
Physics 492:  Quantum Mechanics II
Problem Set #6

Due:  Thursday, April 1, 2004

Problem 1:  Mixed states vs. pure states and interference (10 points)
   A “spin-interferometer” is shown below

    Spin-1/2 electrons are prepared in a given state (pure or mixed) are separated in two
paths by a Stern-Gerlach apparatus (gradient field along z).  In one path the particle
passes through a solenoid, with a uniform magnetic field along the x-axis.  The two paths
are then recombined, sent through another Stern-Gerlach with gradient along x, and the
particles are counted in detectors in the two emerging ports.
     The strength of the magnetic field is chosen so that 

€ 

Ωt = φ , for some phase φ, where
  

€ 

Ω = 2µBB /h  is the Larmor frequency and t is the time spent inside the solenoid.

(a)  Plot the probability of electrons arriving at detector B as a function of φ for the
following pure state inputs:  

€ 

(i) ↑z , (ii) ↑x , (iii) ↓x .

(b)  Repeat part (a) for the following mixed state inputs

€ 

(i) ˆ ρ =
1
2
↑z ↑z +

1
2
↓z ↓z ,  

€ 

(ii) ˆ ρ =
1
2
↑x ↑x +

1
2
↓x ↓x ,  

€ 

(iii) ˆ ρ =
1
3
↑z ↑z +

2
3
↓z ↓z .

Comment on your results.

Problem 2:  The spin singlet (10 points)
Consider the entangled state of two spins,

€ 

ΨAB =
1
2
↑z A

⊗ ↓z B
− ↓z A

⊗ ↑z B( ) .

(a)  Show that (up to a phase) 

€ 

1
2
↑n A ⊗ ↓n B − ↓n A ⊗ ↑n B( ) = ΨAB , where 

€ 

↑n ,↓n
are spin spin-up and spin-down states along the direction 

€ 

en , discussed in P.S. #5.
Interpret this result.

(b)  Show that 

€ 

ΨAB ˆ σ n ⊗ ˆ σ n ' ΨAB = −en ⋅ e ′ n 

€ 

ˆ σ z

€ 

ˆ σ x
€ 

↑z

€ 

↓z
€ 

↑x

€ 

↓x

B

input

DA

DB



Problem 3:  Which-path information, Entanglement, and Decoherence
     We have discussed the rough rule of thumb encapsulated in Bohr’s “Complementarity
Principle”:  If we can determine which path a particle takes in an interferometer then we
do not observe quantum interference fringes.  But how does this arise

Consider the interferometer analogous to the one in Problem 1:

Into one arm of the interferometer we place a “which-way” detector in the form of
another spin-1/2 particle prepared in the state 

€ 

↑z W
.  If the electron which travels through

the interferometer, and ultimately detected (denoted D), interacts with the “which-way”
detector, the which-way electron flips the spin 

€ 

↑z W
⇒ ↓z W

.

(a)  The electron D is initially prepared in the state 

€ 

↑x D = ↑z D
+ ↓z D( ) / 2 .  Show that

before detection, the two electrons D and W are in the entangled state

€ 

ΨDW =
1
2
↑z D

↑z W
+ ↓z D

↓z W( ) .

(b)  Only the electron D is detected.  Show that its “marginal state”, ignoring the electron
W, is the completely mixed state,

€ 

ˆ ρ D =
1
2
↑z D

↑z +
1
2
↓z D

↓z

As you showed in Problem 1b, this state shows no interference  between  

€ 

↑z  and 

€ 

↓z .
Thus, the which-way detector removes the coherence between states that existed in the
input.

(c)  Extra Credit:   Suppose now the which way detector does not function perfectly and
acts the not completely flip the spin, but rotate it by an angle θ about  so that,

€ 

↑z W
⇒ ↑θ W = cos(θ /2)↑z W

+ sin(θ /2)↓z W
.

Show that in this case the marginal state is

€ 

ˆ ρ D =
1
2
↑z D

↑z + ↓z D
↓z + cos(θ /2)↑z D

↓z + cos(θ /2)↓z D
↑z( ).

Comment on the limits  

€ 

θ → 0 and 

€ 

θ →π .

€ 

ˆ σ z

€ 

ˆ σ x

€ 

↓z D€ 

↑z D

€ 

↑z W


