Physics 492: Quantum Mechanics II

Problem Set #1 Due: Tuesday, Jan. 29, 2019 (5:00pm in TA mailbox)

Problem 1: Unitary operators (20 Points)

An important class of operators are *unitary*, defined as those that *preserve inner product*, i.e. if $|\tilde{\psi}\rangle = \hat{U}|\psi\rangle$ and $|\tilde{\phi}\rangle = \hat{U}|\phi\rangle$, then $\langle \tilde{\phi}|\tilde{\psi}\rangle = \langle \phi|\psi\rangle$ and $\langle \tilde{\psi}|\tilde{\phi}\rangle = \langle \psi|\phi\rangle$.

(a) Show that unitary operators $\hat{U}^{\dagger} \hat{U} = \hat{U} \hat{U}^{\dagger} = \hat{1}$ (i.e. the adjoint is the inverse).

 Λ (A) Λ (A) Λ and thus show \hat{U} is unitary. (b) Consider $\hat{U} = \exp(i\hat{A})$, where \hat{A} is a Hermitian operator. Show that $\hat{U}^{\dagger} = \exp(-i\hat{A})$

(c) Let $\hat{U}(t) = \exp(-i\hat{H}t/\hbar)$ where *t* is time and \hat{H} is the Hamiltonian. Let $|\psi(0)\rangle$ be the state *t*=0. Show that $|\psi(t)\rangle = \hat{U}(t)|\psi(0)\rangle$ satisfies the Time Dependent Schrödinger *required* by conservation of probability. Equation. That is, the state evolves according to a unitary map. Explain why this is

(d) Let $\{|u_n\rangle\}$ be the complete set of energy eigenfunctions, $\hat{H}|u_n\rangle = E_n|u_n\rangle$. Show that $\hat{U}(t) = \sum e^{-i\omega_n t} |u_n\rangle\langle u_n|$ *n* $\sum e^{-i\omega_n t} |u_n\rangle\langle u_n|$, where $\hbar \omega_n = E_n$. Using this show that $|\psi(t)\rangle = \sum c_n e^{-i\omega_n t} |u_n\rangle$ *n* $\sum c_n e^{-i\omega_n t} |u_n\rangle,$ where $c_n = \langle u_n | \psi(0) \rangle$.

Problem 2: A two-dimensional Hilbert space (40 Points)

Consider a two dimensional Hilbert space spanned by an orthonormal basis $\{|\uparrow\rangle,|\downarrow\rangle\}$. Let us define the operators

$$
\hat{S}_x = \frac{\hbar}{2} (|\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow|), \quad \hat{S}_y = \frac{\hbar}{2i} (|\uparrow\rangle\langle\downarrow| - |\downarrow\rangle\langle\uparrow|), \quad \hat{S}_z = \frac{\hbar}{2} (|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|).
$$

- (a) Show that each of these operators are Hermitian.
- (b) Find the matrix representations of these operators in the basis $\{ | \rangle, | \downarrow \rangle \}$.
- (c) Find the eigenvalues and eigenvectors of these operators.

 notation definition above and the matrix representations you found in (b). (d) Show that, $\left[\hat{S}_x, \hat{S}_y\right] = i\hbar \hat{S}_z$ and cyclic permutations. Do this two way: Using the Dirac

 $\overline{1}$ (e) Let $|\pm\rangle = \frac{1}{\sqrt{2}} (|\uparrow\rangle \pm |\downarrow\rangle)$. Find the matrix representations of these operators in the basis $\{ \vert + \rangle, \vert - \rangle \}$; comment on your result.

(f) The matrices found in (b) and (e) are related through a *similarity transformation* by a unitary matrix, \tilde{U} ,

$$
\tilde{S}_x^{(\uparrow,\downarrow)} = \tilde{U}^{\dagger} \tilde{S}_x^{(\uparrow)} \tilde{U}, \quad \tilde{S}_y^{(\uparrow,\downarrow)} = \tilde{U}^{\dagger} \tilde{S}_y^{(\uparrow)} \tilde{U}, \quad \tilde{S}_z^{(\uparrow,\downarrow)} = \tilde{U}^{\dagger} \tilde{S}_z^{(\uparrow)} \tilde{U},
$$

Here tilde denotes the *matrix representation* of the operator in the chosen basis indicated by the superscript.

Find the matrix \tilde{U} , show that it is unitary, and explicitly perform the three similarity transformations via matrix multiplication.

Now let $\hat{S}_\pm = \hat{S}_x \pm i\hat{S}_y$,

(g) Express \hat{S}_\pm as outer products in the basis $\{|\uparrow\rangle,|\downarrow\rangle\}$, and as a matrix in this basis. Show that $\hat{S}_+^{\dagger} = \hat{S}_-$.

(h) Show that $\hat{S}_+ | \hat{T} \rangle = 0$, $\hat{S}_+ | \hat{T} \rangle = \hbar | \hat{T} \rangle$, $\hat{S}_- | \hat{T} \rangle = \hbar | \hat{T} \rangle$, $\hat{S}_- | \hat{T} \rangle = 0$, and find $\langle \hat{T} | \hat{S}_+$, $\langle \hat{T} | \hat{S}_+$ $\hat{\mathcal{S}}$, $\langle \downarrow | \hat{S}_-$.