
Physics 492:  Quantum Mechanics II
Problem Set #10

Due:  Thursday, April 29, 2004

Problem 1:  Motion in spin dependent traps (10 Points)
Consider an electron moving in one dimension, in a spin-dependent trap as shown below:

If the electron is in spin-up (with respect to the z-axis), it is trapped in the right harmonic
well, and if it is in spin-down (with respect to the z-axis), it is trapped in the left harmonic
well.  The Hamiltonian that governs its dynamics can be written as,
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(a) What are the energy spectrum and stationary states of the system?  What are the
degeneracies of these states?  Sketch an energy level diagram for the first three levels and
label the degeneracies.

A small constant “transverse field” 
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Bx  is now added, with   
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µBBx << ωosc .
(b)  Qualitatively sketch how the energy plot in part (a) is modified.

(c)  Now calculate the perturbed energy spectrum for this system.

(d)  What are the new eigenstates in the ground state doublet?  For Δz macroscopic, these
are sometimes called Schrödinger cat states  -- explain why.

Problem 2:  The “Normal” Zeeman effect (10 points)
     The Zeeman effect refers to the splitting of spectral lines due to the application of an
applied magnetic field.  It was observed first, before the invention of quantum mechanics,
and explained in terms of classical electron response to electromagnetic fields.

(a)  Consider an electron bound to a proton in a circular “planetary orbit” of radius r and
frequency ω0 .  This electron radiates electromagnetically at frequency ω0 .  A weak
magnetic field is applied, exerting a force much smaller than the binding.  Given many
atoms, on average, the field will be either normal to, or in the plane motion.  Show that

this leads to three spectral lines at frequencies, ω0  andω0 ±Ω , where Ω =
eB
2mc

 is the

classical Larmor frequency.
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(b)  Consider now the quantum model of hydrogen.  Suppose our spectrometer cannot
resolve the fine structure and we observe radiation on the 2p→ 1s  transition (i.e. spin is
irrelevant to our observation).  Show that in the presence of a magnetic field, there are
three spectral lines at the same frequencies: ω0  andω0 ±Ω .  This is known a “normal
Zeeman effect” since was explained by the classical physics at the time.

Problem 3:  The “Anomalous” Zeeman effect (10 points)
     Suppose now we take spin into consideration.  Its effect will be observable in the
Zeeman effect if our spectrometer can resolve the fine structure.

(a) Show that the Zeeman interaction Hamiltonian is

 
ĤZeeman = −

̂
µ ⋅B = −µB ĵ + ŝ( ) ⋅B , where j = l + s  is the total electron angular

momentum in units of .  (Hint:  Remember the g-factors for orbital and spin).

     The total Hamiltonian is thus Ĥ = Ĥ spinless + ĤFS + ĤZeeman , where Ĥ spinless  is the
hydrogen atom Hamiltonian in the absence of spin, ĤFS  Hamiltonian including spin-orbit
coupling and relativistic corrections.  When the Zeeman energy is much smaller than the
fine-structure splitting, it is a perturbation. with Ĥ spinless + ĤFS  the “zeroth order”
Hamiltonian.

(b)  Consider then the Zeeman effect on the 2p1/2 → 1s1/2  transition.  Show that there are
only two spectral lines (this is known as the anomalous Zeeman effect).

   The Landé projection theorem (not proved here) says that when a vector operator (like

 
̂
µ ) is restricted is restricted to a subspace with total angular momentum j, is acts like the
operator,
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(c)  Use this to show that in first order perturbation theory, the applied magnetic leads to
a splitting of the 2j+1 degenerate sublevels of a given fine structure level to have energy,

Enjlmj
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where gjl = 1+
j( j +1) − l(l +1) + 3 / 4

2 j( j +1)
 is the “Landé g-factor”.


