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I. INTRODUCTION

This article begins with some of the general ideas about
laser cooling. One of the characteristics of optical con-
trol of atomic motion is that the speed of atoms can be
considerably reduced. Since the spread of velocities of
a sample of atoms is directly related to its temperature,
the field has been dubbed laser cooling, and this name
has persisted throughout the years.

In section II we introduce the general idea of optical
forces and how they can act on atoms. We show how
such forces can be velocity dependent, and thus non-
conservative, which makes it possible to use optical forces
for cooling. The section concludes with the discussion of
a few special temperatures. Section III presents a quan-
tum mechanical description of the origin of the force re-
sulting from the atomic response to both stimulated and
spontaneous emission processes. This is quite different
from the familiar quantum mechanical calculations us-
ing state vectors to describe the state of the system,
since spontaneous emission causes the state of the sys-
tem to evolve from a pure state into a mixed state. Since
spontaneous emission is an essential ingredient for the
dissipative nature of the optical forces, the density ma-
trix is introduced to describe it. The evolution of the
density matrix is given by the optical Bloch equations
(OBE), and the optical force is calculated from them.
It is through the OBE that the dissipative aspects of
laser cooling are introduced to the otherwise conservative
quantum mechanics. The velocity dependence is treated
as an extension of the force on an atom at rest.

In section IV the first modern laser cooling experiments
are described. Atoms in beams were slowed down from
thermal velocity to a few m/s, and the dominant problem
was the change in Doppler shift arising from such a large
change in velocity. Some typical values of parameters
are discussed and tabulated. Section V introduces true
cooling by optical forces to the µK regime. Such exper-
iments require at least two laser beams, and are called
optical molasses because the resulting viscous force can
slow atoms to extremely slow velocities, and hence com-
press the width of the velocity distribution. The limits of
such laser cooling are discussed, as well as the extension
from experiments in 1D to 3D. Here the velocity depen-
dence of the force is built into the description via the
Doppler shift instead of being added in as an extension
of the treatment. In 1988 some experiments reported

temperatures below the limit calculated for optical mo-
lasses, and section VI presents the new description of
laser cooling that emerged from this surprise. For the
first time, the force resulting from spontaneous emission
in combination with the multiple level structure of real
atoms were embodied in the discussion. Here the new
limits of laser cooling are presented.

The discussion up to this point has been on atomic ve-
locities, and thus can be described in terms of a velocity
space. Laser cooling thus collects atoms near the origin
of velocity space. It is also possible to collect atoms into
a small region of ordinary configuration space, and such
trapping is discussed in section VII. Neutral atom traps
can employ magnetic fields, optical fields, and both work-
ing together. However, such traps are always very shal-
low, and so only atoms that have been cooled to the few
mK domain can be captured. The combination of laser
cooling and atom trapping has produced astounding new
tools for atomic physicists, and section VIII describes
some of the applications and uses of these wonderful new
capabilities.
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II. GENERAL PROPERTIES CONCERNING
LASER COOLING

These experiments almost always involve atomic ab-
sorption of nearly resonant light. The energy of the light
h̄ω raises the internal energy of the atom, and the angular
momentum h̄ changes the internal angular momentum �
of the electron, as described by the well-known selection
rule ∆� = ±1. By contrast, the linear momentum of the
light p = E/c = h/λ (�p = h̄�k) cannot be absorbed by
internal atomic degrees of freedom, and therefore must
change the motion of the atoms in the laboratory frame.
The force resulting from this momentum exchange be-
tween the light field and the atoms can be used in many
ways to control atomic motion, and is the subject of this
article.

Absorption of light populates the atomic excited state,
and the return to the ground state can be either by spon-
taneous or by stimulated emission. The nature of the op-
tical force that arises from these two different processes
is quite different, and will be described separately. Such
atomic transitions, i.e., the motion of the atomic elec-
trons, must be described quantum mechanically in the
well-known form of the Schrödinger equation. By con-
trast, the center-of-mass motion of the atoms can usually
be described classically, but there are many cases where
even this is not possible so it must also involve quantum
mechanics.

In the simplest possible case, the absorption of well-
directed light from a laser beam, the momentum ex-
change between the light field and the atoms results in a
force

�F = d�p/dt = h̄�kγp, (1)

where γp is the excitation rate of the atoms. The ab-
sorption leaves the atoms in their excited state, and if
the light intensity is low enough so that they are much
more likely to return to the ground state by spontaneous
emission than by stimulated emission, the resulting flu-
orescent light carries off momentum h̄k in a random di-
rection. The momentum exchange from the fluorescence
averages zero, so the net total force is given by Eq. 1.

The scattering rate γp depends on the laser detuning
from atomic resonance δ = ω� −ωa, where ω� is the laser
frequency and ωa is the atomic resonance frequency. This
detuning is measured in the atomic reference frame, and
it is necessary that the Doppler-shifted laser frequency in
the moving atoms’ reference frame be used to calculate
the absorption and scattering rate. Then γp is given by
the Lorentzian

γp =
s0γ/2

1 + s0 + [2(δ + ωD)/γ]2
, (2)

where γ ≡ 1/τ is an angular frequency corresponding to
the decay rate of the excited state. Here s0 = I/Is is
the ratio of the light intensity I to the saturation inten-
sity Is ≡ πhc/3λ3τ , which is a few mW/cm2 for typical

atomic transitions (λ is the optical wavelength). The
Doppler shift seen by the moving atoms is ωD = −�k · �v
(note that �k opposite to �v produces a positive Doppler
shift). The force is thus velocity-dependent, and the ex-
perimenter’s task is to exploit this dependence to the
desired goal, for example, optical friction for laser cool-
ing.

The spontaneous emission events produce unpre-
dictable changes in atomic momenta so the discussion of
atomic motion must also include a “random walk” com-
ponent. This can be described as a diffusion of the atomic
momenta in momentum space, similar to Brownian mo-
tion in real space. The evolution of the momentum distri-
bution in such circumstances is described by the Fokker-
Planck�equation, and it can be used for a more formal
treatment of the laser cooling process. Solutions of the
Fokker-Planck equation in limiting cases can ultimately
be used to relate the velocity distribution of the atoms
with their temperature.

The idea of “temperature” in laser cooling requires
some careful discussion and disclaimers. In thermody-
namics, temperature is carefully defined as a parameter
of the state of a closed system in thermal equilibrium with
its surroundings. This, of course, requires that there be
thermal contact, i.e., heat exchange, with the environ-
ment. In laser cooling this is clearly not the case because
a sample of atoms is always absorbing and scattering
light. Furthermore, there is essentially no heat exchange
(the light cannot be considered as heat even though it
is indeed a form of energy). Thus the system may very
well be in a steady-state situation, but certainly not in
thermal equilibrium, so that the assignment of a thermo-
dynamic “temperature” is completely inappropriate.

Nevertheless, it is convenient to use the label of tem-
perature to describe an atomic sample whose average ki-
netic energy 〈Ek〉 in one dimension has been reduced by
the laser light, and this is written simply as kBT/2 =
〈Ek〉, where kB is Boltzmann’s constant. It must be
remembered that this temperature assignment is abso-
lutely inadequate for atomic samples that do not have a
Maxwell-Boltzmann velocity distribution, whether or not
they are in thermal contact with the environment: there
are infinitely many velocity distributions that have the
same value of 〈Ek〉 but are so different from one another
that characterizing them by the same “temperature” is
a severe error.

With these ideas in mind, it is useful to define a few
rather special values of temperatures associated with
laser cooling. The highest of these temperatures cor-
responds to the energy associated with atoms whose
speed and concomitant Doppler shift puts them just at
the boundary of absorption of light. This velocity is
vc ≡ γ/k ∼ few m/s, and the corresponding temperature
is kBTc ≡ Mγ2/k2, and is typically several mK (here M
is the atomic mass).

The next characteristic temperature corresponds to the
energy associated with the natural width of atomic tran-
sitions, and is called the Doppler temperature. It is given
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by kBTD ≡ h̄γ/2. Because it corresponds to the limit
of certain laser cooling processes, it is often called the
Doppler limit, and is typically several hundred µK. As-
sociated with this temperature is the one-dimensional ve-
locity vD =

√
kBTD/M ∼ 30 cm/s.

The last of these three characteristic temperatures cor-
responds to the energy associated with a single photon
recoil. In the absorption or emission process of a single
photon, the atoms obtain a recoil velocity vr ≡ h̄k/M .
The corresponding energy change can be related to a tem-
perature, the recoil limit, defined as kBTr ≡ h̄2k2/M, and
is generally regarded as the lower limit for optical cooling
processes (although there are a few clever schemes that
cool below it). It is typically a few µK, and corresponds
to speeds of vr ∼ 1 cm/s.

These three temperatures are related to one another
through a single dimensionless parameter ε ≡ ωr/γ that
is ubiquitous in describing laser cooling. It is the ra-
tio of the recoil�frequency ωr ≡ h̄k2/2M to the natural
width γ, and as such embodies most of the important
information that characterize laser cooling on a partic-
ular atomic transition. Typically ε ∼ 10−3 – 10−2, and
clearly Tr = 4εTD = 4ε2Tc.

In laser cooling and related aspects of optical control of
atomic motion, the forces arise because of the exchange of
momentum between the atoms and the laser field. Since
the energy and momentum exchange is necessarily in dis-
crete quanta rather than continuous, the interaction is
characterized by finite momentum “kicks”. This is often
described in terms of “steps” in a fictitious space whose
axes are momentum rather than position. These steps
in momentum space are of size h̄k and thus are generally
small compared to the magnitude of the atomic momenta
at thermal velocities v̄. This is easily seen by comparing
h̄k with Mv̄,

h̄k

Mv̄
=

√
Tr

T
� 1. (3)

Thus the scattering of a single photon has a negligibly
small effect on the motion of thermal atoms, but re-
peated cycles of absorption and emission can cause a
large change of the atomic momenta and velocities.
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III. THEORETICAL DESCRIPTION

A. Force on a two-level atom

We begin the calculation of the optical force on atoms
by considering the simplest schemes, namely, a single-
frequency light field interacting with a two-level atom
confined to one dimension. It is based on the interaction
of two-level atoms with a laser field as discussed in many
textbooks [1].

The philosophy of the correspondence principle re-
quires a smooth transition between quantum and clas-
sical mechanics. Thus the force F on an atom is de-
fined as the expectation value of the quantum mechani-
cal force�operator F , as defined by F = 〈F〉 = d 〈p〉 /dt.
The time evolution of the expectation value of a time-
independent quantum mechanical operator A is given by

d
dt

〈A〉 =
i

h̄
〈[H,A]〉 . (4)

The commutator of H and p is given by [H, p] =
ih̄ (∂H/∂z), where the operator p has been replaced by
−ih̄(∂/∂z). The force on an atom is then given by

F = −
〈

∂H
∂z

〉
. (5)

This relation is a specific example of the Ehren-
fest�theorem and forms the quantum mechanical analog
of the classical expression that the force is the negative
gradient of the potential.

Discussion of the force on atoms caused by light fields
begins with that part of the Hamiltonian that describes
the electric dipole interaction between the atom and the
light field. The electric field of the light is written as
�E(�r, t) = E0ε̂ cos (kz − ωt) and the interaction Hamilto-
nian is H′ = −e�E(�r, t) · �r where �r is the electron coordi-
nate. It has only off-diagonal matrix elements given by
H′

eg = −eE0ε̂ · 〈e|�r|g〉 where e and g represent the ex-
cited and ground states respectively. The force depends
on the atomic state as determined by its interaction with
the light, and is calculated from the expectation value
〈A〉 = Tr(ρA), where ρ is the density matrix found by
solving the optical Bloch equations (OBE) [1]. Then

F = h̄

(
∂Ω
∂z

ρ∗eg +
∂Ω∗

∂z
ρeg

)
. (6)

where the Rabi frequency is defined as h̄Ω ≡ H′
eg . Note

that the force depends on the state of the atom, and in
particular, on the optical coherence between the ground
and excited states, ρeg.

Although it may seem a bit artificial, it is instructive to
split ∂Ω/∂z into its real and imaginary parts (the matrix
element that defines Ω can certainly be complex):

∂Ω
∂z

= (qr + iqi)Ω. (7)

Here qr + iqi is the logarithmic derivative of Ω. In gen-
eral, for a field E(z) = E0(z) exp(iφ(z)) + c.c., the real
part of the logarithmic derivative corresponds to a gradi-
ent of the amplitude E0(z) and the imaginary part to a
gradient of the phase φ(z). Then the expression for the
force becomes

F = h̄qr(Ωρ∗eg + Ω∗ρeg) + ih̄qi(Ωρ∗eg − Ω∗ρeg). (8)

Equation 8 is a very general result that can be used to
find the force for any particular situation as long as the
OBE for ρeg can be solved. In spite of the chosen com-
plex expression for Ω, it is important to note that the
force itself is real, and that the first term of the force is
proportional to the real part of Ωρ∗eg, whereas the second
term is proportional to the imaginary part.

B. A Two-Level Atom at Rest

There are two important special optical arrangements
to consider. The first one is a traveling wave whose elec-
tric field is E(z) = (E0/2)

(
ei(kz−ωt) + c.c.

)
. In calculat-

ing the Rabi frequency from this, the rotating wave ap-
proximation (RWA) causes the positive frequency compo-
nent of E(z) to drop out. Then the gradient of the Rabi
frequency becomes proportional to the gradient of the
surviving negative frequency component, so that qr = 0
and qi = k. For such a traveling wave the amplitude
is constant but the phase is not, and this leads to the
nonzero value of qi.

This is in direct contrast to the case of a standing wave,
composed of two counterpropagating traveling waves so
its amplitude is twice as large, for which the electric
field is given by E(z) = E0 cos(kz)

(
e−iωt + c.c.

)
, so that

qr = −k tan(kz) and qi = 0. Again, only the negative
frequency part survives the RWA, but the gradient does
not depend on it. Thus a standing wave has an ampli-
tude�gradient, but not a phase gradient.

The steady-state solutions of the OBE for a two-level
atom at rest provide simple expressions for ρ [1]. Substi-
tuting the solution for ρeg into Eq. 8 gives

F =
h̄s

1 + s

(
−δqr +

1
2
γqi

)
, (9)

where s ≡ s0/[1+(2δ/γ)2] is the off-resonance saturation
parameter. Note that the first term is proportional to the
detuning δ, whereas the second term is proportional to
the decay rate γ. For zero detuning, the force becomes
F = (h̄kγ/2)[s0/(s0+1)], a very satisfying result because
it is simply the momentum per photon h̄k, times the
scattering rate γp at resonance of Eq. 2.

It is instructive to identify the origin of both terms in
Eq. 9. Absorption of light leads to the transfer of mo-
mentum from the optical field to the atoms. If the atoms
decay by spontaneous emission, the recoil associated with
the spontaneous fluorescence is in a random direction, so
its average over many emission events results in zero net
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effect on the atomic momentum. Thus the force from ab-
sorption followed by spontaneous emission can be written
as Fsp = h̄kγρee, where h̄k is the momentum transfer for
each photon, γ is the rate for the process, and ρee is the
probability for the atoms to be in the excited state. Us-
ing Eq. 2, the force resulting from absorption followed by
spontaneous emission becomes

Fsp =
h̄ks0γ/2

1 + s0 + (2δ/γ)2
, (10)

which saturates at large intensity as a result of the term
s0 in the denominator. Increasing the rate of absorption
by increasing the intensity does not increase the force
without limit, since that would only increase the rate of
stimulated emission, where the transfer of momentum is
opposite in direction compared to the absorption. Thus
the force saturates to a maximum value of h̄kγ/2, because
ρee has a maximum value of 1/2.

Examination of Eq. 10 shows that it clearly corre-
sponds to the second term of Eq. 8. This term is called
the light pressure force, radiation pressure force, scatter-
ing�force, or dissipative force, since it relies on the scatter-
ing of light out of the laser beam. It vanishes for an atom
at rest in a standing wave where qi = 0, and this can be
understood because atoms can absorb light from either
of the two counterpropagating beams that make up the
standing wave, and the average momentum transfer then
vanishes. This force is dissipative because the reverse of
spontaneous�emission is not possible, and therefore the
action of the force cannot be reversed. It plays a very
important role in the slowing and cooling of atoms.

By contrast, the first term in Eq. 8 derives from the
light�shifts of the ground and excited states that depend
on the strength of the optical electric field. A stand-
ing wave is composed of two counterpropagating laser
beams, and their interference produces an amplitude gra-
dient that is not present in a traveling wave. The force
is proportional to the gradient of the light shift, and
the ground-state light shift ∆Eg = h̄Ω2/4δ can be used
to find the force on ground-state atoms in low intensity
light:

Fdip = −∂(∆Eg)
∂z

=
h̄Ω
2δ

∂Ω
∂z

. (11)

For an amplitude-gradient light field such as a standing
wave, ∂Ω/∂z = qrΩ, and this force corresponds to the
first term in Eq. 8 in the limit of low saturation (s � 1).

For the case of a standing wave Eq. 9 becomes

Fdip =
2h̄kδs0 sin 2kz

1 + 4s0 cos2 kz + (2δ/γ)2
, (12)

where s0 is the saturation parameter of each of the two
beams that form the standing wave. For δ < 0 the force
drives the atoms to positions where the intensity has a
maximum, whereas for δ > 0 the atoms are attracted
to the intensity minima. The force is conservative and
therefore cannot be used for cooling. This is called the

dipole�force, reactive force, gradient force, or redistribu-
tion force. It has the same origin as the force of an inho-
mogeneous dc electric field on a classical dipole, but relies
on the redistribution of photons from one laser beam to
the other.

It needs to be emphasized that the forces of Eqs. 10
and 12 are two fundamentally different kinds of forces.
For an atom at rest, the scattering force vanishes for a
standing wave, whereas the dipole force vanishes for a
traveling wave. The scattering force is dissipative, and
can be used to cool, whereas the dipole force is conser-
vative, and can be used to trap. Dipole forces can be
made large by using high intensity light because they do
not saturate. However, since the forces are conservative,
they cannot be used to cool a sample of atoms. Never-
theless, they can be combined with the dissipative scat-
tering force to enhance cooling in several different ways.
By contrast, scattering forces are always limited by the
rate of spontaneous emission γ and cannot be made arbi-
trarily strong, but they are dissipative and are required
for cooling.

C. Atoms in Motion

Laser cooling requires dissipative or velocity-
dependent forces that cannot be conservative. The
procedure followed here is to treat the velocity of the
atoms as a small perturbation, and make first-order
corrections to the solutions of the OBE obtained for
atoms at rest [2]. It begins by adding drift terms in the
expressions for the relevant quantities. Thus the Rabi
frequency satisfies

dΩ
dt

=
∂Ω
∂t

+ v
∂Ω
∂z

=
∂Ω
∂t

+ v(qr + iqi)Ω, (13)

where Eq. 7 has been used to separate the gradient of Ω
into real and imaginary parts. Differentiating the steady
state density matrix elements found by solving the OBE
[1] leads to

dw

dt
=

∂w

∂t
+ v

∂w

∂z
=

∂w

∂t
− 2vqrs

(1 + s)2
, (14)

since s0 = 2|Ω|2/γ2 and Ω depends on z. Here w ≡
ρgg − ρee. Similarly,

dρeg

dt
=

∂ρeg

∂t
+v

∂ρeg

∂z
=

∂ρeg

∂t
− ivΩ

2(γ/2 − iδ)(1 + s)

[
qr

(
1 − s

1 + s

)
+

(15)
Since neither w nor ρeg is explicitly time dependent, both
∂w/∂t and ∂ρeg/∂t vanish. The Eqs. 14 and 15 are still
difficult to solve analytically for a general optical field,
and the results are not very instructive. However, the
solution for the two special cases of the standing and
traveling waves provide considerable insight.

For a traveling wave qr = 0, and the velocity-
dependent force can be found by combining Eqs. 14
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FIG. 1: The damping coefficient β for an atom in a trav-
eling wave as a function of the detuning for different values
of the saturation parameter s0. The damping coefficient is
maximum for intermediate detunings and intensities.

and 15 with the OBE to eliminate the time derivatives.
The resulting coupled equations can be separated and
substituted into Eq. 8 for the force to find, after consid-
erable algebra,

F = h̄qi
sγ/2
1 + s

(
1 +

2δvqi

(1 + s)(δ2 + γ2/4)

)
≡ F0 − βv.

(16)
The first term is the velocity-independent force F0 for an
atom at rest given by Eq. 9. The second term is velocity-
dependent and can lead to compression of the velocity
distribution. For a traveling wave qi = k and thus the
damping�coefficient β is given by

β = −h̄k2 4s0(δ/γ)
(1 + s0 + (2δ/γ)2)2

. (17)

Such a force can compress the velocity distribution of
an atomic sample for negative values of δ, i.e., for red
detuned light. For small detuning and low intensity the
damping coefficient β is linear in both parameters. How-
ever, for detunings much larger than γ and intensities
much larger than Is, β saturates and even decreases as
a result of the dominance of δ in the denominator of
Eq. 17. This behavior can be seen in Fig. 1, where the
damping�coefficient β has been plotted as a function of
detuning for different saturation parameters. The de-
crease of β for large detunings and intensities is caused
by saturation of the transition, in which case the absorp-
tion rate becomes only weakly dependent on the veloc-
ity. The maximum value of β is obtained for δ = −γ/2
and s0 = 2, and is given by βmax = h̄k2/4. The damp-
ing�rate Γ is given by Γ ≡ β/M , and its maximum value
is Γmax = ωr/2, where ωr is the recoil�frequency. For the
alkalis this rate is of the order of 104–105 s−1, indicating
that atomic velocity distributions can be compressed in
about 10-100 µs. Furthermore, F0 in Eq. 16 is always

present and so the atoms are not damped toward any
constant velocity.

For a standing wave qi = 0, and just as above,
the velocity-dependent force can be found by combin-
ing Eqs. 14 and 15 with the OBE to eliminate the time
derivatives. The resulting coupled equations can again
be separated and substituted into Eq. 8 for the force to
find

F = −h̄qr
sδ

1 + s

(
1 − vqr

(1 − s)γ2 − 2s2(δ2 + γ2/4)
(δ2 + γ2/4)(1 + s)2γ

)
,

(18)
where qr = −k tan(kz). In the limit of s � 1, this force
is

F = h̄k
s0δγ

2

2(δ2 + γ2/4)

(
sin 2kz + kv

γ

(δ2 + γ2/4)
(1 − cos 2kz)

)
.

(19)
Here s0 is the saturation parameter of each of the two
beams that compose the standing wave. The first term
is the velocity-independent part of Eq. 9 and is sinusoidal
in space, with a period of λ/2. Thus its spatial average
vanishes. The force remaining after such averaging is
Fav = −βv, where the damping coefficient β is given by

β = −h̄k2 8s0(δ/γ)
(1 + (2δ/γ)2)2

. (20)

In contrast to the traveling-wave case, this is a true
damping force because there is no F0, so atoms are slowed
toward v = 0 independent of their initial velocities. Note
that this expression for β is valid only for s � 1 because
it depends on spontaneous emission to return atoms to
their ground state.

There is an appealing description of the mechanism for
this kind of cooling in a standing wave. With light de-
tuned below resonance, atoms traveling toward one laser
beam see it Doppler shifted upward, closer to resonance.
Since such atoms are traveling away from the other laser
beam, they see its light Doppler shifted further down-
ward, hence further out of resonance. Atoms therefore
scatter more light from the beam counterpropagating to
their velocity so their velocity is reduced. This damping
mechanism is called optical�molasses, and is one of the
most important tools of laser cooling.

Needless to say, such a pure damping force would re-
duce the atomic velocities, and hence the absolute tem-
perature, to zero. Since this violates thermodynamics,
there must be something left out of the description. It is
the discreteness of the momentum changes in each case,
∆p = h̄k, that results in a minimum velocity change. The
consequences of this discreteness can be described as a
diffusion of the atomic momenta in momentum space by
finite steps as discussed earlier.

D. The Fokker-Planck Equation

The random walk in momentum space associated with
spontaneous emission is similar to Brownian motion in
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coordinate space. There is an analogous momentum dif-
fusion constant D, and so the atomic motion in momen-
tum space can be described by the Fokker-Planck equa-
tion

∂W (p, t)
∂t

= −∂ [F (p, t)W (p, t)]
∂p

+
∂2 [D(p, t)W (p, t)]

∂p2

(21)
where W (p, t) is the momentum distribution of the
atoms. For the special case when both the force and the
diffusion are independent of time, the formal stationary
solution is

W (p) =
C

D(p)
exp

(∫ p

0

F (p
′
)

D(p′)
dp

′
)

, (22)

where C is an integration constant. Once the force
and diffusion are known, the stationary solution of the
Fokker-Planck equation emerges easily.

In the simplest and most common case in laser cooling
the force is proportional to the velocity and the diffusion
is independent of velocity:

F (v) = −βv and D(v) = D0. (23)

Then the stationary solution of Eq. ?? for W (v) is

W (p) ∝ e−βp2/2MD0 . (24)

This is indeed a Maxwell-Boltzmann�distribution. For
low intensity where spontaneous emission dominates,
D0 = sγ(h̄k)2/2, so the steady state temperature is given
by kBT = D0/β = h̄γ/2 for δ = −γ/2, its optimum
value [1]. This is called the Doppler temperature be-
cause the velocity dependence of the cooling mechanism
derives from the Doppler shift. The fact that the con-
ditions of Eqs. ?? for the force and diffusion are often
approximately correct explains why the notion of tem-
perature often appears as a description of a laser-cooled
sample.

One of the most important properties of laser cool-
ing is its ability to change the phase space density of an
atomic sample. Changing the phase space density pro-
vides a most important distinction between light optics
and atom optics. The Hamiltonian description of geomet-
rical�optics leads to the brightness�theorem, that can be
found in many optics books. Thus bundles of light rays
obey a similar phase space density conservation. But
there is a fundamental difference between light and atom
optics. In the first case, the “forces” that determine the
behavior of bundles of rays are “conservative” and phase
space density is conserved. For instance, a lens can be
used to focus a light beam to a small spot; however, at
the same time the divergence of the beam must be in-
creased, thus conserving phase space density. By con-
trast, in atom�optics dissipative forces that are velocity
dependent can be used, and thus phase space density is
no longer conserved. Optical elements corresponding to
such forces can not exist for light, but in addition to the

atom optic elements of lenses, collimators and others,
phase space compressors can also be built. Such com-
pression is essential in a large number of cases, such as
atomic beam brightening for collision studies or cooling
for the achievement of Bose-Einstein condensation.
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FIG. 2: Schematic diagram of apparatus for beam slowing.
The tapered magnetic field is produced by layers of varying
length on the solenoid. A plot of Bz vs. z is also shown.

IV. SLOWING ATOMIC BEAMS

Among the earliest laser cooling experiments was de-
celeration of atoms in a beam [3]. The authors ex-
ploited the Doppler�shift to make the momentum ex-
change (hence the force) velocity dependent. It worked
by directing a laser beam opposite to an atomic beam
so the atoms could absorb light, and hence momentum
h̄k, very many times along their paths through the appa-
ratus as shown in Fig. 2 [3, 4]. Of course, excited-state
atoms cannot absorb light efficiently from the laser that
excited them, so between absorptions they must return
to the ground state by spontaneous decay, accompanied
by emission of fluorescent light. The spatial symmetry of
the emitted fluorescence results in an average of zero net
momentum transfer from many such fluorescence events.
Thus the net force on the atoms is in the direction of the
laser beam, and the maximum deceleration is limited by
the spontaneous emission rate γ.

The maximum attainable deceleration is obtained for
very high light intensities, and is limited because the
atom must then divide its time equally between ground
and excited states. High-intensity light can produce
faster absorption, but it also causes equally fast stim-
ulated�emission; the combination produces neither decel-
eration nor cooling because the momentum transfer to
the atom in emission is then in the opposite direction
to what it was in absorption. The force is limited to
F = h̄kγp, and so the deceleration therefore saturates at
a value �amax = h̄�kγ/2M (see Eq. 2). Since the max-
imum deceleration �amax is fixed by atomic parameters,
it is straightforward to calculate the minimum stopping
length Lmin and time tmin for the rms velocity of atoms
v̄ = 2

√
kBT/M at the chosen temperature. The result

is Lmin = v2/2amax and tmin = v/amax. In Table I are
some of the parameters for slowing a few atomic species
of interest from the peak of the thermal velocity distri-
bution.

Maximizing the scattering rate γp requires δ = −ωD

in Eq. 2. If δ is chosen for a particular atomic velocity

atom Toven v Lmin tmin

(K) (m/s) (m) (ms)

H 1000 5000 0.012 0.005

He* 4 158 0.03 0.34

He* 650 2013 4.4 4.4

Li 1017 2051 1.15 1.12

Na 712 876 0.42 0.96

K 617 626 0.77 2.45

Rb 568 402 0.75 3.72

Cs 544 319 0.93 5.82

TABLE I: Parameters of interest for slowing various atoms.
The stopping length Lmin and time tmin are minimum values.
The oven temperature Toven that determines the peak velocity
is chosen to give a vapor pressure of 1 Torr. Special cases are
H at 1000 K and He in the metastable triplet state, for which
two rows are shown: one for a 4 K source and another for the
typical discharge temperature.

in the beam, then as the atoms slow down, their chang-
ing Doppler�shift will take them out of resonance. They
will eventually cease deceleration after their Doppler shift
has been decreased by a few times the power-broadened
width γ′ = γ

√
1 + s0, corresponding to ∆v of a few times

γ′/k. Although this ∆v of a few m/s is considerably
larger than the typical atomic recoil velocity h̄k/M of a
few cm/s, it is still only a small fraction of the atoms’ av-
erage thermal velocity v, so that significant further cool-
ing or deceleration cannot be accomplished.

In order to achieve deceleration that changes the
atomic speeds by hundreds of m/s, it is necessary to
maintain (δ + ωD) � γ by compensating such large
changes of the Doppler�shift. This can be done by chang-
ing ωD, or δ via either ω� or ωa. The two most common
methods for maintaining this resonance are sweeping the
laser frequency ω� along with the changing ωD of the de-
celerating atoms [5–7], or by spatially varying the atomic
resonance frequency with an inhomogeneous dc magnetic
field to keep the decelerating atoms in resonance with the
fixed frequency laser [1, 3, 8].

The use of a spatially varying magnetic field to tune the
atomic levels along the beam path was the first method
to succeed in slowing atoms [3]. It works as long as the
Zeeman shifts of the ground and excited states are differ-
ent so that the resonant frequency is shifted. The field
can be tailored to provide the appropriate Doppler�shift
along the moving atom’s path. For uniform decelera-
tion a ≡ ηamax from initial velocity v0, the appropri-
ate field profile is B(z) = B0

√
1 − z/z0, where z0 ≡

Mv2
0/ηh̄kγ is the length of the magnet, B0 = h̄kv0/µ′,

µ′ ≡ (geMe−ggMg)µB, subscripts g and e refer to ground
and excited states, gg,e is the Land“’e�$g$-factor, µB is
the Bohr magneton, and Mg,e is the magnetic quantum
number. The design parameter η < 1 determines the
length of the magnet z0. A solenoid that can produce
such a spatially varying field has layers of decreasing
lengths as shown schematically in Fig. 2. The techni-
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FIG. 3: The velocity distribution measured with the TOF
method. The experimental width of approximately 1

6
(γ/k) is

shown by the dashed vertical lines between the arrows. The
Gaussian fit through the data yields a FWHM of 2.97 m/s
(figure from Ref. [10]).

cal problem of extracting the beam of slow atoms from
the end of the solenoid can be simplified by reversing the
field gradient and choosing a transition whose frequency
decreases with increasing field [9].

For alkali atoms such as Na, a time-of-flight (TOF)
method can be used to measure the velocity distribu-
tion of atoms in the beam. It employs two additional
beams labeled pump and probe from laser 1 as shown in
Fig. 2. Because these beams cross the atomic beam at
90◦, ωD = −�k ·�v = 0 and they excite atoms at all veloci-
ties. The pump beam is tuned to excite and empty a se-
lected ground hyperfine state (hfs), and it transfers more
than 98% of the population as the atoms pass through
its 0.5 mm width. To measure the velocity distribution
of atoms in the selected hfs, this pump laser beam is
interrupted for a period ∆t = 10 – 50 µs with an acous-
tic optical modulator (AOM). A pulse of atoms in the
selected hfs passes the pump region and travels to the
probe beam. The time dependence of the fluorescence
induced by the probe laser, tuned to excite the selected
hfs, gives the time of arrival, and this signal is readily
converted to a velocity distribution. Figure ?? shows the
measured velocity distribution of the atoms slowed by
laser 2.
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FIG. 4: Velocity dependence of the optical damping forces for
one-dimensional optical molasses. The two dotted traces show
the force from each beam, and the solid curve is their sum.
The straight line shows how this force mimics a pure damping
force over a restricted velocity range. These are calculated for
s0 = 2 and δ = −γ so there is some power broadening evident.

V. OPTICAL MOLASSES

A. Doppler Cooling

In Section III C above there was a discussion of the ra-
diative force on atoms moving in a standing wave (coun-
terpropagating laser beams). The slowing force is pro-
portional to velocity for small enough velocities, result-
ing in viscous damping [11, 12] that gives this technique
the name “optical molasses”(OM). By using three inter-
secting orthogonal pairs of oppositely directed beams,
the movement of atoms in the intersection region can
be severely restricted in all three dimensions, and many
atoms can thereby be collected and cooled in a small
volume. OM has been demonstrated at several laborato-
ries [13], often with the use of low cost diode lasers [14].

It is straightforward to estimate the force on atoms
in OM from Eq. 10. The discussion here is limited to
the case where the light intensity is low enough so that
stimulated�emission is not important. In this low inten-
sity case the forces from the two light beams are simply
added to give �FOM = �F+ + �F−, where

�F± = ± h̄�kγ

2
s0

1 + s0 + [2(δ ∓ |ωD|)/γ]2
. (25)

Then the sum of the two forces is

�FOM
∼= 8h̄k2δs0�v

γ(1 + s0 + (2δ/γ)2)2
≡ −β�v, (26)

where terms of order (kv/γ)4 and higher have been ne-
glected (see Eq. 20).

These forces are plotted in Fig. 4. For δ < 0, this force
opposes the velocity and therefore viscously damps the

atomic motion. �FOM has maxima near v ≈ ±γ′/2k and
decreases rapidly for larger velocities.

If there were no other influence on the atomic motion,
all atoms would quickly decelerate to v = 0 and the sam-
ple would reach T = 0, a clearly unphysical result. There
is also some heating caused by the light beams that must
be considered, and it derives from the discrete size of the
momentum steps the atoms undergo with each emission
or absorption as discussed above for Brownian motion
(see Sec. III D). Since the atomic momentum changes
by h̄k, their kinetic energy changes on the average by
at least the recoil�energy Er = h̄2k2/2M = h̄ωr. This
means that the average frequency of each absorption is
ωabs = ωa + ωr and the average frequency of each emis-
sion is ωemit = ωa − ωr. Thus the light field loses an
average energy of h̄(ωabs − ωemit) = 2h̄ωr for each scat-
tering. This loss occurs at a rate 2γp (two beams), and
the energy is converted to atomic kinetic energy because
the atoms recoil from each event. The atomic sample is
thereby heated because these recoils are in random direc-
tions.

The competition between this heating with the damp-
ing force of Eq. 26 results in a nonzero kinetic energy
in steady state where the rates of heating and cool-
ing are equal. Equating the cooling rate, �F · �v, to the
heating rate, 4h̄ωrγp, the steady-state kinetic energy is
(h̄γ/8)(2|δ|/γ + γ/2|δ|). This result is dependent on |δ|,
and it has a minimum at 2|δ|/γ = 1, whence δ = −γ/2.
The temperature found from the kinetic energy is then
TD = h̄γ/2kB, where kB is Boltzmann’s constant and TD

is called the Doppler temperature or the Doppler cooling
limit. For ordinary atomic transitions, TD is typically
below 1 mK.

Another instructive way to determine TD is to note
that the average momentum transfer of many sponta-
neous emissions is zero, but the rms scatter of these about
zero is finite. One can imagine these decays as causing
a random�walk in momentum space with step size h̄k
and step frequency 2γp, where the factor of 2 arises be-
cause of the two beams. The random walk results in
diffusion in momentum space with diffusion�coefficient
D0 ≡ 2(∆p)2/∆t = 4γp(h̄k)2as discussed in Sec. III D.
Then Brownian motion theory gives the steady-state
temperature in terms of the damping coefficient β to be
kBT = D0/β. This turns out to be h̄γ/2 as above for
the case s0 � 1 when δ = −γ/2. This remarkable result
predicts that the final temperature of atoms in OM is
independent of the optical wavelength, atomic mass, and
laser intensity (as long as it is not too large).

B. Atomic Beam Collimation - One Dimensional
Optical Molasses

When an atomic beam crosses a one-dimensional OM
as shown in Fig. 5, the transverse motion of the atoms is
quickly damped while the longitudinal component is es-
sentially unchanged. This transverse cooling of an atomic
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FIG. 5: Scheme for optical brightening of an atomic beam.
First the transverse velocity components of the atoms are
damped out by an optical molasses, then the atoms are fo-
cused to a spot, and finally the atoms are recollimated in a
second optical molasses (figure from Ref. [15]).

beam is an example of a method that can actually in-
crease its brightness (atoms/sec-sr-cm2) because such ac-
tive collimation uses dissipative forces to compress the
phase space volume occupied by the atoms. By con-
trast, the usual realm of beam focusing or collimation
techniques for light beams and most particle beams, is
restricted to selection by apertures or conservative forces
that preserve the phase space density of atoms in the
beam.

This velocity�compression at low intensity in one di-
mension can be simply estimated for two-level atoms in
1-D to be about vc/vD =

√
γ/ωr =

√
1/ε. For Rb,

vD = 12 cm/s, vc = γ/k 
 4.6 m/s, ωr 
 2π × 3.8
kHz, and 1/ε 
 1600. Including two transverse direc-
tions along with the longitudinal slowing and cooling dis-
cussed above, the decrease in phase space volume from
the momentum contribution alone for laser cooling of a
Rb atomic beam can exceed 106.

Clearly optical techniques can create atomic beams
enormously more times intense than ordinary thermal
beams, and also many orders of magnitude brighter. Fur-
thermore, this number could be increased several orders
of magnitude if the transverse cooling could produce tem-
peratures below the Doppler temperature. For atoms
cooled to the recoil temperature Tr = h̄ωr/kB where
∆p = h̄k and ∆x = λ/π, the brightness increase could
be 1017.

C. Experiments in Three-Dimensional Optical
Molasses

Optical molasses experiments can also work in three
dimensions at the intersection of three mutually orthog-
onal pairs of opposing laser beams (see Fig. 6). Even
though atoms can be collected and cooled in the in-
tersection region, it is important to stress again that
this is not a trap. That is, atoms that wander away
from the center experience no force directing them back.

FIG. 6: Photograph of optical molasses in Na taken under
ordinary snapshot conditions in the lab at NIST. The upper
horizontal streak is from the slowing laser while the three
beams that cross at the center are on mutually orthogonal
axes viewed from the (111) direction. Atoms in the optical
molasses glow brightly at the center (figure from Ref. [18]).

They are allowed to diffuse freely and even escape, as
long as there is enough time for their very slow diffu-
sive movement to allow them to reach the edge of the
region of the intersection of the laser beams. Because
the atomic velocities are randomized during the damp-
ing time M/β = 2/ωr, atoms execute a random�walk
with a step size of 2vD/ωr = λ/π

√
2ε ∼= few µm. To dif-

fuse a distance of 1 cm requires about 107 steps or about
30 s [16, 17].

Three-dimensional OM was first observed in 1985 [12].
Preliminary measurements of the average kinetic energy
of the atoms were done by blinking off the laser beams
for a fixed interval. Comparison of the brightness of the
fluorescence before and after the turnoff was used to cal-
culate the fraction of atoms that left the region while it
was in the dark. The dependence of this fraction on the
duration of the dark interval was used to estimate the
velocity distribution and hence the temperature. The re-
sult was not inconsistent with the two level atom theory
described above.

A few months later a more sensitive ballistic technique
was devised at NIST that showed the astounding result
that the temperature of the atoms in OM was very much
lower than TD [19]. These experiments also found that
OM was less sensitive to perturbations and more toler-
ant of alignment errors than was predicted by the 1D,
two-level atom theory. For example, if the intensities of
the two counterpropagating laser beams forming an OM
were unequal, then the force on atoms at rest would not
vanish, but the force on atoms with some nonzero drift
velocity would vanish. This drift velocity can be easily
calculated by using Eq. 25 with unequal intensities s0+
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and s0−, and following the derivation of Eq. 26. Thus
atoms would drift out of an OM, and the calculated rate
would be much faster than observed by deliberately un-
balancing the beams in the experiments [13].

It was an enormous surprise to observe that the bal-
listically measured temperature of the Na atoms was as
much as 10 times lower than TD = 240 µK [19], the
temperature minimum calculated from the theory. This
breaching of the Doppler limit forced the development of
an entirely new picture of OM that accounts for the fact
that in 3D, a two-level picture of atomic structure is in-
adequate. The multilevel structure of atomic states, and
optical pumping among these sublevels, must be consid-
ered in the description of 3D OM, as discussed below.
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VI. COOLING BELOW THE DOPPLER LIMIT

A. Introduction

In response to the surprising measurements of tem-
peratures below TD, two groups developed a model
of laser cooling that could explain the lower tempera-
tures [20, 21]. The key feature of this model that dis-
tinguishes it from the earlier picture was the inclusion of
the multiplicity of sublevels that make up an atomic state
(e.g., Zeeman and hfs). The dynamics of optically pump-
ing atoms among these sublevels provides the new mech-
anism for producing the ultra-low temperatures [18].

The dominant feature of these models is the non-
adiabatic response of moving atoms to the light field.
Atoms at rest in a steady state have ground state orienta-
tions caused by optical�pumping processes that distribute
the populations over the different ground-state sublevels.
In the presence of polarization gradients, these orienta-
tions reflect the local light field. In the low-light-intensity
regime, the orientation of stationary atoms is completely
determined by the ground-state distribution: the opti-
cal coherences and the exited-state population follow the
ground-state distribution adiabatically.

For atoms moving in a light field that varies in space,
optical�pumping acts to adjust the atomic orientation to
the changing conditions of the light field. In a weak
pumping process, the orientation of moving atoms always
lags behind the orientation that would exist for station-
ary atoms. It is this phenomenon of non-adiabatic fol-
lowing that is the essential feature of the new cooling
process.

Production of spatially dependent optical�pumping
processes can be achieved in several different ways. As
an example consider two counterpropagating laser beams
that have orthogonal polarizations, as discussed below.
The superposition of the two beams results in a light field
having a polarization that varies on the wavelength scale
along the direction of the laser beams. Laser cooling by
such a light field is called polarization�gradient cooling.
In a three-dimensional optical�molasses, the transverse
wave character of light requires that the light field al-
ways has polarization gradients.

B. Linear ⊥ Linear Polarization Gradient Cooling

One of the most instructive models for discussion of
sub-Doppler laser cooling was introduced in Ref. [20]
and very well described in Ref. [18]. If the polarizations
of two counterpropagating laser beams are identical, the
two beams interfere and produce a standing�wave. When
the two beams have orthogonal linear polarizations (same
frequency ω�) with their ε̂ vectors perpendicular (e.g., x̂
and ŷ), the configuration is called lin ⊥ lin or lin-perp-lin.
Then the total field is the sum of the two counterpropa-

λ/2
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0 λ/4

FIG. 7: Polarization gradient field for the lin ⊥ lin configura-
tion.

gating beams given by

�E = E0 x̂ cos(ω�t − kz) + E0 ŷ cos(ω�t + kz) (27)
= E0 [(x̂ + ŷ) cos ω�t cos kz + (x̂ − ŷ) sin ω�t sin kz] .

At the origin, where z = 0, this becomes

�E = E0(x̂ + ŷ) cos ω�t, (28)

which corresponds to linearly polarized light at an angle
+π/4 to the x-axis. The amplitude of this field is

√
2E0.

Similarly, for z = λ/4, where kz = π/2, the field is also
linearly polarized but at an angle −π/4 to the x-axis.

Between these two points, at z = λ/8, where kz = π/4,
the total field is

�E = E0 [x̂ sin(ω�t + π/4) − ŷ cos(ω�t + π/4)] . (29)

Since the x̂ and ŷ components have sine and cosine tem-
poral dependence, they are π/2 out of phase, and so
Eq. 29 represents circularly polarized light rotating about
the z-axis in the negative sense. Similarly, at z = 3λ/8
where kz = 3π/4, the polarization is circular but in the
positive sense. Thus in this lin ⊥ lin scheme the polariza-
tion cycles from linear to circular to orthogonal linear to
opposite circular in the space of only half a wavelength
of light, as shown in Fig. 7. It truly has a very strong
polarization�gradient.

Since the coupling of the different states of multi-
level atoms to the light field depends on its polariza-
tion, atoms moving in a polarization�gradient will be
coupled differently at different positions, and this will
have important consequences for laser cooling. For the
Jg = 1/2 → Je = 3/2 transition (the simplest transition
that shows sub-Doppler cooling), the optical pumping
process in purely σ+ light drives the ground-state popu-
lation to the Mg = +1/2 sublevel. This optical�pumping
occurs because absorption always produces ∆M = +1
transitions, whereas the subsequent spontaneous emis-
sion produces ∆M = ±1, 0. Thus the average ∆M ≥ 0
for each scattering event. For σ−-light the population is
pumped toward the Mg = −1/2 sublevel. Thus atoms
traveling through only a half wavelength in the light
field, need to readjust their population completely from
Mg = +1/2 to Mg = −1/2 and back again.
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FIG. 8: The spatial dependence of the light shifts of the
ground-state sublevels of the J = 1/2 ⇔ 3/2 transition for the
case of the lin ⊥ lin polarization configuration. The arrows
show the path followed by atoms being cooled in this arrange-
ment. Atoms starting at z = 0 in the Mg = +1/2 sublevel
must climb the potential hill as they approach the z = λ/4
point where the light becomes σ− polarized, and there they
are optically pumped to the Mg = −1/2 sublevel. Then they
must begin climbing another hill toward the z = λ/2 point
where the light is σ+ polarized and they are optically pumped
back to the Mg = +1/2 sublevel. The process repeats until
the atomic kinetic energy is too small to climb the next hill.
Each optical pumping event results in absorption of light at a
lower frequency than emission, thus dissipating energy to the
radiation field.

The interaction between nearly resonant light and
atoms not only drives transitions between atomic energy
levels, but also shifts their energies. This light shift of the
atomic energy levels plays a crucial role in this scheme of
sub-Doppler cooling, and the changing polarization has
a strong influence on the light shifts. In the low-intensity
limit of two laser beams, each of intensity s0Is, the light
shifts ∆Eg of the ground magnetic substates are given
by [1]

∆Eg =
h̄δs0C

2
ge

1 + (2δ/γ)2
, (30)

where Cge is the Clebsch-Gordan�coefficient that de-
scribes the coupling between the atom and the light field.

In the present case of orthogonal linear polarizations
and J = 1/2 → 3/2, the light shift for the magnetic sub-
state Mg = 1/2 is three times larger than that of the
Mg = −1/2 substate when the light field is completely
σ+. On the other hand, when an atom moves to a place
where the light field is σ−, the shift of Mg = −1/2 is
three times larger. So in this case the optical�pumping
discussed above causes there to be a larger population
in the state with the larger light shift. This is generally
true for any transition Jg to Je = Jg + 1. A schematic
diagram showing the populations and light shifts for this
particular case of negative detuning is shown in Fig. 8.

T
em

p
er

at
u
re

(µ
K

)

Intensity (Ω2/γ2)

te
m

p
er

at
u
re

(µ
K

)

Ω2/|δ|γ

detuning (MHz)

FIG. 9: Temperature as a function of laser intensity and de-
tuning for Cs atoms in an optical molasses from Ref. [22]. a)
Temperature as a function of the detuning for various inten-
sities. b) Temperature as a function of the light shift. All the
data points are on a universal straight line.

C. Origin of the Damping Force

To discuss the origin of the cooling process in this po-
larization gradient scheme, consider atoms with a veloc-
ity v at a position where the light is σ+-polarized, as
shown at the lower left of Fig. 8. The light optically
pumps such atoms to the strongly negative light-shifted
Mg = +1/2 state. In moving through the light field,
atoms must increase their potential energy (climb a hill)
because the polarization of the light is changing and the
state Mg = 1/2 becomes less strongly coupled to the light
field. After traveling a distance λ/4, atoms arrive at a
position where the light field is σ−-polarized, and are op-
tically pumped to Mg = −1/2, which is now lower than
the Mg = 1/2 state. Again the moving atoms are at the
bottom of a hill and start to climb. In climbing the hills,
the kinetic energy is converted to potential energy, and
in the optical�pumping process, the potential energy is
radiated away because the spontaneous�emission is at a
higher frequency than the absorption (see Fig. 8). Thus
atoms seem to be always climbing hills and losing en-
ergy in the process. This process brings to mind a Greek
myth, and is thus called “Sisyphus�laser�cooling”.

The cooling process described above is effective over
a limited range of atomic velocities. The force is max-
imum for atoms that undergo one optical�pumping pro-
cess while traveling over a distance λ/4. Slower atoms
will not reach the hilltop before the pumping process oc-
curs and faster atoms will already be descending the hill
before being pumped toward the other sublevel. In both
cases the energy loss is smaller and therefore the cooling
process less efficient. Nevertheless, the damping constant
β for this process is much larger than for Doppler cool-
ing, and therefore the final steady-state temperature is
lower [18, 20].

In the experiments of Ref. [22], the temperature was
measured in a 3D molasses under various configurations
of the polarization. Temperatures were measured by a
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ballistic technique, where the flight time of the released
atoms was measured as they fell through a probe a few cm
below the molasses region. Results of their measurements
are shown in Fig. 9a, where the measured temperature
is plotted for different detunings as a function of the in-
tensity. For each detuning, the data lie on a straight line
through the origin. The lowest temperature obtained is 3
µK, which is a factor 40 below the Doppler temperature
and a factor 15 above the recoil�temperature of Cs. If the
temperature is plotted as a function of the light�shift (see
Fig. 9b), all the data are on a single universal straight
line.

D. The Limits of Laser Cooling

The lower limit to Doppler�laser�cooling of two-level
atoms arises from the competition with heating. This
cooling limit is described as a random walk in momen-
tum space whose steps are of size h̄k and whose rate is
the scattering rate, γp = s0γ/2 for zero detuning and
s0 � 1. As long as the force can be accurately described
as a damping force, then the Fokker-Planck�equation is
applicable, and the outcome is a lower limit to the tem-
perature of laser cooling given by the Doppler tempera-
ture kBTD ≡ h̄γ/2.

The extension of this kind of thinking to the sub-
Doppler processes described in Sec. VI B must be done
with some care, because a naive application of the con-
sequences of the Fokker-Planck�equation would lead to
an arbitrarily low final temperature. In the derivation of
the Fokker-Planck�equation it is explicitly assumed that
each scattering event changes the atomic momentum p by
an amount that is a small fraction of p as embodied in
Eq. ??, and this clearly fails when the velocity is reduced
to the region of vr ≡ h̄k/M .

This limitation of the minimum steady-state value of
the average kinetic energy to a few times 2Er ≡ kBTr =
Mv2

r is intuitively comforting for two reasons. First,
one might expect that the last spontaneous�emission in
a cooling process would leave atoms with a residual mo-
mentum of the order of h̄k, since there is no control over
its direction. Thus the randomness associated with this
would put a lower limit on such cooling of vmin ∼ vr.
Second, the polarization�gradient�cooling mechanism de-
scribed above requires that atoms be localizable within
the scale of ∼ λ/2π in order to be subject to only a
single polarization in the spatially inhomogeneous light
field. The uncertainty�principle then requires that these
atoms have a momentum spread of at least h̄k.

The recoil limit discussed here has been surpassed by
evaporative cooling of trapped atoms [23] and two dif-
ferent optical cooling methods, neither of which can be
based in simple notions. One of these uses optical pump-
ing into a velocity-selective dark state and is described in
Ref. [1] The other one uses carefully chosen, counterprop-
agating laser pulses to induce velocity-selective Raman
transitions, and is called Raman�cooling [24].
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VII. TRAPPING OF NEUTRAL ATOMS

A. Introduction

Although ion trapping, laser cooling of trapped ions,
and trapped ion spectroscopy were known for many
years [25], it was only in 1985 that neutral atoms were
first trapped [26]. Confinement of neutral atoms depends
on the interaction between an inhomogeneous electro-
magnetic field and an atomic multipole moment. Un-
perturbed atoms do not have electric dipole moments
because of their inversion symmetry, and therefore elec-
tric (e.g., optical) traps require induced dipole moments.
This is often done with nearly resonant optical fields,
thus producing the optical traps discussed below. On
the other hand, many atoms have ground- or metastable-
state magnetic dipole moments that may be used for
trapping them magnetically.

In order to confine any object, it is necessary to ex-
change kinetic for potential energy in the trapping field,
and in neutral atom traps, the potential energy must be
stored as internal atomic energy. There are two imme-
diate and extremely important consequences of this re-
quirement. First, the atomic energy levels will necessarily
shift as the atoms move in the trap, and these shifts will
affect the precision of spectroscopic measurements, per-
haps severely. Second, practical traps for ground-state
neutral atoms are necessarily very shallow compared with
thermal energy because the energy level shifts that re-
sult from convenient size fields are typically considerably
smaller than kBT for T = 1 K. Neutral atom trapping
therefore depends on substantial cooling of a thermal
atomic sample, and is often connected with the cooling
process.

The small depth of neutral atom traps also dictates
stringent vacuum requirements, because an atom cannot
remain trapped after a collision with a thermal energy
background gas molecule. Since these atoms are vulner-
able targets for thermal energy background gas, the mean
free time between collisions must exceed the desired trap-
ping�time. The cross section for destructive collisions is
quite large because even a gentle collision (i.e., large im-
pact parameter) can impart enough energy to eject an
atom from a trap. At pressure P sufficiently low to be
of practical interest, the trapping time is ∼ (10−8/P ) s,
where P is in Torr.

B. Magnetic Traps

An atom with a magnetic moment �µ can be confined
by an inhomogeneous magnetic field because of an in-
teraction between the moment and the field. This pro-
duces a force given by �F = �∇(�µ · �B). Several different
magnetic traps with varying geometries that exploit this
force have been studied in some detail, and their general
features have been presented [27]. The simplest magnetic

I

I

FIG. 10: Schematic diagram of the coil configuration used in
the quadrupole trap and the resultant magnetic field lines.
Because the currents in the two coils are in opposite direc-
tions, there is a | �B| = 0 point at the center.

trap is a quadrupole comprised of two identical coils car-
rying opposite currents (see Fig. 10) that has a single
center where the field is zero. When the coils are sepa-
rated by 1.25 times their radius, such a trap has equal
depth in the radial (x-y plane) and longitudinal (z-axis)
directions [27]. Its experimental simplicity makes it most
attractive, both because of ease of construction and of op-
tical access to the interior. Such a trap was used in the
first neutral atom trapping experiments at NIST.

The magnitude of the field is zero at the center of this
trap, and increases in all directions as B = A

√
ρ2 + 4z2,

where ρ2 ≡ x2 + y2, and the field gradient A is constant.
The field gradient is fixed along any line through the ori-
gin, but has different values in different polar directions.
Therefore the force that confines the atoms in the trap is
neither harmonic nor central, and angular�momentum is
not conserved. There are several motivations for study-
ing the motion of atoms in a magnetic trap. Knowing
their positions may be important for trapped atom spec-
troscopy. Moreover, simply studying the motion for its
own sake has turned out to be an interesting problem
because the distorted conical potential of the quadrupole
trap does not have analytic solutions, and its bound
states are not well known. For the two-coil quadrupole
magnetic trap of Fig. 10, stable circular orbits can be
found classically [1]. The fastest trappable atoms in cir-
cular orbits have vmax ∼ 1 m/s so the orbital frequency
becomes ωT /2π ∼ 20 Hz. Because of the anharmonicity
of the potential, the orbital frequencies depend on the
orbit size, but in general, atoms in lower energy orbits
have higher frequencies.

Because of the dependence of the trapping force on the
angle between the field and the atomic moment the ori-
entation of the magnetic moment with respect to the field
must be preserved as the atoms move about in the trap.
This requires velocities low enough to ensure that the
interaction between the atomic moment �µ and the field
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�B is adiabatic, especially when the atom’s path passes
through a region where the field magnitude is small. This
is especially critical at the low temperatures of the Bose
condensation experiments. Therefore energy considera-
tions that focus only on the trap depth are not sufficient
to determine the stability of a neutral atom trap: or-
bit and/or quantum state calculations and their conse-
quences must also be considered.

The condition for adiabatic motion can be written as
ωZ � |dB/dt|/B, where ωZ = µB/h̄ is the Larmor pre-
cession rate in the field. The orbital frequency for cir-
cular motion is ωT = v/ρ, and since v/ρ = |dB/dt|/B
for a uniform field gradient, the adiabaticity condition is
ωZ � ωT . For the two-coil quadrupole trap, the adia-
baticity condition can be easily calculated [1]. A practical
trap (A ∼ 1 T/m) requires ρ � 1 µm as well as v � 1
cm/s. Note that violation of these conditions results in
the onset of quantum dynamics for the motion (deBroglie
wavelength ≈ orbit size). Since the non-adiabatic region
of the trap is so small (less than 10−18 m3 compared
with typical sizes of ∼ 2 cm corresponding to 10−5 m3),
nearly all the orbits of most atoms are restricted to re-
gions where they are adiabatic.

Modern techniques of laser and evaporative cooling
have the capability to cool atoms to energies where their
deBroglie wavelengths are on the micron scale. Such cold
atoms may be readily confined to micron size regions in
magnetic traps with easily achievable field gradients, and
in such cases, the notion of classical orbits is inappropri-
ate. The motional dynamics must be described in terms
of quantum mechanical variables and suitable wavefunc-
tions. Furthermore, the distribution of atoms confined in
various quantum states of motion in quadrupole as well
as other magnetic traps is critical for interpreting the
measurements on Bose condensates.

Studying the behavior of extremely slow (cold) atoms
in the two-coil quadrupole trap begins with a heuris-
tic quantization of the orbital angular momentum using
Mr2ωT = nh̄ for circular orbits [1]. For velocities of
optically cooled atoms of a few cm/s, n ∼ 10–100. By
contrast, evaporative�cooling [23] can produce velocities
∼ 1 mm/s resulting in n ∼ 1. It is readily found that
ωZ = nωT , so that the adiabatic condition is satisfied
only for n � 1. The separation of the rapid precession
from the slower orbital motion is reminiscent of the Born-
Oppenheimer approximation for molecules, and three di-
mensional quantum calculations have also been described
[1].

C. Optical Traps

Optical trapping of neutral atoms by electrical inter-
action must proceed by inducing a dipole moment. For
dipole optical traps, the oscillating electric field of a laser
induces an oscillating atomic electric dipole moment that
interacts with the laser field. If the laser field is spa-
tially inhomogeneous, the interaction and associated en-

ergy level shift of the atoms varies in space and therefore
produces a potential. When the laser frequency is tuned
below atomic resonance (δ < 0), the sign of the interac-
tion is such that atoms are attracted to the maximum of
laser field intensity, whereas if δ > 0, the attraction is to
the minimum of field intensity.

The simplest imaginable trap consists of a single,
strongly focused Gaussian�laser�beam [28, 29] whose in-
tensity at the focus varies transversely with r as I(r) =
I0e

−r2/w2
0 , where w0 is the beam waist size. Such a

trap has a well-studied and important macroscopic classi-
cal analog in a phenomenon called optical tweezers [30–
32]. With the laser light tuned below resonance (δ <
0), the ground-state light shift is everywhere negative,
but largest at the center of the Gaussian beam waist.
Ground-state atoms therefore experience a force attract-
ing them toward this center given by the gradient of the
light�shift. In the longitudinal direction there is also an
attractive force that depends on the details of the focus-
ing. Thus this trap produces an attractive force on atoms
in three dimensions.

The first optical trap was demonstrated in Na with
light detuned below the D-lines [29]. With 220 mW of dye
laser light tuned about 650 GHz below the Na transition
and focused to a ∼ 10 µm waist, the trap depth was about
15h̄γ corresponding to 7 mK. Single-beam dipole force
traps can be made with the light detuned by a significant
fraction of its frequency from the atomic transition. Such
a far-off-resonance trap (FORT) has been developed for
Rb atoms using light detuned by nearly 10% to the red
of the D1 transition at λ = 795 nm [33]. Between 0.5 and
1 W of power was focused to a spot about 10 µm in size,
resulting in a trap 6 mK deep where the light scattering
rate was only a few hundred/s. The trap lifetime was
more than half a second.

The dipole force for blue light repels atoms from
the high intensity region, and offers the advantage that
trapped atoms will be confined where the perturbations
of the light field are minimized [1]. On the other hand,
it is not as easy to produce hollow light beams compared
with Gaussian beams, and special optical techniques need
to be employed.

In a standing�wave the light intensity varies from zero
at a node to a maximum at an antinode in a distance of
λ/4. Since the light�shift, and thus the optical�potential,
vary on this same scale, it is possible to confine atoms
in wavelength-size regions of space. Of course, such tiny
traps are usually very shallow, so loading them requires
cooling to the µK regime. The momentum of such cold
atoms is then so small that their deBroglie wavelengths
are comparable to the optical wavelength, and hence to
the trap size. In fact, the deBroglie wavelength equals
the size of the optical traps (λ/2) when the momentum is
2h̄k, corresponding to a kinetic energy of a few µK. Thus
the atomic motion in the trapping volume is not classi-
cal, but must be described quantum mechanically. Even
atoms whose energy exceeds the trap depth must be de-
scribed as quantum mechanical particles moving in a pe-
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FIG. 11: A single focused laser beam produces the simplest
type of optical trap.

riodic potential that display energy�band structure [34].
Atoms trapped in wavelength-sized spaces occupy vi-

brational�levels similar to those of molecules. The opti-
cal spectrum can show Raman-like sidebands that result
from transitions among the quantized vibrational lev-
els [35, 36] as shown in Fig. 19. These quantum states
of atomic motion can also be observed by spontaneous
or stimulated emission [35, 37]. Considerably more de-
tail about atoms in such optical lattices is to be found in
Ref. [36].

D. Magneto-Optical Traps

The most widely used trap for neutral atoms is a
hybrid, employing both optical and magnetic fields, to
make a magneto-optical trap (MOT) first demonstrated
in 1987 [38]. The operation of a MOT depends on both
inhomogeneous magnetic fields and radiative selection
rules to exploit both optical pumping and the strong ra-
diative force [1, 38]. The radiative interaction provides
cooling that helps in loading the trap, and enables very
easy operation. The MOT is a very robust trap that does
not depend on precise balancing of the counterpropagat-
ing laser beams or on a very high degree of polarization.
The magnetic field gradients are modest and can read-
ily be achieved with simple, air-cooled coils. The trap
is easy to construct because it can be operated with a
room-temperature cell where alkali atoms are captured
from the vapor. Furthermore, low-cost diode lasers can
be used to produce the light appropriate for all the alka-
lis except Na, so the MOT has become one of the least
expensive ways to produce atomic samples with temper-
atures below 1 mK. For these and other reasons it has
become the workhorse of cold atom physics, and has also
appeared in dozens of undergraduate laboratories.

Trapping in a MOT works by optical pumping of slowly
moving atoms in a linearly inhomogeneous magnetic field
B = B(z) ≡ Az, such as that formed by a magnetic qua-
drupole�field. Atomic transitions with the simple scheme
of Jg = 0 → Je = 1 have three Zeeman components in
a magnetic field, excited by each of three polarizations,
whose frequencies tune with field (and therefore with po-
sition) as shown in Fig. 12 for 1D. Two counterpropa-
gating laser beams of opposite circular polarization, each
detuned below the zero field atomic resonance by δ, are
incident as shown.

Because of the Zeeman shift, the excited state Me =

δ+

Energy

σ− beamσ+ beam

z′

Me = +1

Me = 0

Me = −1

Mg = 0
Position

ωl

δ

δ−

FIG. 12: Arrangement for a MOT in 1D. The horizontal
dashed line represents the laser frequency seen by an atom at
rest in the center of the trap. Because of the Zeeman shifts of
the atomic transition frequencies in the inhomogeneous mag-
netic field, atoms at z = z′ are closer to resonance with the σ−

laser beam than with the σ+ beam, and are therefore driven
toward the center of the trap.

+1 is shifted up for B > 0, whereas the state with Me =
−1 is shifted down. At position z′ in Fig. 12 the magnetic
field therefore tunes the ∆M = −1 transition closer to
resonance and the ∆M = +1 transition further out of
resonance. If the polarization of the laser beam incident
from the right is chosen to be σ− and correspondingly σ+

for the other beam, then more light is scattered from the
σ− beam than from the σ+ beam. Thus the atoms are
driven toward the center of the trap where the magnetic
field is zero. On the other side of the center of the trap,
the roles of the Me = ±1 states are reversed and now
more light is scattered from the σ+ beam, again driving
the atoms towards the center.

The situation is analogous to the velocity damping in
an optical molasses from the Doppler effect as discussed
above, but here the effect operates in position space,
whereas for molasses it operates in velocity space. Since
the laser light is detuned below the atomic resonance in
both cases, compression and cooling of the atoms is ob-
tained simultaneously in a MOT.

For a description of the motion of the atoms in a MOT,
consider the radiative force in the low intensity limit (see
Eq. 10). The total force on the atoms is given by �F =
�F+ + �F−, where

�F± = ± h̄�kγ

2
s0

1 + s0 + (2δ±/γ)2
(31)

and the detuning δ± for each laser beam is given by

δ± = δ ∓ �k · �v ± µ′B/h̄. (32)

Here µ′ ≡ (geMe − ggMg)µB is the effective magnetic
moment for the transition used. Note that the Doppler
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FIG. 13: The schematic diagram of a MOT shows the coils
and the directions of polarization of the six light beams. It
has an axial symmetry and various rotational symmetries, so
some exchanges would still result in a trap that works, but
not all configurations are possible. Atoms are trapped from
the background vapor of Cs that arises from a piece of solid
Cs in one of the arms of the setup.

shift ωD ≡ −�k ·�v and the Zeeman shift ωZ = µ′B/h̄ both
have opposite signs for opposite beams.

When both the Doppler and Zeeman shifts are small
compared to the detuning δ, the denominator of the force
can be expanded and the result becomes �F = −β�v − κ�r,
where β is the damping coefficient. The spring constant
κ arises from the similar dependence of �F on the Doppler
and Zeeman shifts, and is given by κ = µ′Aβ/h̄k. This
force leads to damped harmonic motion of the atoms,
where the damping rate is given by ΓMOT = β/M and
the oscillation frequency ωMOT =

√
κ/M . For magnetic

field gradients A ≈ 10 G/cm, the oscillation frequency is
typically a few kHz, and this is much smaller than the
damping rate that is typically a few hundred kHz. Thus
the motion is overdamped, with a characteristic restoring
time to the center of the trap of 2ΓMOT/ω2

MOT ∼ several
ms for typical values of the detuning and intensity of the
lasers.

Since the MOT constants β and κ are proportional,
the size of the atomic cloud can easily be deduced from
the temperature of the sample. The equipartition of the
energy of the system over the degrees of freedom requires
that the velocity spread and the position spread are re-
lated by kBT = mv2

rms = κz2
rms. For a temperature in the

range of the Doppler temperature, the size of the MOT
should be of the order of a few tenths of a mm, which is
generally the case in experiments.

So far the discussion has been limited to the motion
of atoms in 1D. However, the MOT scheme can easily be
extended to 3D by using six instead of two laser beams.
Furthermore, even though very few atomic species have
transitions as simple as Jg = 0 → Je = 1, the scheme
works for any Jg → Je = Jg + 1 transition. Atoms that
scatter mainly from the σ+ laser beam will be optically

pumped toward the Mg = +Jg substate, which forms a
closed system with the Me = +Je substate.

The atomic density in a MOT cannot increase with-
out limit as more atoms are added. The density is lim-
ited to ∼1011/cm3 because the fluorescent light emitted
by some trapped atoms is absorbed by others, and this
diffusion of radiation presents a repulsive force between
the atoms [39, 40]. Another limitation lies in the colli-
sions between the atoms, and the collision rate for ex-
cited atoms is much larger than for ground-state atoms.
Adding atoms to a MOT thus increases the density up
to some point, but adding more atoms then expands the
volume of the trapped sample.
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VIII. APPLICATIONS

A. Introduction

The techniques of laser cooling and trapping as de-
scribed in the previous sections have been used to manip-
ulate the positions and velocities of atoms with unprece-
dented variety and precision [1]. These techniques are
currently used in the laboratories to design new, highly
sensitive experiments that move experimental atomic
physics research to completely new regimes. In this sec-
tion only of few of these topics will be discussed. One
of the most straightforward of these is the use of laser
cooling to increase the brightness of atomic beams which
can subsequently be used for different types of experi-
ments. Since laser cooling produces atoms at very low
temperatures, the interaction between these atoms also
takes place at such very low energies. The study of these
interactions, called ultra-cold collisions, has been a very
fruitful area of research in the last decade.

The atom-laser interaction not only produces a viscous
environment for cooling the atoms down to very low ve-
locities, but also provides a trapping field for the atoms.
In the case of interfering laser beams, the size of such
traps can be of the order of a wavelength, thus provid-
ing microscopic atomic traps with a periodic structure.
These optical lattices described in section VIII E below
provide a versatile playground to study the effects of a
periodic potential on the motion of atoms and thus sim-
ulate the physics of condensed matter. Another topic
of considerable interest discussed below in section VIII F
exists only because laser cooling has paved the way to
the observation of Bose-Einstein condensation. This was
predicted theoretically more than 80 years ago, but was
observed in a dilute gas for the first time in 1996. Finally,
the physics of dark states is discussed in section VIII G.
These show a rich variety of effects caused by the cou-
pling of internal and external coordinates of atoms.

B. Atomic Beam Brightening

In considering the utility of atomic beams for the pur-
poses of lithography, collision studies, or a host of other
applications, maximizing the beam intensity may not be
the best option. Laser cooling can be used for increasing
the phase space density and this notion applies to both
atomic traps and atomic beams. In the case of atomic
beams, other quantities than phase space density have
been defined as well, but these are not always consistently
used. The geometrical solid angle occupied by atoms in
a beam is ∆Ω = (∆v⊥/v̄)2, where v̄ is some measure of
the average velocity of atoms in the beam and ∆v⊥ is a
measure of the width of the transverse velocity distribu-
tion of the atoms. The total current or flux of the beam
is Φ, and the flux density or intensity is Φ/π(∆x)2 where
∆x is a measure of the beam’s radius. Then the beam
brightness or radiance R is given by R = Φ/π(∆x⊥)2∆Ω.
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FIG. 14: Plot of brightness (diamonds) and brilliance (trian-
gles) vs. phase space density for various atomic beams cited
in the literature. The lower-left point is for a normal thermal
beam, and the progression toward the top and right has been
steady since the advent of laser cooling. The experimental
results are from Riis et al. [41], Scholz et al. [42], Hooger-
land et al. [43], Lu et al. [44], Baldwin et al. [45], Molenaar
et al. [10], Schiffer et al. [46], Lison et al. [47] and Dieckmann
et al. [48]. The quantum boundary for Bose-Einstein conden-
sation (see section VIII F), where the phase space density is
unity, is shown by the dashed line of the right (figure adapted
from Ref. [47]).

Optical beams are often characterized by their frequency
spread, and, because of the deBroglie relation λ = h/p,
the appropriate analogy for atomic beams is the longi-
tudinal velocity spread. Thus the spectral�brightness or
brilliance B, is given by B = Rv̄/∆vz. Note that both
R and B have the same dimensions as flux density, and
this is often a source of confusion. Finally, B is simply
related to the 6D phase space density. Recently a sum-
mary of these beam properties has been presented in the
context of phase space (see Fig. 14).

One of the first beam-brightening experiments was per-
formed by Nellesen et al. [49, 50] where a thermal beam
of Na was slowed with the chirp technique [1]. Then the
slow atoms were deflected out of the main atomic beam
and transversely cooled. In a later experiment [51] this
beam was fed into a two-dimensional MOT where the
atoms were cooled and compressed in the transverse di-
rection by an optical molasses of σ+-σ− polarized light.
Another approach was used by Riis et al. who directed a
slowed atomic beam into a hairpin-shaped coil that they
called an “atomic funnel” [41]. The wires of this coil gen-
erated a two-dimensional quadrupole field that was used
as a two-dimensional MOT as described before.

These approaches yield intense beams when the num-
ber of atoms in the uncooled beam is already high. How-
ever, if the density in the beam is initially low, for ex-
ample in the case of metastable noble gases or radioac-
tive isotopes, one has to capture more atoms from the
source in order to obtain an intense beam. Aspect et
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al. [52] have used a quasi-standing wave of converging
laser beams whose incidence angle varied from 87◦ to
90◦ to the atomic beam direction, so that a larger solid
angle of the source could be captured. In this case they
used a few mW of laser light over a distance of 75 mm.
One of the most sophisticated approaches to this prob-
lem has been developed for metastable Ne by Hoogerland
et al. [43]. They used a three-stage process to provide a
large solid angle capture range and produce a high bright-
ness beam.

C. Applications to Atomic Clocks

Perhaps one of the most important practical applica-
tions of laser cooling is the improvement of atomic clocks.
The limitation to both the accuracy and precision of such
clocks is imposed by the thermal motion of the atoms, so
a sample of laser-cooled atoms could provide a substan-
tial improvement in clocks and in spectroscopic resolu-
tion.

The first experiments intended to provide slower atoms
for better precision or clocks were attemps at an atomic
fountain by Zacharias in the 1950’s [1, 53]. This failed be-
cause collisions depleted the slow atom population, but
the advent of laser cooling enabled an atomic fountain
because the slow atoms far outnumber the faster ones.
The first rf spectroscopy experiments in such a foun-
tain using laser cooled atoms were reported in 1989 and
1991 [54, 55], and soon after that some other laboratories
also reported successes.

Some of the early best results were reported by Gibble
and Chu [56, 57]. They used a MOT with laser beams 6
cm in diameter to capture Cs atoms from a vapor at room
temperature. These atoms were launched upward at 2.5
m/s by varying the frequencies of the MOT lasers to form
a moving optical molasses as described in section V, and
subsequently cooled to below 3 µK. The atoms were opti-
cally pumped into one hfs sublevel, then passed through
a 9.2 GHz microwave�cavity on their way up and again
later on their way down. The number of atoms that were
driven to change their hfs state by the microwaves was
measured vs. microwave frequency, and the signal showed
the familiar Ramsey oscillations (see chapter “Coherent
Optical Transients” for a discussion of Ramsey fringes).
The width of the central feature was 1.4 Hz and the S/N
was over 50. Thus the ultimate precision was 1.5 mHz
corresponding to δν/ν ∼= 10−12/τ1/2 where τ is the num-
ber of seconds for averaging.

The ultimate limitation to the accuracy of this experi-
ment as an atomic clock was collisions between Cs atoms
in the beam. Because of the extremely low relative veloc-
ities of the atoms, the cross sections are very large (see
section VIII D below) and there is a measurable frequency
shift [58]. By varying the density of Cs atoms in the
fountain, the authors found frequency shifts of the order
of a few mHz for atomic density of 109/cm3, depending
on the magnetic sublevels connected by the microwaves.

Extrapolation of the data to zero density provided a fre-
quency determination of δν/ν ∼= 4×10−14. More recently
the frequency shift has been used to determine a scatter-
ing�length of -400a0 [59] so that the expected frequency
shift is 104 times larger than other limitations to the clock
at an atomic density of n=109/cm3. Thus the authors
suggest possible improvements to atomic time keeping of
a factor of 1000 in the near future. Even more promising
are cold atom clocks in orbit (microgravity) where the
interaction time can be very much longer than 1 s [60].

D. Ultra-cold Collisions

Laser-cooling techniques were developed in the early
1980s for a variety of reasons, such as high-resolution
spectroscopy [1]. During the development of the tech-
niques to cool and trap atoms, it became apparent that
collisions between cold atoms in optical traps was one of
the limiting factors in the achievement of high density
samples. Trap loss experiments revealed that the main
loss mechanisms were caused by laser-induced collisions.
Further cooling and compression could only be achieved
by techniques not exploiting laser light, such as evapora-
tive cooling in magnetic traps. Elastic collisions between
atoms in the ground state are essential in that case for the
rethermalization of the sample, whereas inelastic colli-
sions lead to destruction of the sample. Knowledge about
collision physics at these low energies is therefore essen-
tial for the development of high-density samples of atoms
using either laser or evaporative cooling techniques.

Ground-state collisions play an important role in evap-
orative cooling. Such elastic collisions are necessary to
obtain a thermalization of the gas after the trap depth
has been lowered, and a large elastic cross section is es-
sential to obtain a rapid thermalization. Inelastic col-
lisions, on the other hand, can release enough energy
to accelerate the atoms to energies too high to remain
trapped. Ground-state collisions for evaporative cooling
can be described by one parameter, the scattering�length
a. At temperatures below TD, these collisions are in the
s-wave scattering regime where only the phase�shift δ0

of the lowest partial wave � = 0 is important. More-
over, for sufficiently low energies, such collisions are gov-
erned by the Wigner threshold laws where the phase
shift δ0 is inversely proportional to the wavevector k of
the particle motion. Taking the limit for low energy
gives the proportionality constant, defined as the scat-
tering length a = − limk→0(δ0/k). The scattering length
not only plays an important role in ultra-cold collisions,
but also in the formation of Bose-Einstein condensates
(see section VIII F). In the Wigner�threshold regime the
cross�section approaches a constant, σ = 8πa2 [61].

Although ground-state collisions are important for
evaporative cooling and BEC, they do not provide a
very versatile research field from a collision physics point
of view. The situation is completely different for the
excited-state collisions. For typical temperatures in opti-
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cal traps, the velocity of the atoms is sufficiently low that
atoms excited at long range by laser light decay before
the collision takes place. Laser excitation for low-energy
collisions has to take place during the collision. By tun-
ing the laser frequency, the collision dynamics can be al-
tered and information on the states formed in the molec-
ular system can be obtained. This is the basis of the
new technique of photo-associative spectroscopy, which
for the first time has identified purely long-range states
in diatomic molecules [1, 62].

For atoms colliding in laser light closely tuned to the S-
P transition, the potential is a C3/R3 dipole-dipole inter-
action when one of the atoms is excited. Absorption takes
place at the Condon point RC given by h̄δ = −C3/R3

C or
RC = (C3/h̄|δ|)1/3. Note that the light has to be tuned
below resonance, which is mostly the case for laser cool-
ing. The Condon�point for laser light detuned a few γ
below resonance is typical 1000–2000 a0.

Once the molecular complex becomes excited, it can
evolve to smaller internuclear distances before emission
takes place. Two particular cases are important for trap
loss: (1) The emission of the molecular complex takes
place at much smaller internuclear distance, and the en-
ergy gained between absorption and emission of the pho-
ton is converted into kinetic energy, or (2) The complex
undergoes a transition to another state and the poten-
tial energy difference between the two states is converted
into kinetic energy. In both cases the energy gain can be
sufficient to eject one or both atoms out of the trap. In
the case of the alkalis, the second reaction can take place
because of the different fine-structure states and the re-
action is denoted as a fine-structure changing collision.
The first reaction is referred to as radiative�escape.

Trap loss collisions in MOT’s have been studied to
great extent, but results of these studies have to be con-
sidered with care. In most cases, trap loss is studied by
changing either the frequency or the intensity of the trap-
ping laser, which also changes the conditions of the trap.
The collision rate is not only changed because of a change
in the collision cross section, but also because of changes
in both the density and temperature of the atoms in the
trap. Since these parameters cannot be determined with
high accuracy in a high-density trap, where effects like
radiation trapping can play an important role, obtaining
accurate results this way is very difficult.

The first description of such processes was given by
Gallagher and Pritchard [63]. In their semiclassical
model (the GP-model), the laser light is assumed to be
weak enough that the excitation rate can be described
by a quasi-static excitation probability. Atoms in the
excited state are accelerated toward one another by the
C3/R3 potential. In order to calculate the survival of
the atoms in the excited state, the elapsed time between
excitation and arrival is calculated. The total number of
collisions is then given by the number of atoms at a cer-
tain distance, the fraction of atoms in the excited state,
and the survival rate, integrated over all distances. For
small detunings, corresponding to large internuclear dis-
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FIG. 15: The frequency dependence for the associative ion-
ization rate of cold He* collisions. The experimental re-
sults (symbols) is compared with the semiclassical model
(solid line), JV-model (dashed line), and modified JV-model
(dashed-dotted line). The axis on top of the plot shows the
Condon point, where the excitation takes place.

tances, the excitation rate is appreciable over a very large
range of internuclear distances. However the excitation
occurs at large internuclear distances so the survival rate
of the excited atoms is small. For large detunings the ex-
citation is located in a small region at small internuclear
distances, so the total excitation rate is small, but the
survival rate is large. As a result of this competition, the
collision rate peaks at intermediate detunings.

Another description of optical collisions is given by
Julienne and Vigue [64]. Their description of optical col-
lisions (JV-model) is quantum mechanical for the colli-
sion process, where they make a partial wave expansion
of the incoming wavefunction. The authors describe the
excitation process in the same way as it was done in the
GP-model. Thus the excitation is localized around the
Condon�point with a probability given by the quasi-static
Lorentz formula.

In still another approach, a completely semiclassical
description of optical collisions has been given by Mast-
wijk et al. [65]. These authors start from the GP-model,
but make several important modifications. First, the
Lorentz formula is replaced by the Landau-Zener for-
mula. Second, the authors consider the motion of the
atoms in the collision plane. At the Condon point, where
the excitation takes place, the trajectory of the atom in
the excited state is calculated by integration of the equa-
tion of motion. The results for their model are shown
in Fig 15, and are compared with experiment and the
JV-model. The agreement between the theory and ex-
periment is rather good. For the JV-model two curves
are shown. The first curve shows the situation for the
original JV-model. The second curve shows the result of
a modified JV-model, where the quasi-static excitation
rate is replaced by the Landau-Zener formula. The large
discrepancies between the results for these two models
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FIG. 16: Photoassociation spectroscopy of Na. By tuning
the laser below atomic resonance, molecular systems can be
excited to the first excited state, in which they are bound.
By absorption of a second photon the system can be ionized,
providing a high detection efficiency.

indicates that it is important to use the correct model
for the excitation. The agreement between the modified
JV-model and the semiclassical model is good, indicating
that the dynamics of optical collisions can be described
correctly quantum mechanically or semiclassically. Since
the number of partial waves in the case of He* is in the
order of 10, this is to be expected.

The description of optical collisions above applies to
the situation that the quasi-molecule can be excited
for each frequency of the laser light. However, the
quasi-molecule has well-defined vibrational and rota-
tional states and the excitation frequency has to match
the transition frequency between the ground and ex-
cited rovibrational states. Far from the dissociation
limit, the rovibrational states are well-resolved and many
resonances are observed. This has been the basis of
the method of photo-associative spectroscopy (PAS) for
alkali-metal�atoms, where detailed information on molec-
ular states of alkali dimers have been obtained recently.
Here photo-association refers to the process where a pho-
ton is absorbed to transfer the system from the ground
to the excited state where the two atoms are bound by
their mutual attraction.

The process of PAS is depicted graphically in Fig. 16.
When two atoms collide in the ground state, they can
be excited at a certain internuclear distance to the ex-
cited molecular state and the two atoms may remain
bound after the excitation and form a molecule. This
transient molecule lives as long as the systems remains
excited. The number of rotational states that can con-
tribute to the spectrum is small for low temperature. The
resolution is limited only by the linewidth of the transi-
tion, which is comparable to the natural linewidth of the
atomic transition. With PAS, molecular states can be
detected with a resolution of ≈10 MHz, which is many
orders of magnitude better than traditional molecular
spectroscopy. The formation of the molecules is probed
by absorption of a second photon of the same color, which

can ionize the molecule.
PAS has also been discussed in the literature as a tech-

nique to produce cold molecules. The methods discussed
employ a double resonance technique, where the first
color is used to create a well-defined rovibrational state of
the molecule and a second color causes stimulated emis-
sion of the system to a well-defined vibrational level in the
ground state. Although such a technique has not yet been
shown to work experimentally, cold�molecules have been
produced in PAS recently using a simpler method [66].
The 0−g state in Cs2 has a double-well structure, where
the top of the barrier is accidentally close to the asymp-
totic limit. Thus atoms created in the outer well by PAS
can tunnel through the barrier to the inner well, where
there is a large overlap of the wavefunction with the vi-
brational levels in the ground state. These molecules are
then stabilized against spontaneous decay and can be ob-
served. The temperature of the cold molecules has been
detected and is close to the temperature of the atoms.
This technique and similar techniques will be very im-
portant for the production and study of cold molecules.

E. Optical Lattices

In 1968 V.S. Letokhov [67] suggested that it is possi-
ble to confine atoms in the wavelength size regions of a
standing wave by means of the dipole�force that arises
from the light shift. This was first accomplished in 1987
in one dimension with an atomic beam traversing an in-
tense standing wave [68]. Since then, the study of atoms
confined in wavelength-size potential wells has become
an important topic in optical control of atomic motion
because it opens up configurations previously accessible
only in condensed matter physics using crystals.

The basic ideas of the quantum mechanical motion of
particles in a periodic�potential were laid out in the 1930s
with the Kronig-Penney�model and Bloch’s�theorem, and
optical lattices offer important opportunities for their
study. For example, these lattices can be made essentially
free of defects with only moderate care in spatially filter-
ing the laser beams to assure a single transverse mode
structure. Furthermore, the shape of the potential is ex-
actly known, and doesn’t depend on the effect of the
crystal field or the ionic energy level scheme. Finally, the
laser parameters can be varied to modify the depth of
the potential wells without changing the lattice vectors,
and the lattice vectors can be changed independently by
redirecting the laser beams. The simplest optical lattice
to consider is a 1D pair of counterpropagating beams of
the same polarization, as was used in the first experi-
ment [68].

Because of the transverse nature of light, any mixture
of beams with different �k-vectors necessarily produces a
spatially periodic, inhomogeneous light field. The impor-
tance of the “egg-crate” array of potential wells arises
because the associated atomic light�shifts can easily be
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FIG. 17: The ‘egg-crate” potential of an optical lattice shown
in two dimensions. The potential wells are separated by λ/2.

comparable to the very low average atomic kinetic en-
ergy of laser-cooled atoms. A typical example projected
against two dimensions is shown in Fig. 17.

The name “optical lattice” is used rather than opti-
cal�crystal because the filling fraction of the lattice sites
is typically only a few percent (as of 1999). The limit
arises because the loading of atoms into the lattice is typ-
ically done from a sample of trapped and cooled atoms,
such as a MOT for atom collection, followed by an op-
tical molasses for laser cooling. The atomic�density in
such experiments is limited to a few times 1011/cm3 by
collisions and multiple light scattering. Since the density
of lattice sites of size λ/2 is a few times 1013/cm3, the
filling fraction is necessarily small.

At first thought it would seem that a rectangular 2D or
3D optical lattice could be readily constructed from two
or three mutually perpendicular standing waves [69, 70].
However, a sub-wavelength movement of a mirror caused
by a small vibration could change the relative phase of
the standing waves. In 1993 a very clever scheme was
described [71]. It was realized that an n-dimensional lat-
tice could be created by only n+1 traveling waves rather
than 2n. Instead of producing optical wells in 2D with
four beams (two standing waves), these authors used only
three. The �k-vectors of the co-planar beams were sepa-
rated by 2π/3, and they were all linearly polarized in
their common plane (not parallel to one another) The
same immunity to vibrations was established for a 3D
optical lattice by using only four beams arranged in a
quasi-tetrahedral configuration. The three linearly po-
larized beams of the 2D arrangement described above
were directed out of the plane toward a common vertex,
and a fourth circularly polarized beam was added. All
four beams were polarized in the same plane [71]. The
authors showed that such a configuration produced the
desired potential wells in 3D.

The NIST group studied atoms loaded into an opti-
cal lattice using Bragg�diffraction of laser light from the

spatially ordered array [72]. They cut off the laser beams
that formed the lattice, and before the atoms had time to
move away from their positions, they pulsed on a probe
laser beam at the Bragg angle appropriate for one of the
sets of lattice planes. The Bragg diffraction not only en-
hanced the reflection of the probe beam by a factor of
105, but by varying the time between the shut-off of the
lattice and turn-on of the probe, they could measure the
“temperature” of the atoms in the lattice. The reduction
of the amplitude of the Bragg scattered beam with time
provided some measure of the diffusion of the atoms away
from the lattice sites, much like the Debye-Waller�factor
in X-ray�diffraction.

Laser cooling has brought the study of the motion of
atoms into an entirely new domain where the quantum
mechanical nature of their center-of-mass motion must
be considered [1]. Such exotic behavior for the motion of
whole atoms, as opposed to electrons in the atoms, has
not been considered before the advent of laser cooling
simply because it is too far out of the range of ordinary
experiments. A series of experiments in the early 1990s
provided dramatic evidence for these new quantum states
of motion of neutral atoms, and led to the debut of de-
Broglie wave atom optics.

The limits of laser cooling discussed in section ?? sug-
gest that atomic momenta can be reduced to a “few”
times h̄k. This means that their deBroglie wavelengths
are equal to the optical wavelengths divided by a “few”.
If the depth of the optical potential wells is high enough
to contain such very slow atoms, then their motion in
potential wells of size λ/2 must be described quantum
mechanically, since they are confined to a space of size
comparable to their deBroglie wavelengths. Thus they
do not oscillate in the sinusoidal wells as classical local-
izable particles, but instead occupy discrete, quantum
mechanical bound states, as shown in the lower part of
Fig. 18.

The group at NIST also developed a new method that
superposed a weak probe beam of light directly from the
laser upon some of the fluorescent light from the atoms
in a 3D optical molasses, and directed the light from
these combined sources onto on a fast photodetector [73].
The resulting beat signal carried information about the
Doppler�shifts of the atoms in the optical lattices [36].
These Doppler shifts were expected to be in the sub-MHz
range for atoms with the previously measured 50 µK tem-
peratures. The observed features confirmed the quantum
nature of the motion of atoms in the wavelength-size po-
tential wells (see Fig. 19) [19].

In the 1930s Bloch realized that applying a uniform
force to a particle in a periodic potential would not ac-
celerate it beyond a certain speed, but instead would re-
sult in Bragg�reflection when its deBroglie wavelength
became equal to the lattice period. Thus an electric field
applied to a conductor could not accelerate electrons to a
speed faster than that corresponding to the edge of a Bril-
louin�zone, and that at longer times the particles would
execute oscillatory motion. Ever since then, experimen-
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FIG. 18: Energy levels of atoms moving in the periodic po-
tential of the light shift in a standing wave. There are discrete
bound states deep in the wells that broaden at higher energy,
and become bands separated by forbidden energies above the
tops of the wells. Under conditions appropriate to laser cool-
ing, optical pumping among these states favors populating
the lowest ones as indicated schematically by the arrows.

talists have tried to observe these Bloch�oscillations in
increasingly pure and/or defect-free crystals.

Atoms moving in optical lattices are ideally suited for
such an experiment, as was beautifully demonstrated in
1996 [74]. The authors loaded a 1D lattice with atoms
from a 3D molasses, further narrowed the velocity distri-
bution, and then instead of applying a constant force,
simply changed the frequency of one of the beams of
the 1D lattice with respect to the other in a controlled
way, thereby creating an accelerating lattice. Seen from
the atomic reference frame, this was the equivalent of a
constant force trying to accelerate them. After a vari-
able time ta the 1D lattice beams were shut off and
the measured atomic velocity distribution showed beau-
tiful Bloch�oscillations as a function of ta. The cen-
troid of the very narrow velocity distribution was seen to
shift in velocity space at a constant rate until it reached
vr = h̄k/M , and then it vanished and reappeared at −vr

as shown in Fig. 20. The shape of the “dispersion curve”
allowed measurement of the “effective mass” of the atoms
bound in the lattice.

F. Bose-Einstein Condensation

In 1924 S. Bose found the correct way to evaluate
the distribution of identical entities, such as Planck’s
radiation quanta, that allowed him to calculate the
Planck�spectrum using the methods of statistical me-
chanics. Within a year Einstein had seized upon this
idea, and generalized it to identical particles with dis-
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FIG. 19: (a) Fluorescence spectrum in a 1D lin ⊥ lin optical
molasses. Atoms are first captured and cooled in an MOT,
then the MOT light beams are switched off leaving a pair of lin
⊥ lin beams. Then the measurements are made with δ = −4γ
at low intensity. (b) Same as (a) except the 1D molasses is
σ+-σ− which has no spatially dependent light shift and hence
no vibrational motion (figure from Ref. [36]).

crete energies. This distribution is

N(E) =
1

eβ(E−µ) − 1
, (33)

where β ≡ 1/kBT and µ is the chemical potential that
vanishes for photons: Eq. 33 with µ = 0 is exactly the
Planck distribution. Einstein observed that this distri-
bution has the peculiar property that for sufficiently low
average energy (i.e., low temperature), the total energy
could be minimized by having a discontinuity in the dis-
tribution for the population of the lowest allowed state.

The condition for this Bose-Einstein condensation
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FIG. 20: Plot of the measured velocity distribution vs. time
in the accelerated 1D lattice. The atoms accelerate only to
the edge of the Brillouin zone where the velocity is +vr, and
then the velocity distribution appears at −vr (figure from
Ref. [74]).

(BEC) in a gas can be expressed in terms of the de-
Broglie wavelength λdB associated with the thermal mo-
tion of the atoms as nλ3

dB ≥ 2.612 . . ., where n is the
spatial density of the atoms. In essence, this means that
the atomic wave functions must overlap one another.

The most familiar elementary textbook description of
BEC focuses on non-interacting particles. However, par-
ticles do interact and the lowest order approximation that
is widely used to account for the interaction takes the
form of a mean-field repulsive force. It is inserted into
the Hamiltonian for the motion of each atom in the trap
(n.b., not for the internal structure of the atom) as a term
Vint proportional to the local density of atoms. Since
this local density is itself |Ψ|2, it makes the Schrödinger
equation for the atomic motion non-linear, and the re-
sult bears the name “Gross-Pitaevski�equation”. For N
atoms in the condensate it is written
[
− h̄2

2M
∇2

�R
+ Vtrap(�R) + NVint|Ψ(�R)|2

]
Ψ(�R) = ENΨ(�R),

(34)

where �R is the coordinate of the atom in the trap,
Vtrap(�R) is the potential associated with the trap that
confines the atoms in the BEC, and Vint ≡ 4πh̄2a/M
is the coefficient associated with strength of the mean
field interaction between the atoms. Here a is the scat-
tering�length (see section VIII D), and M is the atomic
mass.

For a > 0 the interaction is repulsive so that a BEC
would tend to disperse. This is manifest for a BEC con-
fined in a harmonic trap by having its wavefunction some-
what more spread out and flatter than a Gaussian. By
contrast, for a < 0 the interaction is attractive and the
BEC eventually collapses. However, it has been shown
that there is metastability for a sufficiently small number
of particles with a < 0 in a harmonic trap, and that a
BEC can be observed in vapors of atoms with such neg-
ative scattering length as 7Li [75–77]. This was initially
somewhat controversial.

Solutions to this highly non-linear equation 34, and
the ramifications of those solutions, form a major part
of the theoretical research into BEC. Note that the
condensate atoms all have exactly the same wavefunc-
tion, which means that adding atoms to the condensate
does not increase its volume, just like the increase of
atoms to the liquid phase of a liquid-gas mixture makes
only an infinitesimal volume increase of the sample. The
consequences of this predicted condensation are indeed
profound. For example, in a harmonic trap, the lowest
state’s wavefunction is a Gaussian. With so many atoms
having exactly the same wavefunction they form a new
state of matter, unlike anything in the familiar experi-
ence.

Achieving the conditions required for BEC in a low-
density atomic vapor requires a long and difficult series
of cooling steps. First, note that an atomic sample cooled
to the recoil limit Tr would need to have a density of a
few times 1013 atoms/cm3 in order to satisfy BEC. How-
ever, atoms can not be optically cooled at this density
because the resulting vapor would have an absorption
length for on-resonance radiation approximately equal to
the optical wavelength. Furthermore collisions between
ground and excited state atoms have such a large cross
section, that at this density the optical cooling would be
extremely ineffective. In fact, the practical upper limit
to the atomic density for laser cooling in a 3D optical
molasses (see Sec. VI B) or MOT (see Sec. VII D) cor-
responds to n ∼ 1010 atoms/cm3. Thus it is clear that
the final stage of cooling toward a BEC must be done in
the dark. The process typically begins with a MOT for
efficient capture of atoms from a slowed beam or from
the low-velocity tail of a Maxwell-Boltzmann distribu-
tion of atoms at room temperature. Then a polarization
gradient optical�molasses stage is initiated that cools the
atomic sample from the mK temperatures of the MOT
to a few times Tr. For the final cooling stage, the cold
atoms are confined in the dark in a purely magnetic�trap
and a forced evaporative�cooling process is used to cool
[1].
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FIG. 21: Three panels showing the spatial distribution of
atoms after release from the magnetostatic trap following var-
ious degrees of evaporative cooling. In the first one, the atoms
were cooled to just before the condition for BEC was met, in
the second one, to just after this condition, and in the third
one to the lowest accessible temperature consistent with leav-
ing some atoms still in the trap (figure taken from the JILA
web page).

The observation of BEC in trapped alkali atoms in
1995 has been the largest impetus to research in this ex-
citing field. As of this writing (1999), the only atoms
that have been condensed are Rb [78], Na [79], Li [80],
and H [81]. The case of Cs is special because, although
BEC is certainly possible, the presence of a near-zero en-
ergy resonance severely hampers its evaporative cooling
rate.

The first observations of BEC were in Rb [78], Li [80],
and Na [79], and the observation was done with ballis-
tic�techniques. The results from one of the first experi-
ments are shown in Fig. 21. The three panels show the
spatial distribution of atoms some time after release from
the trap. From the ballistic parameters, the size of the
BEC sample, as well as its shape and the velocity distri-
bution of its atoms could be inferred. For temperatures
too high for BEC, the velocity distribution is Gaussian
but asymmetrical. For temperatures below the transition
to BEC, the distribution is also not symmetrical, but now
shows the distinct peak of a disproportionate number of
very slow atoms corresponding to the ground state of the
trap from which they were released. As the temperature
is lowered further, the number of atoms in the narrow
feature increases very rapidly, a sure signature that this
is truly a BEC and not just very efficient cooling.

The study of this ”new form” of matter has spawned
innumerable sub-topics, and has attracted enormous in-
terest. Both theorists and experimentalists are address-
ing the questions of its behavior in terms of rigidity,
acoustics, coherence, and a host of other properties. Ex-
traction of a coherent beam of atoms from a BEC has
been labelled an “atom laser, and will surely open the
way for new developments in atom optics [1].

G. Dark States

The BEC discussed above is an example of the impor-
tance of quantum effects on atomic motion. It occurs
when the atomic deBroglie wavelength λdB and the in-
teratomic distances are comparable. Other fascinating
quantum effects occur when atoms are in the light and
λdB is comparable to the optical wavelength. Some top-
ics connected with optical lattices have already been dis-
cussed, and the dark states described here are another
important example. These are atomic states that cannot
be excited by the light field.

The quantum description of atomic motion requires
that the energy of such motion be included in the Hamil-
tonian. The total Hamiltonian for atoms moving in a
light field would then be given by

H = Hatom + Hrad + Hint + Hkin, (35)

where Hatom describes the motion of the atomic elec-
trons and gives the internal atomic energy levels, Hrad

is the energy of the radiation field and is of no concern
here because the field is not quantized, Hint describes the
excitation of atoms by the light field and the concomi-
tant light shifts, and Hkin is the kinetic energy Ek of the
motion of the atoms’ center of mass. This Hamiltonian
has eigenstates of not only the internal energy levels and
the atom-laser interaction that connects them, but also of
the kinetic energy operator Hkin ≡ P2/2M . These eigen-
states will therefore be labeled by quantum numbers of
the atomic states as well as the center of mass momen-
tum p. For example, an atom in the ground state, |g; p〉,
has energy Eg + p2/2M which can take on a continuous
range of values.

To see how the quantization of the motion of a two-
level atom in a monochromatic field allows the existence
of a velocity selective dark state, consider the states of
a two-level atom with single internal ground and excited
levels, |g; p〉 and |e; p′〉. Two ground eigenstates |g; p〉
and |g; p′′〉 are generally not coupled to one another by
an optical field except in certain cases. For example,
in oppositely propagating light beams (1D) there can be
absorption-stimulated emission cycles that connect |g; p〉
to itself or to |g; p ± 2〉 (in this section, momentum is
measured in units of h̄k). The initial and final Ek of
the atom differ by ±2(p ± 1)/M so energy�conservation
requires p = ∓1 and is therefore velocity selective (the
energy of the light field is unchanged by the interaction
since all the photons in the field have energy h̄ω�).

The coupling of these two degenerate states by the
light field produces off-diagonal matrix elements of the
total Hamiltonian H of Eq. 35, and subsequent diago-
nalization of it results in the new ground eigenstates of
H given by (see Fig. 22) |±〉 ≡ (|g; −1〉 ± |g; +1〉) /

√
2.

The excitation rate of these eigenstates |±〉 to |e; 0〉 is
proportional to the square of the electric dipole matrix
element �µ given by

|〈e; 0|�µ|±〉|2 = |〈e; 0|�µ|g; −1〉±〈e; 0|�µ|g; +1〉|2/2. (36)
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|−〉

FIG. 22: Schematic diagram of the transformation of the
eigenfunctions from the internal atomic states |g; p〉 to the
eigenstates |±〉. The coupling between the two states |g; p〉
and |g; p′′〉 by Raman transitions mixes them, and since they
are degenerate, the eigenstates of H are the non-degenerate
states |±〉.

This vanishes for |−〉 because the two terms on the
right-hand side of Eq. 36 are equal since �µ does not
operate on the external momentum of the atom (dot-
ted line of Fig. 22). Excitation of |±〉 to |e; ±2〉 is
much weaker since it’s off resonance because its energy
is higher by 4h̄ωr = 2h̄2k2/M , so that the required fre-
quency is higher than to |e; 0〉. The resultant detuning
is 4ωr = 8ε(γ/2), and for ε ∼ 0.5, this is large enough so
that the excitation rate is small, making |−〉 quite dark.
Excitation to any state other than |e; ±2〉 or |e; 0〉 is
forbidden by momentum�conservation. Atoms are there-
fore optically pumped into the dark state |−〉 where they
stay trapped, and since their momentum components are
fixed, the result is velocity-selective coherent population
trapping (VSCPT).

A useful view of this dark state can be obtained by
considering that its components |g; ±1〉 have well defined
momenta, and are therefore completely delocalized. Thus
they can be viewed as waves traveling in opposite direc-
tions but having the same frequency, and therefore they
form a standing deBroglie wave. The fixed spatial phase
of this standing wave relative to the optical standing wave
formed by the counterpropagating light beams results in
the vanishing of the spatial integral of the dipole transi-
tion matrix element so that the state cannot be excited.
This view can also help to explain the consequences of
p not exactly equal ±1, where the deBroglie wave would
be slowly drifting in space. It is common to label the
average of the momenta of the coupled states as the fam-
ily�momentum, ℘, and to say that these states form a
closed�family, having family momentum ℘ = 0 [82, 83].

In the usual case of laser cooling, atoms are subject
to both a damping force and to random impulses arising
from the discrete photon momenta h̄k of the absorbed
and emitted light. These can be combined to make a
force vs. velocity curve as shown in Fig. 23a. Atoms
with ℘ �= 0 are always subject to the light field that
optically pumps them into the dark state and thus pro-
duces random impulses as shown in Fig. 23b. There is
no damping�force in the most commonly studied case of

a real atom, the J = 1 → 1 transition in He*, because
the Doppler and polarization gradient cooling cancel one
another as a result of a numerical “accident” for this par-
ticular case.

(a)

(b)

(c)

FIG. 23: Calculated force vs. velocity curves for different
laser configurations showing both the average force and a typ-
ical set of simulated fluctuations. Part (a) shows the usual
Doppler cooling scheme that produces an atomic sample in
steady state whose energy width is h̄γ/2. Part (b) shows
VSCPT as originally studied in Ref. [82] with no damping
force. Note that the fluctuations vanish for ℘ = 0 because
the atoms are in the dark state. Part (c) shows the presence
of both a damping force and VSCPT. The fluctuations vanish
for ℘ = 0, and both damping and fluctuations are present at
℘ �= 0.
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Figures 23a and b should be compared to show the
velocity dependence of the sum of the damping and ran-
dom forces for the two cases of ordinary laser cooling and
VSCPT. Note that for VSCPT the momentum diffusion
vanishes when the atoms are in the dark state at ℘ = 0,
so they can collect there. In the best of both worlds, a
damping�force would be combined with VSCPT as shown
in Fig. 23c. Such a force was predicted in Ref. [84] and
was first observed in 1996 [85].
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