system $\nabla^{2} f\left(\mathbf{x}_{k}\right) \mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$. Otherwise, set $\mathbf{d}_{k}=-\nabla f\left(\mathbf{x}_{k}\right)$
(2) Set $t_{k}=1$. While

$$
f\left(\mathbf{x}_{k}\right)-f\left(\mathbf{x}_{k}+t_{k} \mathbf{d}_{\mathbf{k}}\right)<-\alpha t_{k} \nabla f\left(\mathbf{x}_{k}\right)^{T} \mathbf{d}_{k}
$$

set $t_{k}:=\beta t_{k}$.
(3) $\mathbf{x}_{k+1}=\mathbf{x}_{k}+t_{k} \mathbf{d}_{k}$.
(1) If $\left\|\nabla f\left(\mathbf{x}_{k+1}\right)\right\| \leq \epsilon$, then STOP, and \mathbf{x}_{k+1} is the output.

Example 5.8 - Rosenbrock Function

$$
f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

- When a minimum is found with backtracking, it takes about 6900 iterations.
- With the Hybrid-Gradient Newton Method, it only takes 17 iterations!

Exercises

Beck 4.2, 4.3, 4.7, 5.2

