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Motivation

An optimization problem typically involves finding the minimum (or
maximum) of a function f(x) where x is a vector in Rn.

Gradient vanishes at optimal points. Search through all stationary points
for the one with minimal function value.

2 / 47



Descent Direction Methods

Iterative algorithm is of the form:

xk+1 = xk + tkdk, k = 0, 1, 2, · · · (1)

where dk is the direction and tk is the stepsize.

Definition
Descent Direction: Let f : Rn → R be a continuous differentiable function
over Rn. A vector 0 ̸= d ∈ Rn is called a descent direction of f at x if the
directional derivative f ′(x; d) is negative

f ′(x;d) = ∇f(x)Td < 0 (2)
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Descent Directions Method

Lemma
Descent property of descent directions: Let f be a continuously
differentiable function over Rn, and let x ∈ Rn. Suppose that d is a descent
direction of f at x then there exists ϵ > 0 such that

f(x+ td) < f(x) (3)

for any t ∈ (0, ϵ]

Proof : Since f ′(x; d) < 0, it follows that

lim
t→0+

f(x+ td)− f(x)

t
= f ′(x; d) < 0

∴ ∃ an ϵ > 0 such that f(x+ td) < f(x) for any t ∈ (0, ϵ].
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Descent Directions Method

Initialization: Pick x0 ∈ Rn arbitrarily.
General step: For any k = 0, 1, 2, · · · set

1 Pick a descent direction dk.

2 Find a stepsize tk satisfying f(xk + tkdk) < f(xk).

3 Set xk+1 = xk + tkdk.

4 If a stopping criterion is satisfied, then STOP and xk+1 is the output.

5 / 47



Descent Directions Method: Questions

What is the starting point?

Chosen arbitrarily in the absence of an educated guess.

What stepsize should be taken?

f(xk+1) < f(xk)
Process of finding step size tk is called line search.

What is the stopping criterion?

∥∇f(xk+1)∥ ≤ ϵ (4)

How to choose the descent direction?

Main difference between different methods.
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Stepsize Selection Rules

Constant stepsize: tk = t′ for any k.

Exact line search: tk is a minimizer of f along the ray xk + tkdk:

tk ∈ argmint≥0f(xk + tkdk). (5)

Backtracking: The method requires three parameters:
s > 0, α ∈ (0, 1), β ∈ (0, 1).

Set tk to be equal to initial guess ’s’.

f(xk)− f(xk + tkdk) < −αtk∇f(xk)
T dk (6)

Set tk ← βtk or tk = sβik where ik is the smallest nonnegative integer s.t.

f(xk)− f(xk + sβikdk) ≥ −αsβik∇f(xk)
T dk (7)

7 / 47



Sufficient Decrease Condition

The sufficient decrease condition is always satisfied for small enough tk.

Lemma
Validity of the sufficient decrease condition: Let f be a continuously
differentiable function over Rn, and let x ∈ Rn. Suppose that 0 ̸= d ∈ Rn is a
descent direction of f at x and let α ∈ (0, 1). Then there exists ϵ > 0 such that

f(x)− f(x+ td) ≥ −αt∇f(x)Td (8)

for any t ∈ (0, ϵ]
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Sufficient Decrease Condition

Proof : Since f is continuously differentiable,

f(x+ td) = f(x) + t∇f(x)T d+ o(t∥d∥)

f(x)− f(x+ td) = −αt∇f(x)T d− (1− α)t∇f(x)T d− o(t∥d∥) (9)

Since d is a descent direction of f at x we have

lim
t→0+

(1− α)t∇f(x)T d+ o(t∥d∥)
t

= (1− α)∇f(x)T d < 0.

Hence, there exists ε > 0 such that for all t ∈ (0, ε] the inequality

(1− α)t∇f(x)T d+ o(t∥d∥) < 0 (10)

holds, which combined with (9) implies the desired result.
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Example: Exact line search for quadratic functions

Let f(x) = xTAx+ 2bTx+ c, where A is an n× n positive definite matrix,
b ∈ Rn, and c ∈ R. Let x ∈ Rn and d ∈ Rn be a descent direction of f at x.
Find an explicit formula for stepsize using line search.
Soln: Find solution of

min
t≥0

f(x+ td)

g(t) = f(x+ td) = (x+ td)TA(x+ td) + 2bT (x+ td) + c

= (dTAd)t2 + 2(dTAx+ dT b)t+ f(x)

Since, g′(t) = 2(dTAd)t+ 2dT (Ax+ b)

and, ∇f(x) = 2(Ax+ b)

g′(t) = 0 only iff

t̄ = −dT∇f(x)

2dTAd

∵ dT∇f(x) < 0, we have t̄ > 0.
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Gradient Method

Choice of descent direction: dk = −∇f(xk) because for ∥∇f(xk)∥ ≠ 0,

f ′(xk;−∇f(xk)) = −∇f(xk)
T∇f(xk) = −∥∇f(xk)∥2 < 0

Lemma
Let f be a continuously differentianle function, and let x ∈ Rn be a
non-stationary point (∇f(x) ̸= 0). Then an optimal solution of

min
d∈Rn

{f ′(x; d) : ∥d∥ = 1} (11)

is d = − ∇f(x)
∥∇f(x)∥
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Gradient Method

Proof : Using Cauchy-Schwarz inequality,

∇f(x)T d ≥ −∥∇f(x)∥ · ∥d∥ = −∥∇f(x)∥. (12)

Thus, −∥∇f(x)∥ is a lower bound on (11).
Plugging

d = − ∇f(x)

∥∇f(x)∥
we obtain

f ′
(
x,− ∇f(x)

∥∇f(x)∥

)
= −∇f(x)T

(
∇f(x)

∥∇f(x)∥

)
= −∥∇f(x)∥, (13)

∴ the lower bound −∥∇f(x)∥ is attained at d = − ∇f(x)
∥∇f(x)∥ , which implies that

this is an optimal solution of (11).
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Gradient Method

Input: ϵ > 0 tolerance parameter.
Initialization: Pick x0 ∈ Rn arbitrarily.
General step: For any k = 0, 1, 2, · · · set

1 Pick a stepsize tk using line search on g(t) = f(xk − t∇f(xk)).

2 Set xk+1 = xk − tk∇f(xk).

3 If ∥∇f(xk+1∥ ≤ ϵ, then STOP and xk+1 is the output.
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Quadratic Function - Example with Code

Find optimal solution of quadratic function

min
x∈Rn

{xTAx+ 2bTx} (14)

where A ∈ Rn×s positive definite and b ∈ Rn.

Consider the 2D minimization problem

min
x,y

x2 + 2y2 (15)

A =

[
1 0
0 2

]
, b =

[
0
0

]
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Zig-Zag Effect of Gradient Method
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Condition Number

Definition
Let A be an n× n positive definite matrix. Then the condition number of A is
defined by

χ(A) =
λmax(A)

λmin(A)
(16)

Gradient method applied to problems with large condition number might
require large number of iterations and vice versa.

Matrices with large condition number are called ill-conditioned.

Matrices with small condition number are called well-conditioned.

16 / 47



Example with Code: Role of Condition Number

The Rosenbrock function is the following function:

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2. (17)

The optimal solution is (x1, x2) = (1, 1) with optimal value 0. The Rosenbrock
function is extremely ill-conditioned at the optimal solution.

∇f(x) =

(
−400x1(x2 − x2

1)− 2(1− x1)
200(x2 − x2

1)

)
, (18)

∇2f(x) =

(
−400x2 + 1200x2

1 + 2 −400x1

−400x1 200

)
. (19)

At (x1, x2) = (1, 1),

∇2f(1, 1) =

(
802 −400
−400 200

)
(20)
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Sensitivity of Solutions to Linear Systems

Sensitivity of the solution of the linear system to right-hand-side perturbations
depends on the condition number of the coefficients matrix.

Consider a linear system Ax = b, and assume that A is positive definite. The
solution is x = A−1b.

Consider a perturbation b+∆b. Solution of the new system is

x+∆x = A−1(b+∆b) = x+A−1∆b,

so that ∆x = A−1∆b. Find a bound on the relative error ∥∆x∥
∥x∥ in terms of

∥∆b∥
∥b∥ :

∥∆x∥
∥x∥

=
∥A−1∆b∥

∥x∥
≤ ∥A−1∥∥∆b∥

∥x∥
=

λmax(A
−1)∥∆b∥

∥x∥
, (21)
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the last equality follows from the fact that the spectral norm of a positive
definite matrix D is ∥D∥ = λmax(D). By the positive definiteness of A, it

follows that λmax(A
−1) = 1

λmin(A) :

∥∆x∥
∥x∥

≤ 1

λmin(A)

∥∆b∥
∥x∥

=
1

λmin(A)

∥∆b∥
∥A−1b∥

≤ 1

λmin(A)

∥∆b∥
λmin(A−1)∥b∥

(22)

=
λmax(A)

λmin(A)

∥∆b∥
∥b∥

= κ(A)
∥∆b∥
∥b∥

, (23)
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Example with Code - Gradient Method

Consider the problem

min{1000x2
1 + 40x1x2 + x2

2}

A =

[
1000 20
20 1

]
, b =

[
0
0

]
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Diagonal Scaling

Condition the problem by making an appropriate linear transformation of
decision variables. Consider the unconstrained minimization problem

min{f(x) : x ∈ Rn}. (24)

For a given nonsingular matrix S ∈ Rn×n, make the linear transformation
x = Sy and the equivalent problem is

min{g(y) ≡ f(Sy) : y ∈ Rn}. (25)

Since ∇g(y) = ST∇f(Sy), the gradient method applied to the transformed
problem is

yk+1 = yk − tkS
T∇f(Syk). (26)

Multiplying by S from the left, and using xk = Syk, we obtain

xk+1 = xk − tkSS
T∇f(xk). (27)
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Diagonal Scaling

Define D = SST , we obtain the scaled gradient method with scaling matrix D:

xk+1 = xk − tkD∇f(xk). (28)

By its definition, D is positive definite. The direction −D∇f(xk) is a descent
direction of f at xk when ∇f(xk) ̸= 0 since

f ′(xk;−D∇f(xk)) = −∇f(xk)
TD∇f(xk) < 0, (29)

because of positive definiteness of D.

The scaled gradient method with scaling matrix D is equivalent to
the gradient method employed on the function g(y) = f(D1/2y).
The gradient and Hessian of g are given by

∇g(y) = D1/2∇f(D1/2y) = D1/2∇f(x), (30)

∇2g(y) = D1/2∇2f(D1/2y)D1/2 = D1/2∇2f(x)D1/2, (31)

where x = D1/2y.
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Scaled Gradient Method

Input: ϵ - tolerance parameter.
Initialization: Pick x0 ∈ Rn arbitrarily.
General step: For any k = 0, 1, 2, . . . execute the following steps:

1 Pick a scaling matrix Dk > 0.

2 Pick a stepsize tk by a line search procedure on the function

g(t) = f(xk − tDk∇f(xk)). (32)

3 Set xk+1 = xk − tkDk∇f(xk).

4 If ∥∇f(xk+1)∥ ≤ ϵ, then STOP, and xk+1 is the output.
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Diagonal Scaling

The main question is how to choose the scaling matrix Dk.

To accelerate the rate of convergence: Make scaled Hessian D
1/2
k ∇2f(xk)D

1/2
k

to be as close as possible to the identity matrix.

When ∇2f(xk) > 0, we can choose Dk = (∇2f(xk))
−1 and the scaled Hessian

becomes the identity matrix. The resulting method

xk+1 = xk − tk(∇2f(xk))
−1∇f(xk) (33)

is the Newton’s method.
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Example with Code - Scaled Gradient Method

Consider the problem

min{1000x2
1 + 40x1x2 + x2

2}

A =

[
1000 20
20 1

]
, b =

[
0
0

]
Scaled gradient method with diagonal scaling matrix

A =

[
1

1000 0
0 1

]
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Convergence Analysis of the Gradient Method

Lipschitz Property of the Gradient:
Given the unconstrained minimization problem

min{f(x) : x ∈ Rn}

In order for gradient descent to work, we have to assume the object function f
is continuously differentiable and its gradient ∇f is Lipschitz continuous
over Rn

Definition
A gradient ∇f is Lipschitz continuous over Rn when, for some L ≥ 0:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for any x,y ∈ Rn
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Convergence Analysis of the Gradient Method

Definition
A gradient ∇f is Lipschitz continuous over Rn when, for some L ≥ 0:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for any x,y ∈ Rn

This L is called the Lipschitz constant

If ∇f is Lipschitz with constant L, then it must also be Lipschitz with
constant L̃ for all L̃ ≥ L

There are an infinite number of Lipschitz constants, but we are usually
only concerned with the smallest one.

The class of functions with Lipschitz gradient with constant L is denoted
by C1,1

L (Rn) or C1,1
L

Ck,α denotes a Hölder space
k - the left-hand side contains kth-order partial derivatives
α - the norm on the right-hand side is raised to the power α
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Examples

Linear functions Given a ∈ Rn, the function f(x) = aTx is in C1,1
0

∥∇f(x)−∇f(y)∥ = a− a = 0 ≤ 0∥x− y∥

Quadratic functions Let A be an n x n symmetric matrix, b ∈ Rn, and
c ∈ R. Then the function f(x) = xTAx+ 2bTx+ c is a C1,1

L function,
where L = 2∥A∥
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Convergence Analysis of the Gradient Method

Theorem
Let f be a twice continuously differentiable function over Rn. Then the
following two claims are equivalent:

1 f ∈ C1,1
L (Rn)

2 ∥∇2f(x)∥ ≤ L for any x ∈ Rn

In other words, the gradient of f is Lipschitz continuous with Lipschitz
constant L iff the norm of the Hessian of f is less than or equal to L
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Example 4.21

Let f : R −→ R be given by f(x) =
√
1 + x2. Then

0 ≤ f ′′(x) =
1

(1 + x2)3/2
≤ 1

for any x ∈ R, so f ∈ C1,1
1
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The Descent Lemma

C1,1 functions can be bounded above by a quadratic function over the entire
space, which is fundamental in convergence proofs of gradient-based methods

Lemma

Let f ∈ C1,1
L (Rn). Then for any x,y ∈ Rn

f(y) ≤ f(x) +∇f(x)T (y − x) +
L

2
∥x− y∥2
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Proof.
By the fundamental theorem of calculus,

f(y)− f(x) =

∫ 1

0

⟨∇f(x+ t(y − x)),y − x⟩dt

Therefore,

f(y)− f(x) = ⟨∇f(x),y − x⟩+
∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt

Thus,

|f(y)− f(x)− ⟨∇f(x),y − x⟩| =
∣∣∣∣∫ 1

0

⟨∇f(x+ t(y − x))−∇f(x),y − x⟩dt
∣∣∣∣

≤
∫ 1

0

|⟨∇f(x+ t(y − x))−∇f(x),y − x⟩|dt

≤
∫ 1

0

∥∇f(x+ t(y − x))−∇f(x)∥ · ∥y − x∥dt

≤
∫ 1

0

tL∥y − x∥2dt = L

2
∥y − x∥2

32 / 47



Sufficient Decrease Lemma

Lemma

Sufficient Decrease Lemma: Suppose that f ∈ C1,1
L (Rn). Then for any

x ∈ Rn and t > 0

f(x)− f(x− t∇f(x)) ≥ t

(
1− Lt

2

)
∥∇f(x)∥2

A sufficient decrease property occurs in each of the stepsize selection
strategies:

constant

exact line search

backtracking
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Lemma

Sufficient Decrease of the Gradient Method: Let f ∈ C1,1
L (Rn). Let

{xk}k≥0 be the sequence generated by the gradient method for solving

min
x∈Rn

f(x)

with one of the following stepsize strategies:

constant stepsize t̄ ∈ (0, 2
L )

exact line search

backtracking procedure with parameters s ∈ R++, α ∈ (0, 1), β ∈ (0, 1)

Then,
f(xk)− f(xk+1) ≥ M∥∇f(xk)∥2 ≥ 0

Where

M =


t̄(1− t̄L

2 ) constant stepsize
1
2L exact line search

αmin{s, 2(1−α)β
L } backtracking
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Convergence of the Gradient Method

Theorem

Let f ∈ C1,1
L (Rn) and let {xk}k≥0 be the sequence generated by the gradient

method for solving
min
x∈Rn

f(x)

With one of the following stepsize strategies

constant stepsize t̄ ∈ (0, 2
L )

exact line search

backtracking procedure with parameters s ∈ R++, α ∈ (0, 1), β ∈ (0, 1)

Assume that f is bounded below over Rn, that is, there exists m ∈ R such that
f(x) > m for all x ∈ Rn. Then we have the following:

1 The sequence {f(xk)}k≥0 is nonincreasing. In addition, for any k ≥ 0,
f(xk+1) < f(xk) unless ∇f(xk) = 0

2 ∇f(xk) −→ 0 as k −→ ∞
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Rate of Convergence of Gradient Norms

Theorem
Under the setting of the previous theorem, let f∗ be the limit of the convergent
sequence {f(xk)}k≥0. Then for any n = 0, 1, 2, . . .

min
k=0,1,...,n

∥∇f(xk)∥ ≤

√
f(x0)− f∗

M(n+ 1)

Where

M =


t̄(1− t̄L

2 ) constant stepsize
1
2L exact line search

αmin{s, 2(1−α)β
L } backtracking
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Newton’s Method

xk+1 = argminx∈Rnf(xk) +∇f(xk)
T (x− xk) +

1

2
(x− xk)

T∇2f(xk)(x− xk)

While gradient descent has linear convergence (locally), Newton’s method
has quadratic convergence (locally)

This formula is not well defined unless we assume ∇2f(xk) is positive
definite

When this is the case, we get Pure Newton’s Method

Each iteration is expensive computationally because it requires solving a
system of linear equations.
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Pure Newton’s Method

Definition

Pure Newton’s Method: Newton’s Method when ∇2f(xk) is positive
definite. The unique stationary point that minimizes this minimization
problem is:

∇f(xk) +∇2f(xk)(xk+1 − xk) = 0

Which is more useful when written as:

xk+1 = xk − (∇2f(xk))
−1∇f(xk)

Definition
Newton Direction: The direction dk the update formula steps in for each
iteration.

dk = (∇2f(xk))
−1∇f(xk)

When ∇2f(xk) is positive definite for any k, pure Newton’s method is just a
scaled gradient method and Newton’s directions are descent directions.
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Pure Newton’s Method - Algorithm

Input: ϵ > 0 - tolerance parameter
Initialization: Pick x0 ∈ Rn arbitrarily.
General Step: For any k = 0, 1, 2, . . . execute the following steps:

1 Compute the Newton direction dk, which is the solution to the linear
system ∇2f(xk)dk = −∇f(xk).

2 Set xk+1 = xk + dk.

3 If ∥∇f(xk+1)∥ ≤ ϵ, then STOP, and xk+1 is the output.
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Example 5.1

This example shows how ∇2f(x) being positive definite is not enough to
guarantee convergence. The choice of x0 can also matter.

Consider the function f(x) =
√
1 + x2 defined over the real line. The

minimizer of f over R is at x = 0. The first and second derivatives of f are

f ′(x) =
x√

1 + x2
, f ′′(x) =

1

(1 + x2)3/2

So Pure Newton’s Method has the form

xk+1 = xk − f ′(xk)

f ′′(xk)
= xk − xk(1 + x2

k) = −x3
k

When |x0| ≥ 1, the method diverges

When |x0| < 1, the method converges to x∗ = 0
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Quadratic Local Convergence of Newton’s Method

Let f be a twice continuously differntiable function defined over Rn. Assume
that

there exists m > 0 for which ∇2f(x) ≥ mI for any x ∈ Rn

there exists L > 0 for which ∥∇2f(x)−∇2f(y)∥ ≤ L∥x− y∥ for any
x,y ∈ Rn

Let {xk}k≥0 be the sequence generated by Newton’s method, and let x∗ be
the unique minimizer of f over Rn. Then for any k = 0, 1, . . . the inequality

∥xk+1 − x∗∥ ≤ L

2m
∥xk − x∗∥2 (34)

holds. In addition, if ∥x0 − x∗∥ ≤ m
L , then

∥xk − x∗∥ ≤ 2m

L

(
1

2

)2k

, k = 0, 1, 2, . . . (35)
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Example 5.3

f(x, y) = 100 ∗ x4 + 0.01 ∗ y4

(x0, y0) = (1, 1)
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Damped Newton’s Method - Algorithm

Input: α, β ∈ (0, 1) - parameters for the backtracking procedure.
ϵ > 0 - tolerance parameter.
Initialization: Pick x0 ∈ Rn arbitrarily.
General Step: For any k = 0, 1, 2, . . . execute the following steps:

1 Compute the Newton direction dk, which is the solution to the linear
system ∇2f(xk)dk = −∇f(xk).

2 Set tk = 1. While

f(xk)− f(xk + tkdk) < −αtk∇f(xk)
Tdk

set tk := βtk.

3 xk+1 = xk + tkdk.

4 If ∥∇f(xk+1)∥ ≤ ϵ, then STOP, and xk+1 is the output.
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Example 5.5

f(x, y) =
√
x2 + 1 +

√
y2 + 1

(x0, y0) = (10, 10)
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Hybrid Gradient-Newton Method

Input: α, β ∈ (0, 1) - parameters for the backtracking procedure.
ϵ > 0 - tolerance parameter.
Initialization: Pick x0 ∈ Rn arbitrarily.
General Step: For any k = 0, 1, 2, . . . execute the following steps:

1 If ∇2f(xk) > 0, then take dk as the Newton direction dk, which is the
solution to the linear system ∇2f(xk)dk = −∇f(xk). Otherwise, set
dk = −∇f(xk)

2 Set tk = 1. While

f(xk)− f(xk + tkdk) < −αtk∇f(xk)
Tdk

set tk := βtk.

3 xk+1 = xk + tkdk.

4 If ∥∇f(xk+1)∥ ≤ ϵ, then STOP, and xk+1 is the output.
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Example 5.8 - Rosenbrock Function

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2

When a minimum is found with backtracking, it takes about 6900
iterations.

With the Hybrid-Gradient Newton Method, it only takes 17 iterations!
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Exercises

Beck 4.2, 4.3, 4.7, 5.2
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