Physics 405 Lecture 23

Magnetic-Static Fields

Last time we stated the empirical laws of magnetisms:

Lorentz Force Law: \(\vec{F} = q \vec{E} + q \vec{v} \times \vec{B} \)

Currents (charge in motion) are a source of the magnetic field.

Current density: \(\vec{J} = \text{Charge "flux density"} \)
\[
\vec{J} = \frac{\text{charge}}{\text{Area}} \cdot \text{time}
\]

\[
\int_{\Sigma} \vec{J} \cdot d\sigma = \text{Current flow through surface } \Sigma
\]

Charge distributed in volume, locally moving @ velocity \(\vec{v} \)

\(\vec{J} = \rho \vec{v} \)

Charge distributed on surface, locally moving @ velocity \(\vec{v} \)

\(\vec{K} = \sigma \vec{v} \) (surface current intensity)
\[
\vec{K} = \frac{\text{current}}{\text{length}}
\]

\(\int_{\Sigma} \vec{K} \cdot d\Sigma \)

\(\int_{\Sigma} \vec{K} \cdot d\Sigma \)
Conservation of charge:

\[\nabla \cdot \vec{J} = -\frac{\partial \rho}{\partial t} \quad "\text{Continuity Equation}" \]

Magnetostatics: Steady current \(\Rightarrow \frac{\partial \vec{B}}{\partial t} = 0 \)

\[\Rightarrow \nabla \cdot \vec{J} = 0 \]

(Magnetostatics as consistent with electrostatic \(\frac{\partial \vec{E}}{\partial t} = 0 \))

Biot-Savart

Given a magnetostatic current density \(\vec{J} \) or \(\vec{K} \) or \(\vec{I} \)

Biot-Savart law

\[\vec{B}(r) = \frac{\mu_0}{4\pi} \int d^3r' \vec{J}(r') \times \frac{\hat{r}}{r^2} \]

\[= \frac{\mu_0}{4\pi} \int d^3r' \vec{K}(r') \times \frac{\hat{r}}{r^2} \]

\[= \frac{\mu_0}{4\pi} \int I \, dl \times \hat{r} \]
Note: A moving point charge is not a magneto-static configuration since the local charge density is changing. Nonetheless, when velocity is non-relativistic, \(v \ll c \), we have, to good approximation, the \(\vec{B} \) field of a moving \(q \) moving at \(\vec{v} \):

\[
\vec{B}(\vec{r}) = \frac{\mu_0 q \vec{v} \times \hat{\vec{r}}}{4\pi r^2}
\]

Magnetic field of a current-carrying wire

The most basic of magneto-static fields (analogous to the \(\vec{E} \)-field of a point charge) is \(\vec{B} \) from a infinitely long straight wire with current \(I \).

Consider first a small segment \(p \) of the wire.

\[p \times \vec{B}(p)\text{ out of page}\]

\[\vec{S} \text{ out of page}\]

\[\vec{E} \text{ out of page}\]

\[\vec{C} \text{ out of page}\]

\[\text{Source}\]

\[\text{Sink}\]

\[\vec{p}_2 \times \vec{B}(p_2) \text{ into page}\]

\[d\vec{l} \times \hat{n} = l dx |\hat{n}| \sin \alpha = dx \cos \theta\]

Let \(\theta \) be the variable that parameterizes the position of current element.

\[\tan \theta = \frac{d}{s} \Rightarrow \sec^2 \theta d\theta = \frac{dx}{s}\]
\[dx = s \sec^2 \theta \, d\theta = \frac{s \, d\theta}{\cos^2 \theta} \]

\[|\mathbf{B}(\mathbf{p})| = \frac{M_0 I}{4\pi} \int_{x_1}^{x_2} (dx \cdot \cos \theta) \frac{1}{r^2} \]

\[= \frac{M_0 I}{4\pi} \int_{\theta_1}^{\theta_2} s \, d\theta \frac{1}{\cos \theta} \frac{1}{r_2} \]

Aside \hspace{1cm} \frac{s}{r} = \cos \theta \hspace{1cm} \frac{1}{r^2} = \frac{\cos^2 \theta}{s^2} \]

\[|\mathbf{B}(\mathbf{p})| = \frac{M_0 I}{4\pi s} \int_{\theta_1}^{\theta_2} \frac{d\theta}{\cos \theta} \cos \theta \]

\[\mathbf{B}(\mathbf{p}) = \frac{M_0 I}{4\pi s} \left(\sin \theta_2 - \sin \theta_1 \right) \]

Now take limit as length \(\to \infty \)

\(\theta_1 \to -\frac{\pi}{2}, \quad \theta_2 \to \frac{\pi}{2} \)

\[\mathbf{B}(\theta) = \frac{M_0 I}{2\pi s} \frac{\phi}{R} \]

Right-hand rule

Magnetic field around infinite wire \(\sim \frac{1}{s} \)

where \(s \) is distance to wire
Force between parallel wires

\[F_{12} = \int I_1 \, dl_1 \times \vec{B}_2 \]

\[|F_{12}| = \frac{M_0 I_1 I_2}{4\pi d} \int dl_1 \]

Force between two (infinitely long) parallel wires, per unit length

\[f = \frac{M_0 I_1 I_2}{4\pi d} \]

- Attract for current in same direction
- Repel each other for current in opposite directions

Note: symmetry considerations.

In electrostatics, given an infinite line charge, we argued that \(|E| \) was naturally described in cylindrical coordinates, \(\rho, \phi, z \). We argued that \(|E| \) could only depend on \(\rho \) and point in the \(\phi \) direction. For \(\vec{B} \), \(|B| \) also only depends on \(\phi \) (as in must from symmetry). However, the direction of \(\vec{B} \) is \(\phi \) and \(\Phi \) varying with \(\phi \): \(\Phi = -\sin \phi \chi + \cos \phi \). This is allowed since the current has a direction which gives handedness.
B-field of a current loop

Let us find \(\vec{B} \) on the z-axis of symmetry \(\theta \), \(\phi \), \(r \), \(\vec{a} \).

\[
\vec{B}(\vec{r}) = \int d\vec{B}
\]

\[
d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{l} \times \hat{n}}{r^2}
\]

Look in any plane containing z-axis

\[
|d\vec{B}_1| = |d\vec{B}_2| = \frac{\mu_0}{4\pi} \frac{I d\vec{l}}{r^2}
\]

Only the z-component survives when we superpose the contributions from opposite ends of the loop

\[
d\vec{B}_z = |d\vec{B}| \cos \theta = \frac{I d\vec{l} \cos \theta}{r^2}
\]

\[
= \frac{\mu_0}{4\pi} \frac{I d\vec{l}}{r^3} = \frac{\mu_0}{4\pi} \frac{I d\vec{l}}{(\sqrt{a^2 + z^2})^3}
\]

\[
\Rightarrow \vec{B}(z) = \int_{\frac{z}{2}}^{\frac{z}{2}} d\vec{B}_z = \frac{\mu_0}{4\pi} \frac{I q}{(a^2 + z^2)^{3/2}}
\]
Thus, since \(\mathbf{B}_{\text{field}} = 2\pi q \)

\[
\mathbf{B}(z) \approx \frac{\mu_0}{4\pi} \left[\frac{2\pi a^2 I}{z^3} \right] \hat{z}
\]

Field falls off as \(\frac{1}{z^3} \) \Rightarrow Dipole field.

Recall for electric dipole \(\mathbf{p} = p \hat{z} \),
on axis of dipole

\[
\hat{E}(z) = \frac{1}{4\pi\varepsilon_0} \left[\frac{2p}{z^3} \right] \hat{z}
\]

\(\hat{p} \)

Current loop \(\Rightarrow \) magnetic dipole

\(|\mathbf{m}| = (2\pi a^2) I = (\text{Area}) I \) as we will see

\[\text{Physical} \]

\[\text{magnetic dipole} \]