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Abstract

This review describes the methods of trapping cold atoms in electromagnetic fields and in the
combined electromagnetic and gravity fields. We discuss first the basic types of the dipole
radiation forces used for cooling and trapping atoms in the laser fields. We outline next the
fundamentals of the laser cooling of atoms and classify the temperature limits for basic laser
cooling processes. The main body of the review is devoted to discussion of atom traps based
on the dipole radiation forces, dipole magnetic forces, combined dipole radiation–magnetic
forces, and the forces combined of the dipole radiation–magnetic and gravity forces. Physical
fundamentals of atom traps operating as waveguides and cavities for cold atoms are also
considered. The review ends with the applications of cold and trapped atoms in atomic,
molecular and optical physics.
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1. Introduction

The trapping of atoms in a restricted space volume is a fundamental physical problem of
considerable interest from the standpoint of both the performance of physical investigations
with small amounts of atoms and the development of new technologies based on the localization
of the spatial motion of atoms. Important physical applications of the methods of trapping
atoms in 3D spatial regions include studies into the spectral properties of small amounts
of atoms, including counted numbers of radioactive atomic isotopes, improvement of the
accuracy and sensitivity of spectral measurements, and studies of quantum statistical effects
in atomic ensembles at low temperatures, such as the Bose–Einstein condensation (BEC). No
less important physical and technological applications may be associated with the trapping
atoms in one or two dimensions, allowing atomic waveguides and cavities to be developed.
Important technological applications are expected to ensue from the use of trapped atoms in
the atomic frequency and time standards.

In the course of the many decades that this problem has been discussed, numerous physical
ideas were put forward that could be used either for trapping atoms in 3D regions of space or
for trapping atoms in one or two dimensions. In essence, the practically developed methods
appeared to be based on the use of the forces of electric dipole interaction of atoms with
quasiresonance laser fields and (or) magnetic dipole interaction of atoms with static magnetic
fields. In a sense, the main methods of trapping neutral atoms proved to be similar to those
for trapping charged particles (electrons, protons, atom ions). To trap the latter, use is made
of electromagnetic traps formed by inhomogeneous radio-frequency fields (Paul traps) or
inhomogeneous stationary electric and magnetic fields (Penning traps) (Dehmelt 1967, 1969,
Paul 1990).

From the physical standpoint, all the known techniques for trapping neutral atoms can
be classed with but a few basic methods. These basic methods are: optical trapping using
the forces of electric dipole interaction between atoms and laser fields, magnetic trapping
based on the use of the forces of magnetic dipole interaction, mixed magneto-optical trapping
using simultaneous interaction between atoms and magnetic and laser fields, and also mixed
gravito-optical and gravito-magnetic trapping.

Historically, the first to be discussed were the methods of magnetic trapping. The very first
suggestions on the possibility of electromagnetic trapping of atoms were already made when the
first experiments were conducted on the deflection of atomic beams by a nonuniform magnetic
field (Stern and Gerlach 1921). The development of the idea of the magnetic deflection of
atoms and molecules led to the appearance in the 1950s of the hexapole magnetic lenses and
hexapole magnetic traps for particles with a permanent magnetic moment (Friedburg and Paul
1951, Lemonick et al 1955). These traps were successfully used to trap ultracold neutrons
(Kugler et al 1978, 1985, Golub and Pendlebury 1979). Many types of traps for particles with
a permanent magnetic moment, starting with the most simple quadrupole trap and ending with
the fairly complex Ioffe trap, were discussed in the works on plasma physics (Gott et al 1962,
Artsimovich 1964, Krall and Trivelpiece 1973). Concrete magnetic trap arrangements for
trapping atoms started to be discussed in the 1960s (Vladimirskii 1960, Heer 1963, Letokhov
and Minogin 1980, Pritchard 1983, Metcalf 1984, Bergeman et al 1987).

The possibility of trapping atoms in magnetic traps could not be experimentally verified
for a long time, mainly because of the absence of methods to obtain cold atoms. The potential
well depthUm = µ|�B| produced by an inhomogeneous magnetic field varying in the interval
�B at typical atomic magnetic moment values of the order of the Bohr magneton, µ ≈ µB ,
and moderate value of the laboratory magnetic field is usually very small compared with the
thermal energy of atoms at room temperature. Accordingly, inhomogeneous magnetic fields
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can only be used to trap very cold atoms whose temperature T does not exceed the potential
well depth,

T < µ|�B|/kB, (1.1)

where kB is the Boltzmann constant. To illustrate, when the magnetic field varies by an amount
of |�B| = 100 G, the trap can hold atoms with a temperature no higher than 10 mK.

In the late 1960s the first suggestion was made on the possibility of optical trapping of
atoms in the nodes or loops of an off-resonance standing laser wave (Letokhov 1968). The
first idea of the optical trapping of atoms was based on the use of the electric dipole interaction
between the atoms and a standing laser wave to form a periodic lattice of potential wells
whose minima coincided with the nodes or antinodes of the standing laser wave. A free atom
is known to have no electric dipole moment by virtue of its symmetry with respect to the
inversion operation. An electric dipole moment can, however, be induced by a laser field if
an atom is in an incoherent mixture of states or a coherent superposition of states of opposite
parity. Exactly such mixed states are produced when an atom interacts with a resonance or
off-resonance light field. The theory of atomic trapping by an off-resonance standing laser
wave was discussed in a number of works (Kazantsev 1972, Letokhov and Pavlik 1976).

Recalling the history of this idea, one of the authors of this review (Letokhov) must say
that it has its roots in the experiments by Ramsey and co-workers (Goldenberg et al 1960). In
these experiments, hydrogen atoms were trapped in a closed vessel whose inside surface was
coated with a special paraffin layer. Colliding with this coating, the atoms remained with a high
probability in their initial hyperfine-structure state. The vessel was placed inside a microwave
cavity. The size of the vessel, a, and the cavity was chosen to be close to the wavelength
λ = 21 cm of the microwave transition between the hyperfine-structure levels of the hydrogen
atom (see figure 1). Thanks to the fact that the free-flight length L of the atoms satisfied the
condition

L � λ, (1.2)

the motion of the atoms was localized within a small volume V � λ3. As a result of the
localization of atoms there took place the elimination of the Doppler broadening of spectral
lines in the so-called Lamb–Dicke limit (Dicke 1953). It seemed very tempting to find a
way to localize atoms in a micron-size region of space and extend thus the approach to the
optical spectral region. Since it was practically impossible to make such small cavities, the
natural idea was conceived of localizing atoms in the nodes or antinodes of a standing laser
wave, i.e. in regions the size of the optical wavelength (Letokhov 1968). To localize atoms
in the inhomogeneities of a standing laser wave, use could be made of the gradient dipole
force (Gaponov and Miller 1958, Askarian 1962). Of course, the kinetic energy of a thermal
atom far exceeds the height of the potential barrier produced by the gradient force. For this
reason, it was only the trapping of thermal atoms moving almost parallel to the wavefront of
the standing laser wave, i.e. the 1D trapping of atoms, that was discussed in the first proposal
(see figure 2). Naturally the fraction of such atoms in a collimated thermal atomic beam is
always small, which presented certain difficulties for an experiment.

In the early 1970s an attempt was made to observe the 1D trapping of molecules in a
standing wave produced by an intense CW CO2 laser. But it proved abortive because of the
difficulties involved in detecting the trapped molecules (see Letokhov 1992). An earlier work
(Letokhov and Pavlik 1976) discussed possible methods to implement a 3D trapping of atoms
by way of predominant photodeflection of slow atoms into a region where a 3D laser wave
could trap slow atoms without the destructive collisional influence of the much larger number
of thermal atoms (figure 4). Periodic lattices of trapped atoms proposed in the early works
later became known as optical lattices.
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Figure 1. Scheme of geometrical trapping hydrogen
atoms in a storage vessel placed inside the microwave
cavity (Goldenberg et al 1960).

Figure 2. Scheme of the 1D trapping of atoms in the
periodic potential U(y, z) produced by a standing laser
wave (Letokhov 1968).

Figure 3. Three methods of the Doppler-free optical spectroscopy
differ in the contribution of the transit-time broadening, �νtr :
(a) saturation spectroscopy in a standing wave; (b) two-photon
spectroscopy in a standing wave; (c) particle trapping in a 3D standing
wave (Letokhov 1975).

At the time of these first suggestions, Ashkin (1970, 1980) published interesting proposals
on the laser trapping and levitation of dielectric microparticles, which later led to the
development of ‘optical tweezers’. These are now an important tool in biological investigations
(Ashkin 1988).

In the same years it was appreciated that the trapping of atoms by laser light might
give birth to so-called particle trapping spectroscopy (Letokhov 1975). This would be an
important supplement to the Doppler-free laser spectroscopy techniques developed earlier (see
table 1): the standing-wave absorption saturation spectroscopy (Lamb 1964, Lee and Skolnick
1967, Letokhov 1967, Lisitsyn and Chebotayev 1968, Barger and Hall 1969) and standing-
wave two-photon spectroscopy suggested by Chebotayev and co-workers (Vasilenko et al
1970). In contrast to these nonlinear spectroscopy techniques, particle trapping spectroscopy
is completely free from the so-called transit broadening effect resulting from the finite particle–
field interaction time (figure 3).

Despite the promising applications that trapped atoms could have in spectroscopy, the
trapping of atoms by an off-resonance laser field was not at once developed experimentally
because the methods for obtaining sufficiently cold atoms were lacking at the time. The
potential wells produced by the dipole interaction of an atom with an off-resonance standing
light wave, E = 2E0 cos kz cosωt , have a shallow depth Ue = αE2

0 because of the low off-
resonance atomic polarizability α. Accordingly, the off-resonance optical trapping can be
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Figure 4. The first proposal on trapping slow atoms in
a 3D standing laser wave (first idea of the optical lattice)
(Letokhov and Pavlik 1976).

Table 1. Methods of Doppler-free laser spectroscopy.

Method Physical phenomena Author

1. Saturation spectroscopy Change of the atomic Lamb (1964)
(molecular velocity distribution
at the quantum levels of the
optically saturated transition).

2. Two-photon spectroscopy Compensation of the Doppler Vasilenko
shift due to simultaneous et al (1970)
absorption of photons from
counter-propagating laser waves.

3. Spectroscopy of trapped Oscillatory motion of slow Letokhov (1968)
atoms and molecules atoms or molecules in a standing

laser wave (trapping of atoms or
molecules).

implemented only for sufficiently cold atoms whose temperature is limited by the condition
(Letokhov 1968)

T < αE2
0/kB. (1.3)

For example, at an intensity of the counter-propagating travelling laser waves producing the
standing laser wave, of the order of I = (c/8π)E2

0
∼= 1 kW cm−2, and typical atomic

polarizability α ≈ 3 × 10−23 cm3, condition (1.3) is satisfied for atoms with quite a low
temperature T < 1 µK.

In the mid-1970s a principal change occurred in the view of the problem of trapping atoms
in electromagnetic fields. The first suggestion was put forward at the time on the possibility of
deep cooling of atoms by a resonance optical radiation red-detuned with respect to the atomic
transition (Hänsch and Shawlow 1975), and concrete schemes were proposed for cooling atoms
by standing laser waves (Letokhov et al 1976, 1977). From the quantum mechanical point of
view, the idea of optical cooling of atoms consisted in the reduction of atomic velocities by
the photon recoil associated with the absorption by the moving atoms of counter-propagating
laser photons. Recall that, due to the Doppler effect, when the laser field is a red-detuned with
respect to the atomic transition, an atom predominantly absorbs counter-propagating photons.
From the semiclassical point of view, the mechanism of the optical cooling of atoms consisted
in the retardation of atoms by the radiation pressure force which for a red-detuned laser light
is directed opposite to the atomic velocity.

The discovery of the optical cooling of atoms has shown that the problem of trapping
neutral atoms can be solved by both magnetic and optical methods, provided that the atoms
are preliminarily cooled by laser radiation. At the same period there were developed various
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experimental methods for the laser cooling of atoms. Basically, there proved to be two principal
schemes. One is the scheme of simultaneous deceleration and longitudinal cooling of an atomic
beam by a counter-propagating red-detuned laser beam (Balykin et al 1979, 1980, 1984b,
Andreev et al 1981, 1982, Phillips and Metcalf 1982, Prodan et al 1982). The other principal
scheme is that of cooling atoms in counter-propagating red-detuned laser beams (Letokhov
et al 1976, 1977). This second scheme provides for the cooling of atoms at a zero average
velocity. In the case of transverse irradiation of an atomic beam by counter-propagating laser
beams, this scheme provides for the transverse cooling and collimation of the beam (Balykin
et al 1984a, c, 1985b, Aspect et al 1986). When irradiating an atomic gas by three pairs of
counter-propagating laser waves, the scheme makes it possible to effect the 3D cooling of
atoms (Chu et al 1985, Lett et al 1988).

Theoretical analysis of a most simple model of interaction of a two-level atom with counter-
propagating laser beams has shown that laser cooling makes it possible to reach extremely low
temperatures, five to six orders of magnitude lower than room temperature. It was shown
that in a two-level atom model the cooling mechanism is based on single-photon absorption
(emission) processes and found that the minimum temperature of atoms is reached at a red
detuning equal to the natural half-width of the atomic transition line, δ = −γ , and is determined
by the atomic transition natural half-width (Letokhov et al 1977):

TD = h̄γ /kB. (1.4)

The value of temperature (1.4) found by Letokhov, Minogin, and Pavlik is nowadays referred
to as the Doppler temperature or the Doppler cooling limit. To avoid misunderstanding, one
should stress that temperature (1.4) is defined by the natural linewidth and not by the Doppler
width. At typical value of the natural linewidth  = 2γ 2π × 10 MHz the temperature TD is
of the order of 100 µK.

Subsequent experimental investigations have shown that real multilevel atoms can be
cooled in counter-propagating laser waves down to temperatures an order or two below
minimum temperature (1.4) predicted by the two-level atom model (Lett et al 1988, Weiss
et al 1989). The deeper cooling of multilevel atoms in comparison with the idealized two-
level atoms proves possible owing to the contribution from the two-photon friction mechanism
specific to multilevel atoms (Dalibard and Cohen-Tannoudji 1989, Ungar et al 1989, Chang
et al 1990a, b, 1999a, b, Cohen-Tannoudji 1997, Jun et al 1999a, b). In multilevel dipole
interaction schemes, the laser field excites the atoms from many magnetic sublevels of the
ground electronic state. Accordingly, in multilevel cooling schemes the two-photon and higher-
order multiphoton processes produce an additional friction that lowers the atomic temperature
below the value TD.

The fundamental lower temperature limit for any laser cooling process based on the photon
recoil was shown to be determined by the quantum fluctuations of the atomic momentum and
accordingly cannot be lower than the value defined by the recoil energy,

Tr = h̄2k2/2MkB, (1.5)

where k = ω0/c is the wavevector corresponding to the frequency ω0 of the atomic transition
excited by the laser light. Temperature (1.5) is customarily called the recoil temperature. For
atoms of moderate mass whose resonance transitions are in the visible region, typical values
of the recoil temperature Tr amount to a few microKelvin. In practical schemes, the multilevel
atoms are frequently cooled by counter-propagating laser beams down to temperatures of the
order of 10 µK (Letokhov and Minogin 1981, Balykin et al 1985a, Phillips 1998, Adams and
Riis 1997).

Finally, it should be noted that in addition to the laser cooling methods based on the photon
recoil, there has also been developed the laser methods for the optical pumping of the velocity-
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selective translational atomic states described by the effective temperatures below the recoil
temperature Tr (Aspect et al 1988, Kasevich and Chu 1992, Lawall et al 1995, Lee et al 1996).
One of these methods is based on the velocity-selective coherent trapping of atomic population
in the superpositional state composed of the ground-state substates (Aspect et al 1988, Lawall
et al 1995). Another method is based on the use of the narrow two-photon Raman transitions
between two hyperfine levels in the ground state to select a narrow velocity group of atoms
and push it toward zero velocity (Kasevich and Chu 1992).

After the development of laser cooling techniques, the first successful experiment was
performed on the trapping of cold atoms in a quadrupole magnetic trap (Migdal et al 1985). This
experiment has initiated numerous experiments on magnetic trapping neutral atoms (Petrich
et al 1995, Davis et al 1995, Ketterle and Van Druten 1996, Hinds and Hughes 1999).

At this period many new schemes for the optical trapping of cold atoms were proposed.
It was suggested that cold atoms could be trapped in the periodic potential produced by the
dipole interaction of an atom with a resonance standing laser wave (Kazantsev 1974, Botin
et al 1976, Letokhov et al 1976, 1977, Kazantsev et al 1990). Possibilities were considered
of trapping atoms by dipole forces in the intersection regions of counter-propagating laser
beams (Letokhov and Minogin 1978, Ashkin 1978) or in the focus of a single laser beam
(Ashkin 1978). All proposals as to the development of purely optical traps for atoms ran into
the principal difficulty caused by the finite lifetime of atoms in traps due to the momentum
diffusion in laser fields (Cook 1980a, b, Gordon and Ashkin 1980). To get over this difficulty,
it was suggested that use should be made of two laser fields separated in time, one for cooling
the atoms and the other for trapping them (Dalibard et al 1983, 1984). Similar approaches
to atom trapping by means of time-varying fields were considered by Lovelace et al (1985),
Cornell et al (1991) and Morinaga and Shimizu (1994).

When optical atom traps were first discussed, it seemed very promising to create a purely
optical trap based only on the resonance radiation pressure force. It was presumed that a central-
symmetric light field composed of several divergent laser beams could be used to produce a
potential well for cold atoms due to the coordinate-dependent radiation pressure force (Minogin
and Javanainen 1982). The attraction of the idea was the fact that for red-detuned laser beams
this trap could simultaneously cool and trap the atoms. Later on, however, it was shown that
such laser field configurations were incapable of producing stable potential wells for atoms
(Ashkin and Gordon 1983). The limitations formulated by Ashkin and Gordon on the structures
of the trapping laser fields came to be known as the optical Earnshaw theorems by analogy
with the well known electrostatics theorem.

However, the optical Earnshaw theorems cease to hold true when the atoms are placed in
the external force fields (Pritchard et al 1986). Using this circumstance, Dalibard suggested a
magneto-optical trap (MOT) (Dalibard 1987) which was soon realized experimentally (Raab
et al 1987) and subsequently gained wide recognition. In the MOT, a nonuniform magnetic
field produces the Zeeman shifts of atomic magnetic sublevels, so that the counter-propagating
laser beams not only cool the atoms, but also trap them in the central region of the trap.

The cooling of atoms in counter-propagating laser beams which may interfere to produce
the periodic optical potential renewed interest in the first idea of the optical trapping of atoms in
the nodes or antinodes of standing laser waves (Letokhov 1968). With cold atoms, numerous
experiments became possible on the creation of periodic lattices of cold atoms that are often
called the optical lattices (Jessen and Deutsch 1996).

In 1982, the original idea of an atom mirror was introduced, which greatly influenced the
development of the methods of trapping cold atoms. The idea was to use an evanescent laser
wave propagating along a dielectric–vacuum interface as a reflecting mirror for atoms (Cook
and Hill 1982). Since the evanescent light wave penetrates into the vacuum to a distance of
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the order of the optical wavelength, the high gradient of the evanescent wave field produces a
substantial dipole gradient force on the atom. At a large detuning of the evanescent wave with
respect to the atomic transition, the radiation pressure force proves very weak, and the atomic
dynamics in the evanescent wave is essentially governed by the dipole gradient force alone. In
the case of a large blue detuning, the gradient force produces in the vacuum region a repulsive
barrier which reflects atoms. This barrier is not very high, but it is quite sufficient to reflect
cold atoms. The first experiments on the reflection of a thermal beam of sodium atoms at a
grazing angle (Balykin et al 1987, 1988b) and on the reflection of normally incident cold atoms
(Kasevich et al 1990, Aminoff et al 1993) confirmed that an evanescent wave can effectively
reflect atoms. It was also shown that the reflection coefficient of the atom mirror may be
high even at low intensity of the laser wave. It was found that introducing metal coatings
of additional dielectric layers in the vicinity of the dielectric–vacuum interface substantially
enhanced the evanescent wave field as a result of excitation of surface plasmons (Esslinger
et al 1993) or on account of the formation of a dielectric waveguide (Kaiser et al 1994).

The development of an atom mirror gave impetus to the development of methods for the
gravito-optical trapping of cold atoms. It was theoretically demonstrated that a horizontally
arranged concave atom mirror could be used to create gravito-optical traps for cold atoms
(Wallis et al 1992). Ten reflections of cold atoms from a concave atomic mirror were
experimentally observed (Aminoff et al 1993). In recent years, there have been suggested
and experimentally realized half-open gravito-optical traps (Ovchinnikov et al 1995, Soding
et al 1995).

Another important atom mirror application suggested was the development of cavities for
the de Broglie atom waves, similar to the Fabry–Perot optical cavities (Balykin and Letokhov
1989). There were also suggested and analysed 3D atomic cavities based on evanescent
waves (Dowling and Gea-Banacloche 1995). The evanescent-wave atom mirror idea was
subsequently transformed to the proposal to develop atom waveguides similar to optical
waveguides (Ol’shanii et al 1993, Savage et al 1993, Marksteiner et al 1994). The first
experiments verified the serviceability of atom waveguides (Renn et al 1995, 1996, Ito et al
1996).

Some promising schemes for trapping cold atoms still await their analysis and experimental
implementation. Classed with such still imperfectly understood schemes can be electrostatic
traps (Wing 1980) and gravito-magnetic traps based on magnetic mirrors (Sidorov et al 1996,
Hughes et al 1997).

Summarizing the brief history of ideas in the field of trapping neutral atoms, one can note
that while the impetuous developments in this field take their course there still remain the two
principal objectives already formulated in the first works on the laser cooling and trapping
atoms (Letokhov and Minogin 1981, Minogin and Letokhov 1987). One of these objectives is
the use of trapped cold atoms to perform precision experiments in atomic and nuclear physics
and spectroscopy and to develop new generations of quantum frequency and time standards.
The other important objective is to use traps for cold atoms to materially enhance the phase
density of atomic ensembles, i.e. to increase the number of atoms in narrow spatial and velocity
intervals in order to achieve a regime of quantum degeneracy wherein the classical atomic gas
becomes a quantum one. In the case of Bose atoms, the overlapping of atom wavepackets
under quantum degeneracy conditions leads to the BEC of the atomic gas, when the density
of atoms and the de Broglie wavelength λdB = h/p are related by the well known relation

nλ3
dB � 2.62. (1.6)

The above two important objectives will no doubt for many years to come inspire investigators
to develop new types of atom traps. Recently, owing to the development of the evaporative
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cooling technique (Hess 1986, Ketterle and Van Druten 1996), the first observations of the
BEC in ultracold atom ensembles trapped in magnetic traps have already been made along
these lines (Anderson et al 1995, Davis et al 1995, Bradley et al 1995).

This paper is aimed at discussing the main physical ideas underlying the methods of
trapping cold atoms in electromagnetic fields, as well as in electromagnetic–gravity field
combinations. Along with the analysis of the physical fundamentals of traps for cold atoms,
the paper discusses physical ideas of developing cavities and waveguides for de Broglie
atom waves. The key experiments are described, as well as the most striking experimental
achievements.

2. Dynamics of an atom in a laser field

The most important methods for cooling and trapping atoms are based on the use of the forces
acting on atoms in the laser fields or in the fields composed of the laser fields and the magnetic
or gravity fields. The dynamics of atoms in the laser field is thus a key for understanding the
techniques of atom cooling and trapping. In this section we review the forces on atoms in the
laser fields and discuss the equations of atomic motion. In the discussion below, the atomic
medium is considered to be very rarefied, so that atomic collisions can be disregarded.

2.1. Dipole radiation force

The dynamics of the centre of mass of an atom in the laser field with a wavelength much larger
than the characteristic atomic size is determined by the electric dipole interaction. Under
the dipole interaction with the electric field E = E(r, t) described by the dipole interaction
operator

V = −DE, (2.1)

the atom acquires an induced dipole moment 〈D〉. The value of the induced atomic dipole
moment is determined as usual by the quantum mechanical mean,

〈D〉 = Tr(ρD), (2.2)

where ρ is the atomic density matrix. Finally, the interaction of the induced atomic dipole
moment 〈D〉 with the spatially varying laser field E = E(r, t) causes a dipole radiation force
on the atom.

From a quantum mechanical point of view, the induced atomic dipole moment 〈D〉
originates from the dipole transitions between the quantized atomic states describing the
stationary motion of the electrons in the atom and stationary translational motion of the atom.
For this reason, the induced dipole moment generally includes both the average value and the
quantum fluctuations. As is well known, the concept of a force on a particle is always a classical
concept. According to general physical rules a notion of the force can be applied to a particle
which can be considered as a structureless particle moving classically or quasiclassically. In
the case of an atom interacting with a laser field the concept of the dipole radiation force can
accordingly be used when the quantum fluctuations of the atomic dipole moment are small
compared with its average value and the atom moves classically or quasiclassically. This
means that the notion of the dipole radiation force on an atom can be applied under two basic
conditions. One of them is the condition of small fluctuations in the induced atomic dipole
moment. Under this condition the atom can be considered as a structureless classical particle
well characterized by the average value of the induced dipole moment. Another condition
on the use of the dipole radiation force is the usual condition for the quasiclassical character
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Figure 5. Two-level atom interacting with a monochromatic laser
field.

of the translational motion of the atom, requiring that the quantum fluctuations of the atomic
momentum should be small compared with the atomic momentum itself.

Physically, both the above conditions are satisfied when the time of the dipole interaction
between the atom and the laser field, t , is substantially longer than the characteristic relaxation
times τintern of the internal atomic states involved in the dipole interaction and the quantum
fluctuations δpqu of the atomic momentum are small compared with the variations δp of the
mean atomic momentum,

τintern 	 t

δpqu 	 δp.
(2.3)

When the first condition in equation (2.3) is satisfied, the internal atomic states quickly decay
to quasistationary values corresponding to small fluctuations in the induced atomic dipole
moment. In turn, under the second condition (2.3) the quantum fluctuations in the atomic
momentum are small compared with both the variations of the classical momentum and the
classical atom momentum itself.

In the simplest case of a two-level atom shown in figure 5 the only internal relaxation time
is the spontaneous decay time τintern = τsp = 1/Wsp, whereWsp = A = 2γ is the spontaneous
decay probability (or the Einstein coefficientA). In this case the concept of the dipole radiation
force becomes valid when the atom interacts with a laser field for a time period longer than
the spontaneous decay time. The second condition of (2.3) is automatically satisfied for a
two-level atom since in this case the quantum fluctuations of atomic momentum are defined by
the photon momentum, δpqu = h̄k, where k = ω/c is the wavevector of the laser light, and the
smallest value of the classical atomic momentum is defined from the condition of resonance
between classically moving atom and the laser field, δp ≈ Mγ/k (Minogin and Letokhov
1987). As one can see, the condition h̄k 	 Mγ/k is equivalent to the condition that the recoil
frequency ωr = h̄k2/2M defined by the recoil energy R = h̄ωr is small compared with the
natural half-width of the dipole transition:

ωr 	 γ. (2.4)

This last inequality is always satisfied for dipole atomic transitions. For the multilevel dipole
interaction schemes general conditions (2.3) may introduce more rigid constraints on atomic
parameters since the atomic states may possess two or more different relaxation times (see
section 2.3).

When conditions (2.3) are satisfied, the induced atomic dipole moment is determined by
the quasiclassical atomic density matrix ρ = ρ(r, v, t) which is a function of the coordinate
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r and velocity v of a classically moving atom,

〈D〉 = ραβDβα. (2.5)

Here Dαβ are the matrix elements of the atomic dipole moment operator that are defined with
respect to the time-dependent atomic eigenfunctions,

Dαβ = dαβ exp[i(Eα − Eβ)t/h̄], (2.6)

where dαβ = 〈α|d|β〉 are the dipole moment matrix elements defined with respect to the
time-independent eigenfunctions, and Eα , Eβ are the energies of the internal atomic states
connected by the dipole transitions.

According to relation (2.1), the energy of the dipole interaction of an atom with the laser
field is

U = 〈V 〉 = −〈D〉E. (2.7)

Relation (2.7) formally coincides with the classical expression for the interaction energy of a
permanent dipole with the electric field E. Accordingly, equation (2.7) can be directly used
to calculate the force F on an atom in the laser field E. Applying the well known classical
formula for the force on a particle with a permanent dipole moment 〈D〉 one can find the dipole
radiation force as

F = ∇U = ∇(〈D〉E) = 〈Di〉∇Ei, (2.8)

where the subscript i = x, y, z determines the rectangular coordinates of the vectors. In the
above expression the atomic dipole moment is treated as a permanent quantity which must not
be differentiated with respect to the coordinate.

Equation (2.8) gives the most general expression for the dipole radiation force on the atom
moving classically or quasiclassically in a laser field. From a quantum mechanical point of
view, radiation force (2.8) arises as a result of the quantum mechanical momentum exchange
between the atom and the laser field in the presence of the spontaneous relaxation. The change
in the atomic momentum comes from the elementary processes of photon absorption and
emission: stimulated absorption, stimulated emission and spontaneous emission. Radiation
force (2.8) is, generally speaking, a function of the coordinate and velocity of the atom’s centre
of mass. The dependence of the force on the coordinate may originate from the dependence of
the laser field E and the atomic density matrix ρ on the coordinate r. The velocity dependence
of the force may come from the dependence of the atomic density matrix on velocity. The
specific dependence of the force on the coordinate and velocity is governed by the structure
of the atomic energy levels participating in the dipole interaction and the spatial–temporal
structure of the laser field.

The basic types of radiation force (2.8) can be understood on simple models of the
quasiresonance interaction of a two-level atom with the monochromatic field of a laser beam,
a standing laser wave, and an evanescent wave of laser radiation, as well as on some simple
models describing the interaction of multilevel atoms with laser fields. Some examples of the
force on a two-level atom are described in section 2.2 and on multilevel atoms in section 2.3.

2.2. Dipole radiation force on a two-level atom

2.2.1. Radiation force in a laser beam. Potential of the gradient force. In the case of the dipole
interaction of a two-level atom with a spatially inhomogeneous field E of a monochromatic
laser beam defined by a unit polarization vector e, amplitude E0(r), wavevector k and
frequency ω = kc,

E = eE0(r) cos(kr − ωt) (2.9)



Electromagnetic trapping of cold atoms 1441

the atom acquires the induced dipole moment

〈D〉 = Tr(ρD) = ρ12d21 exp(iω0t) + ρ21d12 exp(−iω0t), (2.10)

where ω0 = (E2 − E1)/h̄ is the atomic transition frequency (see figure 5). The magnitude of
the induced dipole moment (2.10) is determined by the atomic density matrix elements ραβ
describing the internal quantum states of a two-level atom, where α, β = 1, 2, and the matrix
elements of the atomic dipole moment operator.

In the standard rotating wave approximation (RWA) and with the dipole moment matrix
elements chosen to be real, d12 = d21 = d, the atomic density matrix elements obey the well
known equations of motion (see, for example, Minogin and Letokhov 1987):(

∂

∂t
+ v

∂

∂r

)
ρ22 = i.(r)(ρ12ei(kr−δt) − ρ21e−i(kr−δt))− 2γρ22,(

∂

∂t
+ v

∂

∂r

)
ρ21 = i.(r)(ρ11 − ρ22)e

i(kr−δt) − γρ21,(
∂

∂t
+ v

∂

∂r

)
ρ11 = i.(r)(ρ21e−i(kr−δt) − ρ12ei(kr−δt)) + 2γρ22,

(2.11)

where .(r) is the Rabi frequency defined as

.(r) = dE0(r)/2h̄, (2.12)

where d = de is the projection of the dipole moment matrix element on the laser beam
polarization vector e and δ is the detuning of the laser field frequency ω with respect to the
atomic transition frequency ω0:

δ = ω − ω0. (2.13)

In equations (2.11), the quantity 2γ defines the rate of the spontaneous decay of the atom from
the upper level |2〉 to the lower level |1〉, i.e. the Einstein coefficient A:

Wsp = A = 2γ = 4d2ω3
0

h̄c3
= 4‖d‖2ω3

0

3h̄c3
, (2.14)

where ‖d‖ is the reduced dipole matrix element. The total (convective) time derivatives on the
left-hand side of equations (2.11) describe the changes of the density matrix elements both in
time and due to the spatial motion of the atom.

Moving in equations (2.11) from the off-diagonal elements ρ12, ρ21 = ρ∗
12 to the new

off-diagonal elements σ12, σ21 = σ ∗
12:

σ12 = ρ12 exp(i(kr − δt)) (2.15)

one may rewrite the induced dipole moment of a two-level atom as

〈D〉 = (σ12 exp(−ikz + iωt) + σ21 exp(ikz− iωt))d. (2.16)

After substitution (2.15) the equations of motion (2.11) are reduced to equations containing
no explicit time dependence:(

∂

∂t
+ v

∂

∂r

)
ρ22 = i.(r)(σ12 − σ21)− 2γρ22,(

∂

∂t
+ v

∂

∂r

)
σ21 = i.(r)(ρ11 − ρ22)− [γ + i(δ − kv)]σ21,(

∂

∂t
+ v

∂

∂r

)
ρ11 = i.(r)(σ21 − σ12) + 2γρ22.

(2.17)

Applying now the basic formula (2.8) one can see that the radiation force on a two-level
atom in the field of a laser beam (2.9) is defined by the steady-state atomic density matrix
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elements σαβ as a sum of two forces: the radiation pressure force Frp and the dipole gradient
force Fgr,

F = Frp + Fgr, (2.18a)

Frp = k

(
dE0(r)

2

)
i(σ12 − σ21), (2.18b)

Fgr =
(

d∇E0(r)

2

)
(σ12 + σ21). (2.18c)

The dipole gradient force Fgr is frequently referred to simply as the gradient force.
Within the framework of the considered semiclassical approach, the radiation pressure

force Frp is due to the interaction of the induced atomic dipole moment with the light field
varying on the scale of the optical wavelength λ = 2π/k. The gradient force Fgr is due to the
interaction of the induced dipole moment of an atom with the light field varying on the scale
of the field amplitude E0(r).

The explicit expressions for the two parts of the radiation force can be found by taking
into account the fact that, according to conditions (2.3), the radiation force is defined by the
steady-state values of the density matrix elements σ21 and σ21 = σ ∗

12. The steady-state solution
to equations (2.17) can be found, putting ∂/∂t = 0, ∂/∂r = 0 and using the normalization
condition ρ11 + ρ22 = 1. The steady-state values for the off-diagonal density matrix elements
are

σ12 = σ ∗
21 = − .(r)(δ − kv + iγ )

γ 2 + 2.2(r) + (δ − kv)2
. (2.19)

Substituting quantities (2.19) into equations (2.18b) and (2.18c), one can obtain the final
expressions for the two parts of the radiation force on a two-level atom,

Frp = h̄kγ
G(r)

1 +G(r) + (δ − kv)2/γ 2
, (2.20a)

Fgr = −1

2
h̄(δ − kv)

∇G(r)
1 +G(r) + (δ − kv)2/γ 2

, (2.20b)

where G(r) is the dimensionless saturation parameter,

G(r) = 2.2(r)

γ 2
= 1

2

(
dE0(r)

h̄γ

)2

= I (r)

IS
, (2.21)

I (r) = (c/8π)E2
0(r) is the intensity of the laser beam at point r and IS = (c/4π)(h̄γ /d)2 is

the saturation intensity. Figure 6 shows the dependences of the radiation pressure force and
the gradient force on the atomic velocity projection vz = v on the propagation direction of a
Gaussian laser beam.

For the above-considered case of interaction of a two-level atom with a monochromatic
laser beam, one can give a simple interpretation of the two parts of the radiation force in
terms of the elementary processes of photon absorption and emission. The radiation pressure
force (2.20a) can be interpreted as coming from the stimulated absorption of a photon from
the laser beam and its subsequent spontaneous emission into one of the vacuum modes. (The
stimulated emission of a photon into the same laser mode causes no change in the momentum of
the laser field and, hence, in the atomic momentum.) Insofar as the direction of the spontaneous
photon emission is arbitrary, the value of the momentum transferred to the atom, averaged
over many spontaneous emission events, is equal to the momentum of the absorbed photon.
Thus, the radiation pressure force (2.20a) results from the transfer to the atom of the photon
momentum in the course of its stimulated absorption and subsequent spontaneous emission.
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Figure 6. (a) Dipole radiation force F = F rp + Fgr on
a two-level atom in a focused Gaussian laser beam and
(b) the velocity dependence of the radiation pressure force
Frp and the gradient force Fgr at red detuning, δ < 0.
The atom is at exact resonance with the laser beam at the
longitudinal velocity vres = −|δ|/k.

Figure 7. Intensity I of a Gaussian laser beam and
potential of the gradient force Ugr as functions of
coordinates x, y, z: (a) in the transverse direction and
(b) along the beam propagation direction.

The radiation pressure force is thus related to the dissipative optical processes. Note next that
the field of a spatially inhomogeneous laser beam can be considered as a superposition of many
plane waves propagating within the divergence angle of the beam. In the field composed of
many plane light waves the atom momentum can be changed by another elementary process,
the stimulated absorption by the atom of a photon from one plane wave and its subsequent
stimulated emission into another plane wave. Both photons participating in this process have
the same energy and differ only by the propagation direction. This process results in the
gradient force which is accordingly directed along the intensity gradient of the laser beam as
defined by expression (2.20b). The gradient force is thus related to the conservative optical
processes.

The effects of the radiation pressure force and the gradient force on the atom are essentially
different. The radiation pressure force (2.20a) always accelerates the atom in the direction of
the wavevector k. The gradient force (2.20b) pulls the atom into the laser beam or pushes it
out the beam depending on the sign of the Doppler-shifted detuning δ − kv.

At a low velocity of the atom along the laser beam, |v| 	 |δ|/k, the gradient force depends
only on the position of the atom. Accordingly, for atoms slowly moving along the laser beam,
the gradient force can in the lowest approximation be treated as a velocity-independent potential
force. In that case, one can put in formula (2.20b) kv = kv = 0 and introduce the potential
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of the gradient force, putting its value equal to zero at infinity (Gordon and Ashkin 1980):

Ugr(r) =
∫ ∞

r

Fgr(v = 0) dr = 1

2
h̄δ ln

(
1 +

G(r)

1 + δ2/γ 2

)
. (2.22)

For a conventional laser beam possessing the intensity maximum at the symmetry axis, at
negative (red) detuning, δ < 0, equation (2.22) defines the potential well for slow moving
atoms. An important example of the above situation is a Gaussian laser beam. For a Gaussian
beam propagating along Oz axis and having its focus at the origin of the coordinate frame
(figure 6(a)), the beam intensity varies as I (r) = I (0)(w0/w)

2 exp(−(x2 + y2)/w2), wherew
is the beam radius dependent on the longitudinal coordinate z, w = w0

√
1 + (λz/2πw0)2, w0

is the waist radius of the laser beam, and λ is the laser wavelength. In that case, at red detuning
the potential (2.22) is reduced to a 3D potential well (figure 7). The depth of the potential well,
U0, produced by the Gaussian beam is the same in all directions. For a laser beam possessing
the intensity minimum near the axis, for example a beam produced by a TEM∗

01 laser mode, a
potential well is formed, on the contrary, at positive (blue) detuning.

At large detuning, |δ| � γ,., the potential of the gradient force (2.22) reduces to a simple
expression useful for practical estimations,

Ugr(r) = h̄
.2(r)

δ
. (2.23)

It should be noted that the total potential for slow moving atoms generally differs from the
potential of the gradient force (2.22), for it additionally includes the potential produced by the
radiation pressure force:

Urp =
∫ ∞

r

Frp(v = 0) dr. (2.24)

When potential (2.24) is taken into consideration, the total potential of the atom in the laser
beam (2.9) becomes asymmetric in the direction of the z-axis, because the potential due to the
radiation pressure force is shifted in the direction of the wavevector k. The magnitude of the
asymmetric potential (2.24) can be reduced by increasing the value of the detuning.

2.2.2. Radiation force in a standing laser wave. The structure of the dipole radiation force
on a two-level atom in a monochromatic standing laser wave with a unit polarization vector e

and frequency ω = kc,

E = 2eE0 cos kz cosωt, (2.25)

substantially differs from that in a travelling laser wave. For a spatially periodic field (2.25)
the quasistationary elements of the atomic density matrix are the periodic functions of the
coordinate z. Accordingly, the use of formula (2.8) in the case of a standing laser wave
leads to an expression for the radiation force which is a periodic function of the coordinate z.
Mathematically, the natural representation of the radiation force on an atom in field (2.25) is
the representation in the form of the Fourier series. The Fourier representation of the radiation
force on a two-level atom in field (2.25) was found for a case of a weak saturation (Letokhov et al
1976, 1977), moderate saturation (Stenholm et al 1978) and for arbitrary saturation (Minogin
and Serimaa 1979). In addition to the Fourier representation, there has also been found a
closed analytic expression for the radiation force, which holds true at arbitrary saturation, but
only at a low velocity of the two-level atom (Minogin and Serimaa 1979, Gordon and Ashkin
1980).

At a not very high intensity of the standing laser wave (2.25) the Fourier series for the
radiation force on a two-level atom can be truncated at the first oscillating terms. The result of
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such an approximation is the following expression for the force (Letokhov et al 1976, 1977):

F = F0 + F2s sin 2kz + F2c cos 2kz, (2.26a)

F0 = h̄kγ
G(L− − L+)

1 +G(L− + L+)
, (2.26b)

F2s = h̄kG
(δ − kv)L− + (δ + kv)L+

1 +G(L− + L+)
, (2.26c)

F2c = −F0, (2.26d)

where v = vz is the atomic velocity projection on the wave propagation direction Oz. In
the above relations, the dimensionless saturation parameter G is defined similar to (2.21),
G = 2.2/γ 2, . = dE0/2h̄ is the Rabi frequency and

L± = γ 2

γ 2 + (δ ± kv)2
(2.27)

are the Lorentzian factors. Note that the magnitude of the radiation force (2.26a) averaged
over the spatial period in the first-order approximation in the saturation parameter is close to
the difference of two radiation pressure forces of form (2.20a),

F0 ≈ h̄kγG(L− − L+), (2.28)

which allows one to state that at a weak saturation the average radiation force F0 has the
meaning of the radiation pressure force.

Radiation force (2.26a) corresponds to a weak saturation of the atomic transition and
accordingly includes the contributions from the one-photon absorption (emission) processes
only. The two-photon and higher-order multiphoton processes contribute to the radiation
force at high optical saturation. The even-order multiphoton processes produce narrow
velocity structure near zero velocity. The odd-order multiphoton processes produce so-
called multiDoppleron structures at the velocities corresponding to the multiphoton resonance
conditions (figure 8) (Minogin and Serimaa 1979).

At a low atomic velocity one can put into relations (2.26a)–(2.26d) v = 0 as a first
approximation. Accordingly, for a slow atom radiation force (2.26a) is reduced to the
oscillating gradient force

F = Fgr = 2h̄kδ
G

1 + 2G + δ2/γ 2
sin 2kz. (2.29)

Gradient force (2.29) can be considered as being correspondent to the periodic potential

U = U0 cos 2kz, U0 = h̄δ
G

1 + 2G + δ2/γ 2
. (2.30)

At a fixed detuning, the depth of potential (2.30) increases as the saturation parameter is
increased. At saturation parameter G � 1

2 (1 + δ2/γ 2) or, equivalently, at the Rabi frequency

. � 1
2

√
γ 2 + δ2, the depth of potential (2.30) is close to its asymptotic value U0 = h̄|δ|.

The oscillation frequencies of the atom near the minima of the periodic potential are
directly determined from the shape of the potential well bottom. For a red-detuned laser wave,
δ < 0, potential (2.30) has the minima in the loops of standing light wave (2.25), i.e. at the
points kzm = mπ , m = 0,±1,±2, . . . . In the vicinity of any minimum, potential (2.30) is a
harmonic:

U ∼= 1
2Mω2

v(z− zm)
2, (2.31)

where the oscillation frequency is

ωv = 2
√

2(U0/h̄)ωr, (2.32)
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Figure 8. Radiation pressure force on a two-level atom in a standing laser wave at red detuning
δ = −10γ for saturation parameter G = 1 (solid curve), G = 9 (dashed curve) and G = 25
(dotted curve). (Minogin and Serimaa 1979.)

and ωr = h̄k2/2M is the recoil frequency. Accordingly, the spectrum of the atomic quantum
states near the minima of the periodic potential is harmonic (n = 0, 1, 2, . . .):

ε = h̄ωv(n + 1
2 ). (2.33)

At blue detuning, δ > 0, relations (2.31)–(2.33) describe small oscillations of an atom
in the vicinity of the nodes of the standing laser wave, i.e. at points kzm = π/2 + mπ ,
m = 0,±1,±2, . . . .

When expanded to a first order in velocity, the radiation force (2.26a) also includes, in
addition to the gradient force (2.29), the radiation pressure force proportional to the atomic
velocity vz = v:

F = 2h̄kδ
G

1 + 2G + δ2/γ 2
sin 2kz + 8h̄k2 δ

γ

G sin2 kz

(1 + 2G + δ2/γ 2)(1 + δ2/γ 2)
v. (2.34)

At red detuning, the radiation pressure force, i.e. the second part of force (2.34), is reduced to
a friction force with a friction coefficient β being a periodic function of atomic coordinate z:

Ffr = −Mβv, β = 16ωr
|δ|
γ

G sin2 kz

γ (1 + 2G + δ2/γ 2)(1 + δ2/γ 2)
. (2.35)

It should be noted that the friction coefficient has a maximum in the neighbourhood of
the potential maxima and goes to zero near the minima of the potential. The coordinate
dependences of potential (2.30) and of the individual parts of the radiation dipole force are
shown in figure 9, along with the coordinate dependence of momentum diffusion coefficient
discussed in section 2.4.1.

2.2.3. Radiation force in an evanescent laser wave. The radiation force on a two-level atom
in an evanescent laser wave propagating along a dielectric–vacuum interface is of the same
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Figure 9. Position dependence of the field E of a standing laser wave (2.25), the gradient force
Fgr (2.29), the potential of the gradient force Ugr (2.30), the friction coefficient (2.35) and the
momentum diffusion coefficient Dzz (2.65) at red detuning.

general structure (2.18a)–(2.18c) as the force in a laser beam. Indeed, the radiation force in
the case of evanescent wave includes, as before, the radiation pressure force (2.18b) and the
gradient force (2.18c). These two forces depend in their own specific ways on the atomic
coordinate because the spatial dependence of the evanescent wave field differs materially from
that of the laser beam field. The evanescent light wave propagating along the dielectric–vacuum
interface decays very rapidly—at a distance of the order of the optical wavelength—into the
vacuum region, producing as a result a substantial gradient force directed across the interface.

In the coordinate frame shown in figure 10, the electric field of the evanescent wave can
be written as

E = eE0e−αz cos(ky − ωt), (2.36)

where α = k
√
n2 sin2 θ − 1 is the inverse characteristic distance to which the evanescent wave

penetrates into the vacuum region, which depends on the refractive index n of the dielectric
and the angle θ of incidence of the initial laser wave on the interface, and where k = 2π/λ
is the wavevector of the laser light with a wavelength λ. It is presumed in the above scheme
that the incidence angle of the initial laser wave exceeds the angle of total internal reflection,
sin θ > 1/n.

The evanescent wave field (2.36) is a particular case of the field of a spatially
inhomogeneous light beam (2.9). Accordingly, the above formulae for the radiation pressure
force (2.18b) and the gradient force (2.18c) can be directly used to find the force in
field (2.36). Saturation parameter (2.21) describing the interaction between the two-level
atom and field (2.36) may conveniently be written as

G(r) = G0e−2αz, G0 = 1
2 (dE0/h̄γ )

2, (2.37)

where G0 is the saturation parameter at the interface. Substituting (2.37) into (2.18b)
and (2.18c), one can write the following expressions for the gradient force and the radiation
pressure force:

Fgr = Fz = h̄α(δ − kvy)
G0e−2αz

1 +G0e−2αz + (δ − kvy)2/γ 2
, (2.38)
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Figure 10. Directions of the gradient force Fgr
and the radiation pressure force Frp on a two-level
atom in an evanescent laser wave propagating along
the dielectric–vacuum interface. The laser wave is
chosen to be red detuned with respect to atomic
transition.

Frp = Fy = h̄kγ
G0e−2αz

1 +G0e−2αz + (δ − kvy)2/γ 2
. (2.39)

Note that according to the Fresnel laws the saturation parameter G0 at the interface can
be expressed in terms of the saturation parameter Gi of the incident laser wave in the form
(Kaiser et al 1994)

G0 = 4n2 cos2 θ

(n2 − 1)[(n2 + 1) sin2 ϑ − 1]p
Gi, (2.40)

where index p = 0,1 stands for the polarization of the incident wave of TE or TM type
respectively.

As can be seen from equation (2.38), at a low atomic velocity along the interface,
|vy | 	 |δ|/k, and at blue detuning, δ > 0, the gradient force pushes the atom into the
region of lower field intensity, i.e. into the vacuum region. This makes it possible to use the
evanescent light field as a mirror for atoms (Cook and Hill 1982). For an atom slowly moving
along the interface, in particular, at normal incidence of the atom from the vacuum region
onto the evanescent wave, the gradient force can be treated as a potential force produced by a
potential. In a case of blue detuning, the potential of the gradient force according to (2.22) is

Ugr(r) = 1

2
h̄δ ln

(
1 +

G0e−2αz

1 + δ2/γ 2

)
. (2.41)

Where the atomic velocity along the interface remains invariably low throughout the time
that the interaction between the atom and the evanescent wave lasts, potential (2.41) provides
for the specular reflection of the atom. Actually, the small change of the longitudinal atomic
velocity caused by radiation pressure force (2.39) and the weak velocity dependence of the
gradient force always make the atom mirror imperfect, leading to a difference between the
angles of reflection and incidence. This shortcoming of the atom mirror can be considerably
lessened by choosing a large detuning. In this last and practically most important case, when
|δ| � γ,.0, the potential of the gradient force (2.41) reduces to a simple exponential form:

Ugr(r) = h̄γ 2

2δ
G0e−2αz = h̄.2

0

δ
e−2αz, (2.42)

where .0 = dE0/2h̄ is the Rabi frequency at the dielectric–vacuum interface.

2.2.4. Gradient force potential in the dressed state picture. The above-considered general
approach based on formula (2.8) enables one to find the radiation force for any dipole interaction
scheme. When the kinetic energy of the atom is small, the atom–field interaction is sometimes
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described by the so-called dressed state formalism useful for interpretation of the gradient
force and the gradient force potential (Cohen-Tannoudji et al 1992). This formalism is a direct
extension of the well known quasienergy state concept (Zel’dovich 1973) to a case of the
quantized light field.

In the dressed state picture, the ‘atom + laser field’ system is treated as a closed system
possessing the stationary quantum mechanical states. For one to be able to analyse the system
‘atom + laser field’ quantum mechanically, one treats the classical laser field as a quantized
electromagnetic field. Although the dressed state formalism considers the classical laser field
as a quantized object without any actual need, it gives a clear picture of the elementary processes
responsible for the dipole gradient force.

In the simplest case of interaction of a two-level atom with monochromatic field (2.9), the
Hamiltonian of a single-mode quantized electromagnetic field can be represented in the well
known form,

Hl = h̄ωa+a, (2.43)

where a+ and a are the photon creation and annihilation operators. In the above equation, it is
presumed that the zero-point oscillation energy is extracted from the laser mode energy El ,

El = nh̄ω, (2.44)

where n is the number of photons in the laser mode.
The HamiltonianHa of the two-level atom possessing the ground state |g〉 and the excited

state |e〉 is usually described in the dressed state formalism with the use of the atomic excitation
and de-excitation operators b+, b, defined by the relations

b|g〉 = 0, b+|g〉 = |e〉,
b|e〉 = |g〉, b+|e〉 = 0.

(2.45)

The Hamiltonian of a free atom expressed through the atomic operators b, b+ has the form

Ha = h̄ω0b
+b. (2.46)

According to equation (2.45), the eigenvalues of the atomic Hamiltonian are

〈g|Ha|g〉 = Eg, 〈e|Ha|e〉 = Ee = Eg + h̄ω0. (2.47)

The electric dipole interaction operator in the RWA being expressed through the photon and
atomic operators has the form

V = −d(Eb+a + E∗ba+), (2.48)

where d is the matrix element of the atomic dipole moment operator, and

E = ieEeikr = i

√
2πh̄ω

V
e eikr, (2.49)

is the electric field associated with a single photon with the wavevector k and the unit
polarization vector e, and V is the volume of the laser mode. The matrix elements of the dipole
interaction operator V taken in the RWA are other than zero only for one-photon absorption
(emission) processes,

〈e, n|V |g, n + 1〉 = − dE
√
n + 1, 〈g, n + 1|V |e, n〉 = −dE∗√n + 1. (2.50)

The Hamiltonian of the closed system ‘atom + laser field’ includes thus the laser mode
Hamiltonian, the atomic Hamiltonian, and the dipole interaction operator V ,

H = Hl +Ha + V = Ha = h̄ωa+a + h̄ω0b
+b − d(Eb+a + E∗ba+). (2.51)
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Figure 11. Dressed states of a two-level atom in a single-
mode quantized electromagnetic wave.

Figure 12. Dressed states of a two-level atom in a laser
beam as functions of (a) an atom position and (b) the
intensity profile of the laser beam.

In the absence of the dipole interaction, when V = 0, the ‘atom + laser field’ system has the
stationary states |g, n + 1〉 = |g〉|n + 1〉 and |e, n〉 = |e〉|n〉 with the energies (see figure 11)

E0
1n = 〈g, n + 1|Hl +Ha|g, n + 1〉 = Eg + (n + 1)h̄ω,

E0
2n = 〈e, n|Hl +Ha|e, n〉 = Eg + nh̄ω = Eg + (n + 1)h̄ω − h̄δ,

(2.52)

which differ by the amount of the detuning δ = ω − ω0. When the dipole interaction term
V is taken into consideration, the system has the new stationary states |1n〉 and |2n〉 with the
energies (figure 11)

E1n = 〈1n|Hl +Ha + V |1n〉 = Eg + (n + 1)h̄ω − 1
2 h̄δ + h̄.̃,

E2n = 〈2n|Hl +Ha + V |2n〉 = Eg + (n + 1)h̄ω − 1
2 h̄δ − h̄.̃,

(2.53)

which depend on the value of the generalized Rabi frequency .̃,

.̃ =
√
.2 + δ2/4, . =

√
n + 1(dE/h̄), (2.54)

where the new ‘quantum expression’ for the Rabi frequency . is defined by the ‘amplitude’
of a photon electric field (2.49), E = √

2πh̄ω/V . The stationary states |1n〉 and |2n〉, referred
to as the dressed states, are the linear combinations of the initial states |g, n + 1〉 = |g〉|n + 1〉
and |e, n〉 = |e〉|n〉,

|1n〉 = i./.̃

2
√

2.̃− δ
e−ikr/2|g, n + 1〉 +

√
2.̃− δ

4.̃
eikr/2|e, n〉,

|2n〉 = i./.̃

2
√

2.̃ + δ
eikr/2|g, n + 1〉 +

√
2.̃ + δ

4.̃
e−ikr/2|e, n〉.

(2.55)

In the field of a spatially inhomogeneous laser beam, the energies of the dressed states
depend on the position of the atom, E1n,2n = E1n,2n(r) (see figure 12). In that case, the
energies (2.53) can be considered as the potential energies of the atom in the states |1n〉 and
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|2n〉, i.e. in the states with a given number of the laser photons. After subtracting the constant
energy term from energies (2.53), the potentials of the motionless atom in the states |1n〉 and
|2n〉 are accordingly U1(r) = h̄.̃(r) and U2(r) = −h̄.̃(r).

The dressed state representation allows one to give a simple interpretation of the
dependence of the gradient force on a two-level atom on the sign of the detuning δ (figure 11).
As one can see from equations (2.55), in the case of positive (blue) detuning the state |1n〉
contains a greater fraction of the ground atomic state than the state |2n〉. Since the population
of the ground atomic state exceeds that of the excited state, ng > ne, the atom spends most of
the time in the repulsive potential U1(r) = h̄.̃(r). Accordingly, at δ > 0 the gradient force
pushes the atom out of the laser beam. In the case of negative (red) detuning, the situation
is quite the opposite, and the gradient force pulls the atom into the laser beam. At exact
resonance, δ = 0, the atom is equally distributed between the states |1n〉 and |2n〉, and the
gradient force vanishes.

The dressed state formalism combined with simple physical arguments can also be used
for some quantitative estimations. In particular, at large detuning, |δ| � ., the greater part of
atomic population is in the ground state, ng ≈ 1, ne ≈ 0. Accordingly, the total potential of
the atom in the laser field is simply defined by the generalized Rabi frequency,

.̃(r) ≈ 1

2
h̄δ + h̄

.2(r)

δ
. (2.56)

The second term in the right-hand side of this equation defines the position-dependent potential
of the atom at large detuning. This potential obviously represents the potential of the gradient
force defined by equation (2.23). The gradient force at zero atomic velocity directly follows
from potential (2.56):

Fgr = −∇.̃(r) = −2h̄.(r)∇.(r)/δ. (2.57)

The force defined by equation (2.57) coincides with the gradient force defined by
equation (2.20b) at zero velocity.

2.3. Dipole radiation force on a multilevel atom

As was shown in section 2.2, the dipole interaction of a two-level atom with a weakly saturating
laser field is mainly governed by the one-photon optical processes. Accordingly, at a low optical
saturation the radiation force on a two-level atom includes mainly the contributions coming
from the one-photon absorption (emission) processes. By contrast, in the multilevel dipole
interaction schemes, the two-photon and higher-order even multiphoton optical processes can
play an important role even at a low saturation. The physical reason for that is that the
even-order multiphoton processes connect the ground-state atomic sublevels, possessing high
population just under a low saturation.

One of the simplest and practically important multilevel dipole interaction schemes is that
described by the model of a (3 + 5)-level atom (figure 13). The atom is assumed to be excited
by two counter-propagating circularly polarized laser waves described by the electric field

E = 1
2E0(e+ei(kz−ωt) − e−e−i(kz−ωt))− 1

2E0(e+ei(kz+ωt) − e−e−i(kz+ωt)), (2.58)

where e± = ∓ 1√
2
(ex ± iey) are the spherical unit vectors, k = ω/c is the wavevector, and

ω is the laser field frequency. With respect to the quantization axis Oz the first wave in
equation (2.58) is a σ + polarized wave and the second one is a σ− polarized wave. This
interaction scheme is of interest as the simplest model that includes the two-photon optical
processes contributing to the radiation force. The scheme is also of practical importance, for it



1452 V I Balykin et al

Figure 13. A (3 + 5)-level atom excited by two counter-
propagating circularly polarized laser waves.

can be applied to a real atom possessing two hyperfine-structure states, the ground state F = 1
with three magnetic sublevels and the excited state F = 2 with five magnetic sublevels.

The above simplest multilevel scheme was first analysed within the framework of the
dressed state formalism (Dalibard and Cohen-Tannoudji 1989) as a theoretical model of the
sub-Doppler laser cooling of atoms (see section 3.2). The equations for the atomic density
matrix for a (3+5)-level interaction scheme were discussed by Dalibard and Cohen-Tannoudji
(1989) and Chang et al (1999b). Below, we describe the radiation force on a (3 + 5)-level atom
following the general approach discussed in section 2.1.

According to basic formula (2.8), the radiation force on a (3 + 5)-level atom interacting
with a field defined by equation (2.58) can be written as (Chang et al 1999a, b)

F = 2h̄k.Im

⌊
(σg−e−2 + σe+2g+) +

1√
2
(σg0e−1 + σe+1g0) +

1√
6
(σg+e0 + σe0g−)

⌋
, (2.59)

where σαβ are the quasistationary atomic density matrix elements satisfying the equations
which include no explicit time and coordinate dependence, the Rabi frequency is defined as
. = ‖d‖E0/2

√
5h̄, and ‖d‖ is the reduced matrix element of the atomic dipole moment.

At a weak optical saturation and low atomic velocity, kv 	 γ , the above atomic density
matrix elements can be found analytically. Under these conditions the radiation force (2.59)
is reduced to the form (Dalibard and Cohen-Tannoudji 1989, Chang et al 1999a, b)

F = h̄kγ
25G

11(1 + δ2/γ 2)2

(88/85)µ2 + k2v2

µ2 + k2v2

δkv

γ 2
− h̄kγ

5G2

44(1 + δ2/γ 2)2

δkv

µ2 + k2v2
, (2.60)

where G = 2.2/γ 2 is the saturation parameter and the quantity µ is the half-width of the
two-photon resonance originated from the two-photon transitions between the ground-state
sublevels |g−〉 and |g+〉,

µ = 1

4

√
17

33
G
γ 2
√

5γ 2 + δ2

γ 2 + δ2
. (2.61)

Radiation force (2.60) includes two physically different parts (figure 14). The first part of
the force is mainly contributed to by the one-photon resonances localized at resonance velocities
vres = ±δ/k. These resonances have the same physical meaning as the one-photon resonances
in the radiation pressure force on a two-level atom in a standing-wave field (2.25). The second
part of the force is due to the two-photon resonances which couple the extreme ground-state
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Figure 14. Radiation force (solid curve) on a (3 + 5)-level atom in the field of two counter-
propagating σ + − σ− polarized laser waves as a function of the velocity projection on the axis Oz
at red detuning δ = −3γ and saturation parameterG = 1. The dashed curve shows the one-photon
part and the dotted line shows the two-photon part of the total force (Chang et al 1999b).

sublevels |g−〉, |g+〉. According to the energy conservation law written in the atom rest frame,
the two-photon resonances are most effective under the condition (ω ± kv)− (ω ∓ kv) ≈ 0,
i.e. at zero atomic velocity. The velocity width of the two-photon resonance is defined by
the quantity δv = µ/k which in the case of large detuning may be much smaller than that
of the one-photon resonance, δv ≈ (γ /k)(./δ)2 	 γ /k. For negative (red) detuning both
parts of force (2.60) are reduced to the friction forces. The first, one-photon part of the force
is responsible for the Doppler cooling of atoms, and the second, two-photon part, for the
sub-Doppler cooling of atoms (see section 3).

2.4. Kinetic description of atomic motion

The above-considered radiation forces play the main role in atomic dynamics in the laser fields.
At the same time, the radiation force fails to completely describe the motion of the atom in
the laser field since the dynamics of the atom in the laser field is a stochastic one. Atomic
momentum fluctuates in the laser field because of the fluctuations in the photon emission
direction and fluctuations in the number of the emitted photons. For these reasons, a complete
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description of atomic dynamics in the laser field is based on the quantum statistical equations
for the atomic density matrix, which take into account both the variation of atomic momentum
caused by the radiation force and the quantum fluctuations of the atomic momentum (Stenholm
1986, Minogin and Letokhov 1987, Kazantsev et al 1990, Cohen-Tannoudji et al 1992).

Under the conditions defined by equations (2.3), the quantum statistical description of
atomic motion can, as a rule, be reduced to the simpler quasiclassical kinetic description of the
time evolution of the atomic distribution function w = w(r,p, t). For noninteracting atoms
the atomic distribution function w can generally be normalized both to a single atom and to
the total number of atoms. Below, we assume, for the sake of definiteness, normalization to a
single atom, ∫

w(r,p, t) d3r d3p = 1. (2.62)

The atomic distribution function satisfies the Fokker–Planck-type kinetic equation,

∂w

∂t
+ v

∂w

∂r
= − ∂

∂p
(Fw) +

∑
i=x,y,z

∂2

∂p2
i

(Diiw), (2.63)

which includes the dipole radiation force F and the momentum diffusion tensorDii describing
the broadening of the atomic momentum distribution on account of the quantum fluctuations.
Below, we will present the coefficients of the Fokker–Planck equations for the already-
considered cases of the dipole interaction between a two-level atom and a monochromatic
travelling and standing laser wave and for the interaction between a (3 + 5)-level atom and the
field of two counter-propagating circularly polarized laser waves.

2.4.1. Two-level atoms. In the case of interaction of a two-level atom with the laser beam (2.9),
the radiation force F is defined by expressions (2.18a), (2.20a) and (2.20b), and the momentum
diffusion tensor is (Minogin 1980)

Dii = 1

2
h̄2k2γ

G(r)

1 +G(r) + (δ − kv)2/γ 2
χii,

χii = αii + δiz(1 + d),

d = [(δ − kv)2/γ 2 − 3]G(r)

[1 +G(r) + (δ − kv)2/γ 2]2
.

(2.64)

In the above formulae, the frequency detuning δ and saturation parameterG(r) are defined, as
before, by relations (2.13) and (2.21). The values of the coefficients αii depend on the angular
anisotropy of spontaneous photon emission. When laser beam (2.9) is circularly polarized and
propagates in the direction of the z-axis, the coefficients αιι are αxx = αyy = 3

10 and αzz = 2
5 .

When the beam propagates along the same z-axis but is linearly polarized along the x-axis, the
coefficients αii are αxx = 1

5 , αyy = 2
5 , and αzz = 2

5 . Note that when using the two-level atom
model to describe the dynamics of an atom whose two states are degenerate in the total angular
momentum projection, one can restrict oneself to approximate values of the coefficients αii
corresponding to a hypothetical isotropic spontaneous emission: αii = 1

3 .
In the case of interaction of a two-level atom with an evanescent wave defined by

expression (2.36), the radiation force F consists of components (2.38) and (2.39). The
momentum diffusion tensor for evanescent wave (2.36) is defined by formulae (2.64) wherein
one should put kv = kvy and substitute for the saturation parameter its magnitude from
expression (2.37).

The quasiclassical motion of a two-level atom in a standing laser wave defined by
equation (2.25) is described by a Fokker–Planck equation wherein the dipole radiation force
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Figure 15. Radiation force (solid curve)
and momentum diffusion coefficient
D = Dzz (dotted curve) for a (3 + 5)-
level atom in the field of two counter-
propagating σ + − σ− polarized laser
waves as a function of the velocity
projection on the axisOz at red detuning
δ = −22γ and saturation parameterG =
4.6 (Chang et al 1999b).

and momentum diffusion tensor generally have a very complex form (Minogin and Letokhov
1987). In the case of weak saturation and low atomic velocity, where the force F is defined by
relation (2.34), the momentum diffusion tensor in the zero-velocity approximation is (Minogin
and Letokhov 1987)

Dii = 2h̄2k2γ
G

1 + δ2/γ 2
(αii cos2 kz + δzi sin2 kz). (2.65)

The longitudinal component of diffusion tensor (2.65) is shown in figure 9.

2.4.2. Multilevel atoms. For the multilevel dipole interaction scheme described by a (3 + 5)-
level atom model (section 2.3), the coefficients of the Fokker–Planck equation were found for
arbitrary interaction parameters (Chang et al 1999a, b). The analytical results have shown
that in the case of a (3 + 5)-level atom the two-photon optical processes not only increase the
friction due to the radiation force, but also sharply reduce the momentum diffusion tensor at
a zero atomic velocity (figure 15). At a weak optical saturation and low atomic velocity, the
radiation force in a (3 + 5)-level atom model is defined by equation (2.60) and the longitudinal
component of the momentum diffusion tensor is

Dzz = 46

17
h̄2k2γ

.2

δ2
. (2.66)

This value of the diffusion coefficient defines jointly with the friction coefficient the
effective atomic temperature for the sub-Doppler cooling of atoms (see section 3).
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3. Laser cooling of atoms

Typically, any scheme of trapping atoms operates not with thermal atoms but atoms preliminary
cooled by the laser light. On the other hand, atoms already confined in electromagnetic traps
are often subjected to laser cooling since the reduction of the atomic kinetic energy increases
the lifetime of atoms in a trap. The laser cooling of atoms is thus a key to successful trapping
of atoms. In this section we discuss the basic methods of laser cooling of atoms and the basic
temperature limits. Many other important details of laser cooling of atoms can be found in the
review literature (Letokhov and Minogin 1981, Balykin et al 1985b, Stenholm 1986, Minogin
and Letokhov 1987, Phillips et al 1988, Kazantsev et al 1990, Chu 1991, Metcalf and van der
Straten 1994).

3.1. Doppler cooling

The main methods of laser cooling atoms can be illustrated on an idealized model of a two-level
atom. As already noted in the introduction, laser cooling in the two-level atom model only
proves possible down to minimal temperature (1.4) determined by the natural half-width of the
dipole transition line. As the laser cooling mechanism in the case of two-level atom is based
on the one-photon absorption by the moving atom of a Doppler-shifted optical radiation, the
cooling of atoms down to temperature (1.4) is usually referred to as Doppler cooling.

3.1.1. Deceleration and longitudinal cooling of an atomic beam. Figure 16 shows the
basic idea of the laser deceleration and longitudinal cooling of a thermal atomic beam by
a counter-propagating laser beam. In the scheme of figure 16(a) a red-detuned laser beam
produces the radiation pressure force (2.20a) which most effectively decelerates the atoms
with longitudinal velocities vz close to the resonance velocity vres = |δ|/k. The deceleration
of atoms whose velocities are far from the resonance velocity is less effective, for radiation
pressure force (2.20a) has a Lorentzian velocity dependence. As a result, the radiation pressure
force both decelerates the atoms and narrows the atomic velocity distribution, i.e. produces a
cooling of the atomic beam. Figure 17 shows the experimental velocity distribution profile of
a beam of sodium atoms decelerated and cooled by a dye laser radiation in the first experiment
on the laser cooling of atoms (Andreev et al 1981, 1982).

The above simplest method of the longitudinal laser cooling at a fixed detuning is most
effective for cooling atoms moving at resonance velocities. The efficiency of deceleration and
cooling naturally drops when the atoms fall off resonance with the laser light due to the velocity
decrease. To maintain a high deceleration and cooling rate, the experimental techniques make
use of chirping of the laser frequency (Balykin et al 1979, Ertmer et al 1985) or Zeeman tuning
of the atomic transition frequency by an inhomogeneous magnetic field whose strength varies
along the atomic beam propagation direction (Prodan et al 1982). The use of these techniques
makes it possible to decelerate an atomic beam having an initial thermal velocity v0 down to
a zero average velocity, the deceleration length being (Zueva et al 1981)

l = v2
0

2vrγ

1 +G

G
, (3.1)

where vr = h̄k/M is the recoil velocity and G is the saturation parameter defined by
expression (2.21). At thermal velocity v0 ≈ 105 cm s−1 and a moderate saturation, G ≈ 1,
the deceleration length l ranges between 10 and 100 cm. The longitudinal temperature of an
atomic beam under optimal conditions can be reduced down to 100–10 mK. Discussions of the
experimental techniques of the longitudinal cooling of atomic beams can be found in Letokhov
and Minogin (1981), Balykin et al (1985b), Adams and Riis (1997).
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Figure 16. (a) Scheme of a longitudinal cooling of
a thermal atomic beam by a counter-propagating laser
beam. (b) The radiation pressure force as function of
the longitudinal atom velocity. (c) The atomic velocity
distribution at times t2 > t1 > t0.

Figure 17. Experimental velocity distribution for a
beam of sodium atoms decelerated by a dye laser in the
first experiment on the laser cooling of atoms and the
theoretical prediction for the parameters relevant to the
experiment (Andreev et al 1981, 1982).

3.1.2. Transverse cooling (collimation) of an atomic beam. The second important laser
cooling scheme is that for transverse cooling (collimation) of atomic beams by counter-
propagating laser waves. This scheme can be used either separately or in combination with
the longitudinal cooling scheme to reduce the transverse temperature of the atomic beam in
the process of longitudinal cooling.

The method of transverse laser cooling is illustrated in figure 18 for a beam of two-level
atoms. In the scheme of figure 18 the counter-propagating laser waves are assumed to be
red-detuned with respect to the atomic transition frequency. When the laser waves have the
same polarization and frequency the total laser field reduces to a standing light wave (2.25).
The standing wave produces on a two-level atom radiation force (2.26a) which is responsible
for cooling atoms.

To estimate the cooling effect in the above scheme, one can neglect the small-scale spatial
oscillations of the radiation force (2.26a) and take into consideration only the effect of the
average force (2.26b), putting F ≈ F0. If, in addition, one restricts oneself to the case of weak
saturation, the average radiation force (radiation pressure force) will have the simple form

F = 〈F 〉 ≈ h̄kγG

(
1

1 + (δ − kvz)2/γ 2
− 1

1 + (δ + kvz)2/γ 2

)
. (3.2)

At red detuning, δ < 0, radiation pressure force (3.2) is directed opposite to the atomic velocity,
i.e. it is friction force. In the linear velocity approximation, force (3.2) is

F = −Mβvz, β = 8Gωr(|δ|/γ )/(1 + δ2/γ 2)2, (3.3)

where β if the friction coefficient and ωr is the recoil frequency. Under the same assumptions,
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Figure 18. (a) 1D scheme of the transverse laser cooling
of an atomic beam, (b) the radiation pressure force as a
function of velocity and (c) the transverse velocity distribution
at t2 > t1 > t0.

according to expression (2.65) the momentum diffusion coefficient Dzz = D in the zero-
velocity approximation is

D = h̄2k2γ
G

1 + δ2/γ 2
(1 + αzz). (3.4)

Friction force (3.3) and momentum diffusion coefficient (3.4) fully define the stationary
velocity distribution of the cold atoms. This distribution is found as the stationary solution of
Fokker–Planck equation (2.63) and is Gaussian:

w(vz) = 1√
πu

exp

(
−v2

z

u2

)
. (3.5)

The half-width u of the steady-state velocity distribution is determined by the temperature T :

u =
√

2kBT /M, (3.6)

T = D

MβkB
. (3.7)

With the friction and momentum diffusion coefficients defined by expressions (3.3) and (3.4),
the temperature T is given by (Letokhov et al 1977)

T = 1 + αzz
4

h̄γ

kB

( |δ|
γ

+
γ

|δ|
)
. (3.8)

The minimum value of temperature (3.8) is Tmin = ( 1
2 )(1 + αzz)(ηγ /kB), and at a frequency

detuning δ = −γ it coincides with expression (1.3) up to within a numerical factor close
to unity. The practical transverse cooling schemes for atomic beams that correspond to the
described scheme can be found in the review by Balykin et al (1985b). To date, there have
been suggested and implemented various transverse cooling schemes which allow the phase
density of atomic beams to be substantially increased (Joffe et al 1993).
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Figure 19. Scheme of a 3D cooling of atoms by six laser beams
propagating in directions ±x,±y,±z.

3.1.3. 3D cooling of atoms. Typical scheme of a 3D laser cooling of an atomic gas is
illustrated in figure 19. In this cooling scheme, atoms are irradiated by three pairs of counter-
propagating red-detuned laser waves. In a simplest model of a two-level atom and at weak
optical saturation the radiation force on the atom averaged over the laser field wavelength in
the scheme of figure 19 can be represented as a sum of three forces (3.2),

F =
∑

i=x,y,z
h̄kiγG

{
1

1 + (δ − kvi)2/γ 2
− 1

1 + (δ + kvi)2/γ 2

}
, (3.9)

where ki are the wavevectors of the laser waves propagating in the positive direction of the
axes i = x, y, z and vi is the projection of atomic velocity on the axis i. At red detuning,
δ < 0, force (3.9) in a linear approximation in atomic velocity is reduced to the friction force

F = −Mβv, (3.10)

where the friction coefficient β is defined by equation (3.3). In the same model of a two-level
atom and in linear approximation in saturation parameter, the momentum diffusion tensor
averaged over the laser wavelength and taken at zero velocity is

Dii = D = 2h̄2k2γ
G

1 + δ2/γ 2
. (3.11)

The stationary solution of the Fokker–Planck equation (2.63), which includes friction
force (3.10) and momentum diffusion tensor (3.11), is a 3D Gaussian distribution

w(v) = 1

(
√
πu)3

exp

(
−v2

u2

)
. (3.12)

The half-width of the velocity distribution (3.12),

u =
√

2kBT /M, (3.13)

is defined by an effective temperature (Letokhov et al 1977)

T = D

MβkB
= h̄γ

2kB

( |δ|
γ

+
γ

|δ|
)
. (3.14)

The above estimation for atomic temperature is in a good agreement with experimental
observations in the cases when the dipole interaction between the atoms and the laser field
can be described by a two-level model. The first experiment on the 3D Doppler cooling
of atoms was done with a sodium vapour (Chu et al 1985). A beam of sodium atoms was
preliminarily decelerated by a counter-propagating laser beam. Thereafter the slow atomic
beam was directed into the intersection region of three mutually orthogonal 1D standing
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laser waves producing a 3D standing wave. The minimal temperature of the cold sodium
atoms recorded in the experiment amounted to 240 µK, which agreed well with the minimum
temperature Tmin = h̄γ /kB predicted by equation (3.14) for two-level atoms.

It worth noting that laser Doppler cooling of atoms described by a simple two-level model
allows one to reach as low a temperature as the recoil temperature (1.5). This lowest temperature
limit can be achieved for narrow spectral lines with a half-width about the recoil energy, γ ≈ ωr.
The first experiment on the narrow-line laser cooling of strontium atoms was reported by Katori
et al (1999). In the experiment, 88Sr atoms first laser precooled at the broad 1S0–1P1 transition
at wavelength 461 nm and trapped in the MOT were further laser cooled at the spin-forbidden
transition 1S0–3P1 at wavelength 689 nm. The laser cooling at a weak transition resulted in an
atomic sample with minimum temperature of 400 nK at density over 1012 cm−3.

3.2. Sub-Doppler cooling

As noted in section 2.3, in multilevel dipole interaction schemes, two-photon processes, as well
as multiphoton processes of higher order, may contribute to the radiation force, increasing
its slope at zero atomic velocity. At the same time, multiphoton processes may reduce the
momentum diffusion coefficient at the zero velocity (see section 2.3). Correspondingly, in
the case of negative detuning two-photon processes and also multiphoton processes of higher
order increase the friction force produced by the radiation force at small momentum diffusion
coefficients. As a result the contributions from multiphoton processes allow multilevel atoms
to be cooled by laser radiation below the Doppler temperature limit defined by equation (1.4).
The deep cooling of multilevel atoms below temperature (1.4) by the radiation force contributed
to by multiphoton processes has come to be known as sub-Doppler cooling. In all the sub-
Doppler cooling schemes, the minimum cooling temperature is only limited by the magnitude
of recoil energy (1.5). The minimum temperature attainable in the sub-Doppler cooling of
(3 + 5)-level atoms in the 1D cooling model is estimated below.

In the interaction scheme involving a (3 + 5)-level atom and counter-propagating laser
waves (2.58) with a negative frequency detuning, both parts of the radiation force are reduced
to friction forces. In the practically important case of large detuning, |δ| � γ ,., the principal
contribution to the friction coefficient comes from the second part of the radiation force that is
associated with two-photon processes. In that case, the friction coefficientβ ≈ ( 120

17 )(γ /|δ|)ωr,
and the momentum diffusion coefficient D ≈ ( 46

17 )h̄
2k2γ (./γ )2. As a result, the temperature

defined by equation (3.7) is

T ≈ 23

30

h̄.2

|δ|kB
. (3.15)

The order of magnitude of temperature (3.15) was found by Dalibard and Cohen-Tannoudji
(1989), and the value of the coefficient in formula (3.15) was found by Chang and co-workers
(1999b). It should be borne in mind that formula (3.15) corresponding to the quasiclassical
dynamics of the atom can be used when the temperature T exceeds the minimum possible
temperature defined by recoil energy (1.5) (Castin and Dalibard 1991).

The first experimental observation of the sub-Doppler cooling of atoms was made by
the group of NIST lead by W Phillips. The temperature of sodium atoms measured in
this experiment in an optical molasses amounted to 43 µK instead of the expected 240 µK
corresponding to the cooling limit for two-level atoms. Note as examples two experimental
observations of the sub-Doppler cooling of caesium atoms. Salomon and co-workers (1990)
reached a temperature of 2.5 µK at the frequency detuning −10γ . Reducing the detuning
still more, down to −20γ , Chang and co-workers (1999b) attained apparently the record-low
atomic temperature for today, namely, 2 µK (figure 20).
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Figure 20. Experimental (boxes) and theoretical
(solid curve) dependences of the atomic temperature
for Cs atoms on the detuning at saturation parameter
G = 4. The atomic sample was laser cooled by a
3D laser field composed of three pairs of σ + − σ−
laser waves. Atomic temperature is normalized on
the Doppler cooling limit Ts = TD = h̄γ /kB =
127 µK, γ /2π = 2.5 MHz (Chang et al 1999b).

3.3. Subrecoil cooling

The methods of cooling atoms below the recoil energy are closely associated with the stochastic
nature of the atom–radiation interaction. The possibility of using the stochastic behaviour of
atoms in a laser field with a view to their deep cooling was shown by Pritchard and co-workers
(1983, 1987). The idea of the method is as follows. In the closed cycle constituted by the
stimulated absorption of a photon by the atom and the subsequent spontaneous emission of
the photon, there exists a finite probability that the atom will transit to a translational state
whose energy Eat is lower (as desired) than the recoil energy: Eat 	 Er. If there exists some
selective mechanism providing for the repetition of the cycle only for fast atoms (Eat > Er),
then on completion of a sufficient number of cycles a substantial fraction of the fast atoms
will be cooled down to a temperature below the recoil energy. This method received the name
phase-space optical pumping.

To date, two specific phase-space optical pumping schemes have been developed. One
uses the two-photon Raman transition and the other is based on the velocity-selective coherent
population trapping (VSCPT) effect.

3.3.1. Raman cooling. The Raman cooling uses a two-photon transition between two
hyperfine-structure levels in the ground state of the atom. The atom is irradiated by two
laser pulses of frequencies ω1 and ω2 (figure 21). If the frequency difference (ω1 − ω2) is
equal to the hyperfine splitting of the ground atomic state and the frequencies ω1 and ω2 are
detuned far away enough from the one-photon resonances, the atom makes a transition from
the state |1〉 to the state |2〉 by way of a two-photon Raman process. For an atom having a
velocity v, the two-photon transition is effective under the resonance condition

ω1 − ω2 = (k1 − k2)v + δhfs. (3.16)
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Figure 21. Scheme of Raman cooling based on a two-photon transition between two hyperfine-
structure components of the ground atomic state. (a) Energy level diagram for the Raman cooling.
(b) Deformation of the atomic velocity distribution under the action of a pair of red-detuned Raman
laser pulses. (c) Velocity distribution after optical pumping.

As follows from equation (3.16), the Raman transition is insensitive to the Doppler shift in
the unidirectional laser beam configuration (k1 ≈ k2). In the counter-propagating laser beam
configuration (k1 ≈ −k2), the Doppler shifts add together, and the resonance depends on the
atomic velocity. For the ground-state levels the width of the two-photon resonance is extremely
narrow and, as a rule, is only governed by the atom–field interaction time. This in turn means
that one can selectively excite very narrow velocity groups of atoms.

Figure 21 schematically illustrates the operating principle of the unidirectional Raman
cooling of atoms. When the frequency difference (ω1 − ω2) is tuned towards the red side
relative to the two-photon resonance frequency (figure 21(a)), an atom moving with a negative
velocity v is at resonance with the field as a result of the Doppler shift and acquires a momentum
of 2h̄k in the zero-velocity direction (figure 21(b)). For an atom moving with a positive velocity,
the directions of the laser beams should be reversed. For repeat irradiation with the laser pulses,
the atom should be made to move back to the initial state |1〉. This is achieved by means of an
additional pump laser of frequency ωp (figure 21(c)) which raises the atom from the sublevel
|2〉 to the excited state |e〉 whence it drops back to state |1〉 after emitting a spontaneous
photon. Using a sequence of pairs of laser pulses of varying frequency and direction, one can
concentrate atoms in the region of zero atomic velocity. The width of the velocity distribution
of the atoms depends on the width and shape of the Raman transition line which in turn depend
on the duration and shape of the laser pulses. At the beginning of the cooling process, the
pulses are short enough, which provides for the interaction with a wide velocity group of atoms
in the wing of the initial, still wide atomic velocity distribution. In the course of the cooling
process, the velocity distribution narrows, and to reduce the resonance width, the duration of
the laser pulses is increased.

Raman cooling schemes were developed both for 1D (Kasevich and Chu 1992) and 2D and
3D cooling (Davidson et al 1994). Figure 22(a) shows the velocity distribution of sodium atoms
in the process of a 1D Raman cooling (Kasevich and Chu 1992). The temperature attained in
this experiment amounted to 100 nK, which corresponded to 1

10 of the recoil energy. The 2D
and 3D Raman cooling schemes are technically difficult to implement. For example, to effect
a 3D cooling, one needs to use 18 laser beams. The temperatures reached in the 3D Raman
cooling scheme was found to be less than in a 1D scheme, of the order of the recoil energy
(Davidson et al 1994).
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Figure 22. Atomic velocity distribution after (a)
and before (b) the Raman cooling. Insert shows
the central velocity peak and the velocity width
relative to the recoil velocity (Kasevich and Chu
1992).

The Raman cooling process can also be used for cooling atoms localized in the optical
lattices (section 4.2). Atoms trapped in an optical lattice near the minima of the dipole potential
wells execute vibratory motions. If the vibrational structure is well resolved, the atoms can
be cooled by the Raman cooling technique known as the sideband cooling technique. This
technique was first employed to cool ions localized in deep radio-frequency traps wherein
vibrational frequencies exceeded the homogeneous optical linewidth (Diedrich 1989, Monroe
et al 1990).

For neutral atoms localized in not very deep dipole potential wells, the vibrational spectrum
can only be resolved by means of two-photon Raman transitions of extremely narrow width.
The Raman cooling of Cs atoms in the dipole potential wells produced by a standing laser
wave is illustrated in figure 23. The atoms are first optically pumped to the state F = 3,
mF = 3. Because of the relatively high initial temperature, the atoms occupy high vibrational
levels, v � 1 (the simplified case illustrated in figure 23 refers to v = 1). By applying a weak
magnetic field, one can ‘match’ by energy the sublevels |F = 3, mF = 3, v〉 and |F = 3,
mF = 2, v − 1〉. The translational energy of the sublevel |F = 3, mF = 2, v − 1〉 is lower by
the magnitude of a vibrational quantum than that of the sublevel |F = 3, mF = 2, v〉. A two-
photon Raman transition (excited by the same lasers as form the optical lattice for the atoms)
activates the atom to make a transition from the state |F = 3, mF = 3, v〉 to the state |F = 3,
mF = 2, v − 1〉. To complete one cooling cycle, an additional laser pulse plus spontaneous
decay make the atom drop back to the initial internal state |F = 3, mF = 3〉. When optically
pumping a strongly localized atom, there occurs, as a rule, no change in its vibrational state, i.e.
at the end of the cooling cycle the state of the atom is |F = 3, mF = 3, v − 1〉. A many times
repeated cooling cycle rapidly transfers the atom to the ground vibrational state v = 0 (the
so-called dark state) whence it cannot be excited by any two-photon Raman transition or pump
laser. In the first experiment on Raman cooling Cs atoms in a standing laser wave, Hamann
et al (1998) attained a 95% population in the ground vibrational sublevel. In the subsequent
similar experiment, Vuletic et al (1998) also demonstrated the possibility of achieving a high
atomic density (1.4×1013 atoms cm−3). This opens the door to the further evaporative cooling
of atoms and attaining the BEC of atoms.
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Figure 23. Schematic diagram of the Raman cooling of atoms in an optical lattice.

3.3.2. Velocity-selective coherent population trapping. The coherent population trapping
(CPT) effect is manifest in various domains of physics. Its essence is as follows. Let a
quantum mechanical system characterized by the nonperturbed operator H0 be located in an
external field. Its interaction with the field is described by the operator V . In that case, the
temporal evolution of the state of the |C〉 system in the interaction representation is described
by the Schrödinger equation as

ih̄
∂

∂t
|C〉 = exp(ih̄−1H0t)V (ih̄

−1H0t)|C〉. (3.17)

In some special cases, the Schrödinger equation may have a solution |Cnc〉 satisfying the
equation

exp(ih̄−1H0t)V (ih̄
−1H0t)|Cnc〉 = 0. (3.18)

Equation (3.18) means that the quantum mechanical system in the state |Cnc〉 does not
‘feel’ the external field. Such a non-coupled (nc) state possesses a series of remarkable
properties. Assume that the non-coupled state |Cnc〉 = |Cnc(t)〉 at the initial instant of time
is a superposition of the states of the nonperturbed system described by the Hamiltonian H0.
At all the subsequent instants of time the state |Cnc(t)〉 remains a linear superposition of the
same nonperturbed states, despite the presence of the external field. The non-coupled state is
customarily referred to as a ‘trapped’ state, and the phenomenon itself is called CPT. If the
state |Cnc(t)〉 is a superposition of the ground states of the atom, the accumulation of atoms
in the non-coupled state |Cnc(t)〉 can occur as a result of the spontaneous atomic transitions
from the excited atomic states. When the translational atomic motion is considered quantum
mechanically the non-coupled can exist at a specific atomic momentum (velocity). In this case
the CPT effect is referred to as the VSCPT effect.

The VSCPT was actively discussed in connection with the control of atomic motion (see,
for example, the review by Arimondo 1996). The 1D VSCPT scheme for atoms with the total
angular momenta J and J ′ of the ground and the excited state, respectively, equal to unity,
i.e. J = J ′ = 1, in a laser field of configuration σ +σ− was investigated most fully, both
theoretically and experimentally. In the 1D case, the laser beams propagate in the direction
of the z-axis which is taken to be the quantization axis. The atomic states are designated
in accordance with the internal and translational states of the atom as |i, p〉, where i and p
denote the internal state of the atom and its momentum, respectively (figure 24). In the above
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Figure 24. Three-level E-scheme describing the interaction of σ +, σ− circularly polarized laser
waves with atomic transition J = 1–J ′ = 1. Dashed and wavy lines show the ways by which the
atoms are pumped into the E-system after a few cycles of absorption and spontaneous emission.

laser field configuration the interaction is described in accordance with the so-calledE-scheme
wherein there interact two magnetic sublevels, |g−, p − h̄k〉 and |g+, p + h̄k〉, of the ground
state and one sublevel, |e0, p〉, of the excited state. The coherent trapping of atomic population
can conveniently be described in terms of the three states |Cnc(t)〉, |Cc(t)〉 and |e, p〉, where

|Cnc(p)〉 = 1√
2
(|g−, p − h̄k〉 + |g+, p + h̄k〉),

|Cc(p)〉 = 1√
2
(|g−, p − h̄k〉 − |g+, p + h̄k〉),

(3.19)

are superpositions of the ground states of the atom. It was shown (Arimondo 1996) that the state
|Cnc(t) is not coupled with light by virtue of the destructive interpretation of the amplitudes
of the transitions |g−, p − h̄k〉 → |e0, p〉 and |g+, p + h̄k〉 → |e0, p〉.

The state |Cnc(t)〉 that is not excited by the laser light is realized in atoms with a momentum
of p0 = ±h̄k. Atoms with a momentum other than p0 interact with light. Considering its
spontaneous decays, the atom executes a Brownian motion in the momentum space. Once it
finds itself in the state |Cnc(t)〉, the atom remains therein at all the subsequent instants of time.

In their experiments with the metastable 4He atoms, Aspect and co-workers (1988), Law
and co-workers (1994), and Doery and co-workers (1995) observed very narrow resonances
at atomic velocities of v = ±h̄k/M . The formation of narrow velocity groups of atoms is
customarily associated with their cooling. However, spontaneous emission is responsible not
only for the accumulation of atoms in the vicinity of the velocities v = ±h̄k/M , but also for
the diffusion of a substantial proportion of the atoms from the initial velocity distribution to
the region of higher velocities (Fam Le Kien and Balykin 1999). Obviously the diffusion of
atoms in the momentum space causes, in contrast to the VSCPT effect, the temperature of
the entire atomic ensemble to rise. One of the possible ways to reduce momentum diffusion
is to combine the VSCPT effect with the polarization laser cooling techniques (Marte et al
1994). Another possibility is to filter atoms in the momentum space: to separate slow atoms in
narrow peaks from their fast counterparts in the velocity distribution wings (Fam Le Kien and
Balykin 1999). This is achieved by introducing an additional decay channel for the excited
level, eventually causing the temperature of the entire atomic ensemble to drop below the recoil
temperature.
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4. Optical trapping

As was shown in section 2 on an example of a two-level atom, the motion of an atom in a
spatially inhomogeneous laser field is generally governed by the dipole gradient force, the
radiation pressure force and the momentum diffusion. For an atom slowly moving in a far-
detuned laser field the optical excitation is low. As a result, the radiation pressure force
originating from the absorption of the laser light and the heating caused by the momentum
diffusion are small. Accordingly, the motion of a cold atom in a far-detuned inhomogeneous
laser field at not too long interaction time is basically governed by the dipole gradient force.
The minima of the potential produced by the dipole gradient force in a far-detuned laser field
can thus be used for optical trapping of cold atoms at time intervals limited by the heating due
to the momentum diffusion.

4.1. Trapping in laser beams

Conceptually, the simplest optical trap for cold atoms can consist of a single focused laser beam
formed by a TEM00 Gaussian laser mode (figure 7). As noted in section 2.2.1, gradient dipole
force (2.20b) on a two-level atom in a red-detuned Gaussian laser beam forms 3D potential
well (2.22) in the vicinity of the laser beam focus. Such an optical trap is customarily referred
to as a single-beam dipole trap. The intersection of a number of laser beams in some space
region can produce other types of the dipole traps.

The properties of the optical dipole traps largely depend on the magnitude of the
detuning. In the far-off-resonance dipole trap (FORT), the frequency detuning is assumed
to be substantially larger the homogeneous width, but the laser frequency is still close to that
of the optical atomic transition. The motion of an atom in the FORT is well described by the
RWA. When the detuning is chosen to be comparable with the optical transition frequency, the
optical dipole trap is often called the quasi-electrostatic trap (QUEST) (Takekoshi et al 1995).
The properties of QUEST differ greatly from those of the FORT since the RWA can no longer
be used to describe the motion of an atom in the QUEST. Both the FORT and the QUEST
produce a nearly conservative potential well for atoms, but incorporate inevitable heating due
to the momentum diffusion originated from the photon recoil. Although the heating rate due
to the momentum diffusion may be very small at a very large detuning, the diffusive heating
always introduces an upper limit on the lifetime of atoms in the dipole traps.

4.1.1. Far-off-resonance dipole traps. In a single-beam FORT, the detuning is assumed to
satisfy the conditions |δ| � γ,.. Under these conditions the effect of radiation pressure
force (2.20a) can be neglected compared with that of gradient force (2.20b). Accordingly, the
potential well of the trap at red detuning is defined by equation (2.23),

Ugr(r) = −h̄.
2(r)

|δ| . (4.1)

The depth of potential well (4.1) is Ugr(0) = U0 = h̄.2(0)/|δ|. Due to the conditions on
the value of the detuning, the depth of the potential well (4.1) is always small compared with
the value of the energy defined by the Rabi frequency, U0 	 h̄.(0). In typical experimental
conditions the potential well depth U0/KB does not exceed 10 mK.

The lifetime of atoms in a single-beam FORT is typically defined by the heating due to
the momentum diffusion and the background gas collisions. The characteristic time of an
atom escape from the FORT caused by the diffusive heating, τdiff , can be estimated from the
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potential well depth U0 and momentum diffusion coefficients (2.64) at the focus of the beam,

Dii ≈ D(0) = h̄2k2γ
.2(0)

δ2
. (4.2)

Equating the thermal energy of an atom caused by the momentum diffusion,Eth ≈ (δp)2/2M ,
where δp ≈ √

D(0)τdiff , to the potential well depth, one may obtain the following estimation
on the trapping time limited by the momentum diffusion:

τdiff ≈ 2MU0

D(0)
≈ ω−1

r
|δ|
γ
. (4.3)

The characteristic value of the inverse recoil frequency for atoms of medium mass is of the
order of τr = ω−1

r ∼ 10−5 s. For a large detuning, the trapping time τdiff can accordingly be
much longer than the time τr. Note that by simultaneously increasing the laser field intensity
and detuning one can increase the trapping time τdiff while keeping the potential well depth
constant. The characteristic time of an atom escape from the FORT caused by collision with
residual gas, τcoll, is defined by the collision cross section σc, residual gas density n and the
thermal velocity of the residual gas atoms u,

τcoll ≈ 1/σcnu. (4.4)

The first FORT used 220 mW of laser power at detuning 130 GHz for trapping sodium
atoms (Chu et al 1986). The potential well depth for sodium atoms amounted to 10 mK and the
trapping time was limited by a few milliseconds because of fast diffusive heating of the atoms
at a relatively small frequency detuning. In the improved trap of this type (Miller et al 1994),
the lifetime of rubidium atoms in the beam of a titanium–sapphire laser amounted to 0.2 s at
detuning |δ| ≈ 65 nm. In the FORT formed by the intersection of two beams of Nd:YAG
lasers (λ = 1.06 µm) the lifetime of sodium atoms in the trap amounted to a few seconds
(Adams et al 1995). The dependence of the lifetime of atoms in the FORT on the polarization
of the laser beam was studied by Corwin et al (1999). A cold and dense sample of Cs atoms
was obtained in the FORT produced by the Nd:YAG laser (Boiron et al 1998). The atomic
cloud was produced in a rod shape with a 6µm transverse waist radius, a temperature of 2 µK,
and a density of 1012 cm−3. In contrast to measurements in isotropic samples, no influence of
multiple photon scattering or the reabsorption of laser light (Castin et al 1998) was recorded.

The main disadvantage of the optical trapping of atoms in the laser beams produced by
the TEMnm optical modes described by Hermitian polynomials is the fast diffusion-associated
heating of atoms. This shortcoming is materially reduced when using hollow laser beams
produced by the optical modes described by the Laguerre polynomials Lm0 , where the index
m = 0,±1,±2, . . . defines the azimuthal field distribution in the polar coordinate system.
Such hollow laser beams have the intensity minimum on the axis, and atoms trapped in the
hollow beams are subject only weakly to the perturbing effect of the laser field (Yang et al
1986). The trapping of rubidium atoms in hollow blue-detuned laser beams was reported by
Kuga et al (1997). A scheme to trap atoms in a blue-detuned FORT formed by a single laser
beam and a holographic phase plate was demonstrated by Ozeri et al (1999). At a detuning in
a region 0.1–30 nm 105 Rb atoms were trapped for 0.3 s at temperature of 24 µK and a density
of 7 × 1011 cm−3.

4.1.2. Quasi-electrostatic dipole traps. In the QUEST, the detuning of the laser beam is
comparable with the optical frequencies of an atom. In this case the trapping potential can
be found from the general expression for the high-frequency Stark shift in the off-resonance
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light field. For a monochromatic linearly polarized light field (2.9) the dipole interaction
operator (2.1) is

V = −DE = −DzE0(r) cos(kr − ωt). (4.5)

where Dz is the matrix element of the dipole moment projection on the field direction. The
solution of the Schrödinger equation with the dipole perturbation term (4.5) gives in the second-
order perturbation theory the average energy shift �En for the atomic level n as (Sobelman
1979)

�En = E2
0(r)

2h̄

∑
s

|(dz)ns |2 ωns

ω2
ns − ω2

, (4.6)

where ωns = (En − Es)/h̄ is the frequency of the atomic transition between the levels n and
s and (dz)ns is the matrix element of the atomic dipole moment.

For the ground state of an atom representing the basic practical interest, the energy shift
is

U(r) = �Eg = − 1
2αE

2
0(r), (4.7)

where α is the polarizability of an atom in the ground state,

α = 1

h̄

∑
s

|(dz)gs |2 ωsg

ω2
sg − ω2

. (4.8)

At the light wave frequency well below the frequency of the lowest atomic dipole transition the
polarizability α is always positive and close to the static polarizability αs = ∑

s |(dz)gs |2/h̄ωsg .
In particular, at the wavelength of the CO2 laser (λ = 10.6 µm) the confining potential (4.7)
can be well approximated by the static potential Us = −αsE

2
0/2.

The potential well in the QUEST is thus defined by the dependence of the laser wave
intensity on position, I (r) = (c/8π)E2

0(r). The most important advantage of the QUEST
is an extremely low diffusion-associated heating of atoms and accordingly long lifetime of
atoms. In the QUEST, the total photon scattering rate is generally defined by the Rayleigh
and Raman scattering. The Rayleigh scattering leaves an atom in its original state while the
Raman scattering leaves an atom in a different hyperfine-structure sublevel. Typically, the rate
of Raman scattering is much smaller than the rate of the Rayleigh scattering as defined by the
ordinary Rayleigh formula (Takekoshi et al 1995),

SRayleigh = 8π

3
r2

0

(
ω

ω0

)4

, (4.9)

where r0 is the classical electron radius.
In a most careful experimental investigation of the QUEST an ensemble of Cs atoms was

trapped in a 20 W CO2 laser beam focused into a spot with the waist radius 100µm. The depth
of the potential well (4.7) was estimated to be 115 mK and the Rayleigh scattering rate (4.9)
was about 2.3 × 104 s−1. The diffusion heating-limited lifetime was accordingly estimated to
be about τdiff ≈ 4 × 1010 s. The actual lifetime of the atoms in the trap, τ ≈ 10 s, was found
to be governed by factors other than the diffusion-associated heating, such as collisions with
residual gas molecules and three-particle recombination (Takekoshi and Knize 1996). O’Hara
et al (1999) demonstrated an ultrastable CO2 laser trap that provided tight confinement of atoms
with negligible optical scattering and minimal laser-noise-induced heating (figure 25). By this
technique 6Li atoms were stored in a 0.4 mK deep well with a lifetime of 300 s consistent with
a background pressure of 10−11 Torr. This is the longest storage time ever achieved with an
all-optical trap, comparable to the best magnetic traps. A substantial increase of the density
of atoms in the QUEST was attained by the Raman cooling of atoms localized in the trap (see
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Figure 25. Trapped number of atoms versus time for an ultrastable CO2 laser trap. The solid curve
is a single exponential fit, N(t) = A exp(−t/τ ), and gives τ = 297 s (O’Hara et al 1999).

section 3.3.1). Using this method, an atomic density of 1.4 × 1013 cm−3 at a temperature of
2.8 µK was achieved in a 1D QUEST (Vuletic et al 1998).

The QUEST can also be used for trapping neutral molecules. The main problem here is the
production of cold molecules. Nowadays the process of the photoassociation of the laser-cooled
atoms is the only known way to produce a sample of cold molecules. Takekoshi et al (1998)
have reported the first observation of optical trapping of cold neutral molecules in the QUEST.
Caesium dimers were produced in the MOT and transferred to the QUEST formed at the focus
of a CO2 laser beam. The molecules remain in the trap for times of about 0.5 s. The lifetime
of trapped molecules was limited mainly by collisions with the thermal background gas.

Finally, note that the basic distinction between the FORT and QUEST consists in the
value of the diffusion heating. Since the population of the excited atomic state in the QUEST
is extremely small, the diffusion-associated heating of atoms in the QUEST is much smaller
than in the FORT.

4.2. Trapping in standing laser waves. Optical lattices

As noted in section 2.2.2, a cold two-level atom placed in a near-resonant standing laser
wave (2.25) experiences the action of periodic potential (2.30). From the general physical
standpoint, sufficiently cold atoms could be trapped for a long time in the minima of the
periodic potential, which would allow one to speak of a stable localization of atoms in regions
with dimensions smaller than the laser field wavelength. Actually, no stable trapping of
atoms occurs in a standing laser wave, for the momentum fluctuations always cause diffusion-
associated heating and escape of the atoms from the potential wells. The only mechanism
that could stabilize the energy (temperature) of the atoms at a level substantially lower than
the potential well depth is the friction produced by the radiation pressure force. However, in
the two-level atom model this mechanism is inoperative because the friction coefficient (2.35)
goes to zero in the vicinity of the minima of potential (2.30).

For two-level atoms placed in a standing laser wave, a situation is realized when some
atoms stay localized at the potential minima, while others execute infinite motions, the numbers
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of the former and the latter being comparable (Letokhov 1968, 1973). This conclusion directly
follows from comparison between the average kinetic energy of the atoms and the potential well
depth. Taking space-averaged values of friction coefficient (2.35) and the momentum diffusion
coefficient Dzz defined by equation (2.65), one can estimate the average kinetic energy of the
two-level atoms from the stationary solution of the Fokker–Planck equation (2.63) (Letokhov
et al 1977):

kBT
∼= 〈Dzz〉
M〈β〉 = 1 + αzz

4
h̄γ

( |δ|
γ

+
γ

δ

)
. (4.10)

This energy, as can be seen, coincides, within the order of magnitude, with the depth of the
periodic potential (2.30).

The analysis of more complex dipole interaction schemes involving multilevel atoms
and counter-propagating laser waves supports the above conclusion that there simultaneously
exist localized and non-localized atoms. At the same time, the dynamics of multilevel atoms
interacting with counter-propagating laser waves may substantially differ from that of two-
level atoms, because an important role for multilevel atoms can be played by the multiphoton
optical processes described in sections 2.3 and 2.4.2. However, the deeper cooling provided by
the multiphoton processes does not change the physical picture described above (Dalibard and
Cohen-Tannoudji 1989). Insofar as deep cooling is effected on small spatial intervals compared
with the spatial potential period, its contribution on the average causes no perceptible reduction
of the average kinetic energy of the atoms in comparison with potential well depths. At the same
time, in the case of multilevel atoms the relative proportion of atoms oscillating in potential
wells may be higher than that in the case of two-level atoms.

Thus, the above arguments show that when irradiating atoms with counter-propagating
laser waves producing periodic optical potentials, some atoms always find themselves localized
at the minima of the periodic potentials. In the case of red detuning, in addition to the periodic
potential there also develops a periodic friction force that decelerates the atoms and facilitates
their localization. In other words, the periodic potentials produced by counter-propagating
laser waves in their turn produce periodic gratings of cold atoms. Such atomic gratings are
frequently called optical lattices.

A direct experimental proof of the localization of cold atoms in the periodic minima of
a standing laser wave potential was obtained by observing the channelling of cold sodium
atoms in curved potential wells produced by a spherical standing laser wave (Balykin et al
1988b, 1989). In this experiment, a beam of sodium atoms was directed at a grazing angle to
the curved potential wells (figure 26). Fast atoms having a high transverse velocity traversed
the laser field without changing their direction of motion in any perceptible way. In contrast,
cold atoms were constrained in the potential wells of the spherical standing laser wave and
deviated as a result through an angle governed by the magnitude of the dipole interaction
between the atoms and the laser field. The deflection of slow atoms was observed to occur
as a result of their channelling both at the nodes of the standing laser wave in the case
of blue detuning and at the loops in the case of red detuning (Ovchinnikov and Letokhov
1992).

Another experimental proof of the localization of cold atoms at the minima of a periodic
optical potential was obtained by recording the resonance fluorescence spectra of caesium
atoms trapped in the optical potential, either 3D (Westbrook et al 1990) or 1D (Jessen et al
1992), produced by counter-propagating laser waves of linear and orthogonal polarization
(lin⊥lin configuration). The resonance fluorescence spectrum of a motionless two-level atom
consists of the well known Mollow triplet that includes a central peak at the laser frequency
ωl and two side components displaced to the red and blue side by an amount equal to the Rabi
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Figure 26. Scheme of the experiment on channelling
sodium atoms in the standing laser wave. The initial
atom beam was directed at a grazing angle to the curved
potential wells (Balykin et al 1988b).

Figure 27. (a) Resonance fluorescence of atoms trapped
in the periodic potential wells. The spectrum is shown
near the central component of the Mollow triplet. (b) The
quantum transitions of an atom between the vibrational
states responsible for the side components (Jessen et al
1992).

frequency (Mollow 1969, 1972). For a two-level atom oscillating in a potential well with a
frequency lower than the Rabi frequency, each component of the Mollow triplet is split into
the side components corresponding to changes in the vibrational state of the atom. If the ratio
between the oscillation amplitude of the atom in the potential well and the radiation wavelength
(the Lamb–Dicke factor) is small, each component of the Mollow triplet contains only the first
side components (figure 27).

In complete correspondence with figure 27, the recorded resonance fluorescence spectrum
excited by a laser field of lin⊥lin configuration also contained, in addition to the central
component of the Mollow triplet, clearly distinct side components corresponding to the
quantum transitions of the atom between adjacent vibrational levels (2.33) with characteristic
frequencies (2.32). The low-frequency side component of the spectrum corresponded to virtual
optical transitions accompanied by the vibrational transitions ν → ν + 1, i.e. to spontaneous
anti-Stokes Raman transitions of the atom. The high-frequency component of the spectrum
corresponded to virtual atomic transitions entailing the reduction of the vibrational quantum
number, ν → ν − 1, i.e. to Stokes Raman transitions. The most intense central component
of the Mollow triplet corresponded as usual to optical atom transitions occurring without
any change in the vibrational state of the atom, i.e. it had the meaning of the Rayleigh line.
The asymmetry observed in the intensities of the side peaks corresponded to the difference
between the thermal populations of the adjacent vibrational levels ν and ν + 1. Inasmuch as
the ratio between the populations of the adjacent vibrational levels in an approximation of the
Boltzmann distribution is exp(−h̄ων/kBT ), the ratio between intensities of the side peaks was
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used to determine the vibrational temperature of the atoms and estimate that the localization
region of the atoms was �z ≈ λ/15 (Jessen et al 1992).

One more experimental proof of the localization of cold caesium atoms in the minima
of a periodic optical potential produced by a lin⊥lin laser field was obtained by recording
the absorption spectrum of a probe laser beam. The absorption of a probe beam depends on
the character of the stimulated redistribution of photons between the trapping and the probe
fields. The redistribution of photons as a result of stimulated Raman processes proceeds very
effectively when the probe laser frequency ω′ is shifted by an amount equal to the oscillation
frequency of the atoms, i.e. ω′ = ω ± ωv . Recording the Raman resonances that came to
be known as recoil-free Raman resonances made it possible to demonstrate that the specific
features of the absorption spectrum fully corresponded to localized atoms (Verkerk et al 1992,
Courtois et al 1994).

A 2D optical lattice was directly observed by recording the spatial distribution of the
fluorescence intensity of trapped atoms (Hemmerich and Hänsch 1993).

Various types of 3D optical lattices, both periodic and quasiperiodic, have been realized
(Guidoni et al 1997, Grynberg et al 1993, Petsas et al 1994, Jessen and Deutsch 1996). These
lattices were used to study the properties of localized cold atoms at temperatures of the order of
10–100 µK. The paramagnetic properties of optical lattices in a constant magnetic field were
investigated (Meacher et al 1995). The Bragg diffraction of laser light by optical lattices was
observed, bearing witness to the presence of a long-range order (Birkl et al 1995, Weidemüller
and Hemmerich 1995). Atom wavepackets were compressed and parametrically deformed by
varying modulation of the optical potential depth (Raithel et al 1997). The amplification of a
probe laser radiation by an optical lattice of rubidium atoms was registered (Guibal et al 1997).
The amplification effect was explained by the induction of a periodic atom polarization by the
trapping field. The energy band structure of the translational motion of atoms in an optical
trap was experimentally recorded (Müller-Seyditz et al 1997).

The maximum densities of atoms in optical lattices are typically limited to values of the
order of 1011–1012 cm−3 mainly because of the absorption and scattering of the laser light by
the atoms. The increase of atomic density in optical lattices still remains an important problem
whose solution would allow one to approach the observation of the quantum statistical effects
and possible production of dense atomic crystals. In this connection, attempts to trap atoms in
the intensity minima of a laser field seem very promising (Grynberg and Courtois 1994). Such
dark optical lattices can be produced by the optical pumping of atoms in a magnetic field to
the magnetic sublevel that is not excited by the laser light. The first dark optical lattice was
realized with 87Rb atoms placed in a weak magnetic field of the order of 10 G (Hemmerich
et al 1995).

A promising approach to decreasing the influence of the scattered and absorbed laser light
is the use of the far-off-resonance optical lattices (FORL). Friebel et al (1998), reported on the
trapping of Rb atoms in an extremely far detuned 1D optical lattice produced by the standing
wave from a CO2 laser. This optical lattice was characterized by a long coherence time because
of the low scattering rate. The authors assumed that by fitting such a lattice with one atom
per lattice site, a quantum bit (qubit) of information could be stored in each atom (e.g. in two
ground-state magnetic sublevels) and individually addressed with a focused laser beam. An
average filling factor about one atom per lattice site was recently achieved on the submicron
scale (Winoto et al 1999, De Pue et al 1999). High site occupation was achieved through
a compression sequence that included laser cooling in a 3D FORL and adiabatic toggling
between the 3D FORL and 1D FORL trap. After the highest filling factor was achieved, laser
cooling caused additional loss from lattice sites occupied with more than one atom. Ultimately,
44% of the sites had a single atom cooled to near its vibrational ground state.
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Figure 28. Two-frequency atom trap waveguide for two-level atoms (right) and the potentials of
an atom in the evanescent waves with blue and red detuning and total potential U .

4.3. Trapping in optical waveguide modes. Atom waveguides

Any trap for cold atoms, whose one or two linear dimensions are large enough, can be treated
and used as a waveguide for de Broglie atom waves. One of the first optical-trap atom
waveguide schemes was the scheme of a flat atom waveguide containing two evanescent laser
waves with detunings of opposite signs (Ovchinnikov et al 1991). A flat two-frequency atom
waveguide for two-level atoms is schematically shown in figure 28. In this scheme, the blue-
detuned evanescent wave, δb > 0, produces a repulsive potential, while the red-detuned wave,
δr < 0, produces an attractive potential. As a result, a potential well is produced between the
two evanescent waves, which restricts the atomic motion in a direction perpendicular to the
interface.

Obviously the red-detuned evanescent wave in this scheme should have a penetration depth
into the vacuum exceeding that of the blue-detuned wave, α−1

r > α−1
b (see equation (2.36)).

This condition is satisfied if the incidence angle of the red-detuned laser wave exceeds but
little the total internal reflection angle, θr > arcsin(1/n), and that of the blue-detuned wave
substantially exceeds the total internal reflection angle, θb � arcsin(1/n), where n is the
refractive index of the dielectric (figure 28). Under the above condition and at large detuning,
when the effect of the radiation pressure force can be neglected, the total potential for cold
atoms in the direction of the z-axis is a sum of two potentials of form (2.42):

U(r) = U b
gr − U r

gr = h̄

(
.2

0b

δb
e−2αbz − .2

0r

|δr| e−2αrz

)
, (4.11)

where.0b and.0r are the Rabi frequencies at the dielectric–vacuum interface for the blue-and
red-detuned waves, respectively.

The simple atom waveguide considered above provides for the propagation of cold atoms
in a plane parallel to the dielectric–vacuum interface. When using laser beams of Gaussian
intensity profile, this atom waveguide can be transformed into a 3D trap, for the dominant
gradient force produced by the red-detuned Gaussian laser beam can pull the atoms inside the
trapping region (Ovchinnikov et al 1991). Later, other flat atom waveguide schemes were
suggested based on the use of both an optical potential (Desbiolles and Dalibard 1996b, Power
et al 1997) and a magnetic potential (Hinds et al 1998, Li et al 1999).
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Figure 29. Scheme of an atom waveguide based on the optical mode EH11 propagating in the
dielectric waveguide (left) and the optical potential for atoms (right) (Ol’shanii et al 1993).

Gauk and co-workers (1998) were the first to demonstrate a flat atom waveguide based on
a standing laser wave with a period much longer than the laser wavelength. The waveguide
was formed by two interfering laser waves incident upon and reflected from the gold-coated
face of a glass prism at small angles. Metastable ∗Ar atoms were released from a MOT located
at some distance from the face of the prism. Two evanescent waves were also produced on the
same face of the prism. One of the evanescent waves served to decelerate the atoms released
from the trap near the face of the prism and the other, to optically pump the retarded atoms
to a sublevel at which the atoms become localized in the loops of the standing wave. In this
experiment, about a thousand atoms were localized in a single potential well at a density of
109 cm−3. The lifetime of the atoms in this flat waveguide amounted to 150 ms and was limited
by the momentum diffusion and the tunnelling of the atoms out of the optical potential.

The above-considered flat atom waveguide illustrates the main idea of the atom waveguides
on the basis of the dipole gradient force, i.e. an idea of pulling atoms into the intensity maxima of
the red-detuned laser field or pushing atoms into the intensity minima of the blue-detuned field.
It should be emphasized that it would naturally be sensible to speak of atom waveguides only
in the case of sufficiently cold atoms possessing the wave properties. For not very cold atoms
moving like classical particles, the above schemes play the role of devices for transporting
atoms in the desired direction or serve as 1D or 2D traps.

The first atom waveguide scheme to be practically verified was that shown in figure 29,
where the atoms moved inside the intensity maximum of the optical mode EH11 propagating
inside a hollow optical waveguide (Ol’shanii et al 1993). Generally speaking, many axially
symmetric electromagnetic modes can be excited in a hollow cylindrical dielectric waveguide
(Solimeno et al 1986). When the internal radius a of the waveguide is small enough, the
principal mode is EH11. The radial distribution of the electric field of the mode EH11 in the
cylindrical coordinates z, ρ, ϕ has the form

E = 1
2eE0J0(χρ)e

i(βz−ωt) + c.c., (4.12)

where e is the unit polarization vector and χ and β are the complex propagation constants. In
the case of large negative detuning, field (4.12) produces attractive potential (2.42) for atoms:

U = −h̄.
2
0

|δ| J
2
0 (χρ), (4.13)

where .0 is the Rabi frequency for field (4.12).
The above scheme was experimentally implemented for rubidium atoms (Renn et al 1995).

A glass hollow-core fibre 3 cm long and 40µm in internal diameter was used in the experiment.
The laser light was launched into the hollow region of the glass fibre. A beam of rubidium
atoms propagated in the dipole potential whose depth corresponded to an effective atomic
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Figure 30. Atom waveguide based on hollow dielectric waveguide having two cylindrical dielectric
sheaths differing in refractive index (left) and the optical potential (right).

temperature of 70 mK. This magnitude of the potential allowed atoms with transverse velocities
of up to 40 cm s−1 to be transported through the waveguide. A direct experimental proof of
the propagation of the atoms in optical potential (4.13) was obtained by measuring the atomic
flux at the exit of the waveguide depending on the sign of the detuning.

A considerable disadvantage of the waveguide based on the intensity maximum of an
optical waveguide mode is the diffusion-associated heating of the atoms. For this reason,
much more attractive are atom waveguides wherein atoms propagate in optical waveguide
modes having the minima near the axis (Savage et al 1993, Marksteiner et al 1994, Ito et al
1996, Pillof 1997). At present, there exist various methods to generate such modes. A
discussion of these methods can be found in the review on atom waveguides by Balykin (1999).
These include the transverse mode selection method (Wang and Littman 1993), the geometrical
optical method (Herman and Wigging 1991), the computer generated method (Paterson and
Smith 1996), and the Gaussian beam transformation method (Beijersbergen et al 1992).

Especially attractive are the atom waveguides based on hollow dielectric waveguides
having two cylindrical dielectric sheaths differing in refractive index (figure 30). When the
hole radius a � λ, such waveguides can convey with very low losses the optical mode HE11

mostly localized in the internal cylindrical sheath with the refractive index n1 > n2. The
electric field amplitude of the mode HE11 drops exponentially into the internal hollow region.
Accordingly, in the case of blue detuning the mode HE11 produces a potential well for atoms.
At large blue detuning, the shape of the potential for a two-level atom model is defined similar
to (4.13) by an expression containing a Bessel function:

U = −h̄.
2
0

|δ| I
2
0 (χρ). (4.14)

The atom wave modes existing in potential (4.14) were found by numerical calculation (Al-
Awfi and Babiker 1998). Dowling and Gea-Banacloche (1995) analytically found the structure
of atom modes for a stepped potential approximating potential (4.14).

The above scheme was also experimentally implemented with rubidium atoms propagating
in an optical mode with a wavelength of 780 nm blue-detuned with respect to the D2 transition
(Renn et al 1996, Ito et al 1996). Figure 31 shows the flux of rubidium atoms passed through
the waveguide as a function of the detuning of the laser field producing the surface evanescent
wave (Ito et al 1996). The curve in figure 31(b) shows the residual atomic flux inside the
waveguide in the absence of the laser light. Introducing blue-detuned laser light into the
waveguide caused a considerable increase in the flux of atoms passed through the waveguide.
The red-detuned laser light almost completely inhibited the propagation of the atoms. In this
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Figure 31. The flow of rubidium atoms passing through
the atom waveguide as a function of the detuning of the
laser field producing the surface evanescent wave (Ito et al
1996).

last case, a reduction of atomic flux in comparison with that in the absence of laser light was
observed. The effect was explained by the attraction of the atoms in the laser field to the
waveguide wall, followed by their condensation on the dielectric surface.

The most important parameter of any atom waveguide is the value of the atomic flux that
can be injected into and propagate inside the waveguide. Since the injected atoms have typically
a relatively broad velocity distribution, one can easily see that in the case of a single-mode atom
waveguide only a very small amount of atoms can be injected into the the atom waveguide. To
overcome this difficulty, an atom waveguide named atom hornfibre was proposed (Balykin et al
1996, Subbotin et al 1997). An atom hornfibre is a hollow tapered curved waveguide ‘coated’
inside by a blue-detuned evanescent wave. The waveguide has the shape of a curved horn with
a large inlet opening, around the size of the atomic cloud released from the MOT, which is
a typical pumping source for the atom waveguides. The outlet opening diameter of the horn
corresponds to a single-mode atom waveguide. The use of an inelastic reflection of atoms
from the evanescent wave (Ovchinnikov et al 1995) and the tapered waveguide geometry
are considered to be the key steps to reduce the temperature of the propagating atoms and
thus substantially increase the flux of atoms through the waveguide (Subbotin et al 1997).
Ovchinnikov and co-workers (1995) suggested and experimentally investigated a dissipative
reflection of atoms from the walls of such a waveguide.

Another laser field configuration with the intensity minimum at the centre of the beam,
which is being investigated as a potential atom waveguide, is the TEM∗

01 laser mode (the so-
called doughnut mode) (Balykin and Letokhov 1987, Kuppens et al 1998, Yin et al 1998,
Matsuura et al 1998, Morsch and Meacher 1998, Glas et al 1999). Kuppens and co-workers
(1988) obtained a TEM∗

01 mode from a Gaussian laser beam by a holographic method (Paterson
and Smith 1996, Kuppens et al 1996). Around 40% of the initial laser beam power was
converted to the TEM∗

01 mode about 0.4 W in power. When focusing the mode into a spot of
40 µm and at detuning 10 GHz, the laser field produced a potential for the transverse motion
of atoms with a vibrational energy of h̄ωv = 2.5Er. By using the 2D polarization cooling
method, they managed to reduce the temperature of transverse motion down to triple recoil
energy, which is comparable with the energy of vibrational motion. This means that atomic
motion in such a waveguide must exhibit wave properties. It should be noted at the same
time that in most experiments performed to date the motion of atoms have been of classical
character. In this connection, these experiments should essentially be considered as merely
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Figure 32. Atom cavity formed by two atom mirrors based on evanescent
waves.

the first steps toward the development of waveguides for the atomic de Broglie waves.

4.4. Atom cavities

When the energy of atoms is low enough for their motion to have a wave character, any atom
trap can be treated as a cavity for the atom de Broglie waves. The restrictions imposed on the
spatial propagation of atom wavepackets in the trap by the confining field geometry always
set the wavepacket quantization conditions and thus determine the natural atom modes of the
trap.

From the general physical standpoint, interest in atom cavities is due to the same reasons
as interest in electromagnetic field cavities. Like any elecromagnetic cavity, an atom cavity is
a selective element allowing one to form individual atomic modes. The selection of individual
atom modes must naturally play an important role in the development of atom optics. Another
circumstance is the as yet not clearly understood possibility of using atom cavities to develop
atom lasers (Mewes et al 1997, Anderson and Kazevich 1998, Bloch et al 1999). In atom lasers
with an active medium in the form of an ensemble of Bose atoms, the pumping of individual
atom modes can be effected on account of the BEC of ultracold atoms (Anderson et al 1995,
Davis et al 1995, Bradley et al 1995, Guzman et al 1996, Wiseman 1997).

The emergence of the atom mirror based on the evanescent wave obviously raised the
question as to the possibility of creating an atom analogue of the Fabry–Perot optical cavity.
In the first proposal (Balykin and Letokhov 1989), they analysed an atom cavity formed by
two atom mirrors based on evanescent waves (figure 32). Simple estimates show that the main
specific feature of the atom analogue of the Fabry–Perot cavity is its multimode structure.
From the standard quantization condition of atomic motion along the axis of the cavity,

k1L = Mv1L/h̄ = nπ, (4.15)

where k1 is the longitudinal atomic wavevector and v1, the longitudinal atomic velocity, one
can see that the velocity interval �v1 = h/2ML = (λ/2L)vr between the adjacent atomic
modes is but a very small fraction of the recoil velocity. This means that even when the velocity
of the atoms injected into the cavity is as low as the recoil velocity, i.e. when their effective
temperature is of the order of 100µK, the number of longitudinal modes excited in the cavity is
extremely high. Of course, this circumstance does not mean that it is impossible to selectively
excite individual longitudinal modes, but points to the necessity of using for the purpose a
highly velocity-selective pumping source as the type of BEC mechanism.

The quantization of the transverse atomic motion in the atom analogue of the Fabry–Perot
cavity also gives rise to a large number of transverse modes. With the length of the de Broglie
waves being λdB = h/Mv, the transverse size of the fundamental atom mode may be estimated
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as

w0 =
√
λdBL/4π. (4.16)

Accordingly, the geometric divergence of the atom mode, which may be estimated as

δϕ ∼= w0/L =
√
λdB/4πL, (4.17)

is very small. To illustrate, for sodium atoms moving with velocities of the order of the recoil
velocity vr ≈ 3 cm s−1 in a cavity with a length of L = 5 cm, the atom mode divergence is
δϕ ≈ 10−3. Such a small value of the divergence angle imposes a strong restriction on the
geometric divergence of the injected atomic beam. Accordingly, a large divergence of the
atomic beam injected into the cavity makes it impossible to achieve a high population in an
individual atom mode. The atom cavity can naturally operate with many transverse modes
being populated. However, such a multimode operation places a stringent restriction on the
total number of cold atoms.

Note that the atom analogue of the Fabry–Perot cavity can also be produced using atom
mirrors formed by the potentials of two strongly focused laser beams spaced at a distance of
the order of a few laser field wavelengths (Wilkens et al 1993).

The atom cavity based on the use of the whispering gallery modes in dielectric spheres
or discs of small diameter (Mabushi and Kimble 1994) seems also attractive. An optical
whispering gallery mode develops when light propagates in a sphere or disc on account of its
total internal reflection from the surface of the sphere or disc. For a sphere of radius R � λ,
the resonance whispering gallery modes subject to the condition Kλ = 2πR. The fact that
such modes propagate by the total internal reflection characterized by a very low loss makes it
possible to produce optical modes with a very high Q-factor, Q ≈ 109–1011. In the simplest
cavity of this type (Dowling and Gea-Banacloche 1996), the atom is assumed to be localized
by two forces: (1) the dipole attractive force of a red-detuned laser whispering gallery mode
and (2) the repulsive centrifugal force. In another atom cavity scheme (Mabushi and Kimble
1994) the atom is considered to be kept in circular orbit by two evanescent waves, one repulsive
and the other attractive, as in the case of localization of atoms in a flat waveguide considered
in section 4.4.

The behaviour of an atom localized about a dielectric sphere must also comply with
atomic motion quantization condition (4.15). In the given case, the length L of the cavity is
the circumference of the dielectric microsphere. The results of the numerical modelling of
an atom cavity based on whispering gallery modes (Mabushi and Kimble 1994) showed that
when using a microsphere 50 µm in diameter and the light field of an evanescent wave with
a saturation parameter of S < 5 × 10−7 (inside the potential well), a caesium atom could be
caught and forced to execute a stable orbital motion for approximately 4 s. The potential well
depth in that case was�U ≈ 1µK, and the characteristic size of the localization region, around
1µm across. The above lifetime of the atom about the microsphere allows it to complete some
450 revolutions.

It should also be noted that the development of atom cavities will require solving
many problems, including such important problems as the minimization of the loss due to
spontaneous emission in the vicinity of the atom mirrors and allowance for the gravity field
effects retarding the vertical motion of atoms and a number of other effects (Deutschmann et al
1993, Seifert et al 1994, Liston et al 1995a, b).

Some other ideas as to the development of atom cavities using various evanescent wave-
gravity field combinations are discussed in section 6.
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Figure 33. Hyperfine-structure magnetic sublevels for
23Na as functions of magnetic field, �W = 1772 MHz
is the ground-state hyperfine splitting. Solid lines
correspond to the negative value of the magnetic moment
projection onto the direction of the magnetic field,µl < 0.

Figure 34. Magnetic field B(r) in a spherical
quadrupole magnetic trap generated by two Helmholtz
coils.

5. Magnetic trapping

5.1. Static magnetic traps

All static magnetic traps use nonuniform stationary magnetic fields for trapping atoms. In a
nonuniform magnetic field B = B(r), an atom with a permanent magnetic moment �µ has the
magnetic dipole interaction energy

U = −�µB = −µlB, (5.1)

where µl is the projection of the magnetic moment �µ onto the field direction. Accordingly, an
atom in the field B(r) is acted on by the magnetic dipole force

F = ∇( �µB) = µl∇B. (5.2)

Inasmuch as the Maxwell equations allow for no static magnetic field maximum in free space,
force (5.2) can be used to trap atoms only in the minimum of the static magnetic field (Wing
1984). Force (5.2) can hold an atom near the minimum of a static magnetic field if the direction
of the magnetic moment �µ is opposite to that of the magnetic field, µl < 0. As an example,
the solid lines in figure 33 show the lower magnetic sublevels for 23Na atom, at which it can
be trapped in the minimum of a static magnetic field.

The static magnetic traps can naturally be classed by the magnitude of the magnetic field
minimum, Bmin. In the magnetic traps of the first kind Bmin = 0. These traps have a simple
geometric structure and use comparatively simple, highly symmetric magnetic fields. In such
fields, however, an important negative role is played by the non-adiabatic Majorana transitions
in the zero-field region, which cause changes in the mutual orientation of the magnetic moment
of the atom and the magnetic field and thus allow the atoms to leave the trap. Magnetic traps of
the second kind havingBmin �= 0 are devoid of this shortcoming, but have a complex geometric
structure and use very complex asymmetric fields (Bergeman et al 1987).

The most important static magnetic trap of the first kind is the so-called spherical
quadrupole trap proposed by W Paul (Niehues 1976). In this trap, two opposite circular
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currents produce a static magnetic field in the form of a spherical quadrupole (figure 34). The
radii of the circular currents are taken to be approximately 4

5 of the distance between the planes
of the currents in order that the trap can have the same potential well depth along and across the
symmetry axis. If the z-axis is the symmetry axis of the circular currents and the currents are
symmetrical with respect to the xy-plane, the magnetic field near the centre of the quadrupole
trap has the form

B = − 1
2ax − 1

2ay + az, (5.3)

where a is the magnetic field gradient at the central point x = y = z = 0 (Bergeman et al
1989). The magnitude of magnetic field (5.3) increases at the displacement away from the
centre of the trap. Accordingly, magnetic field (5.3) produces a potential well for atoms having
a negative magnetic moment projection on the field direction, µl = −µ(µ > 0):

U = −µlB = 1
2µa

√
ρ2 + 4z2, (5.4)

where ρ = (x2 + y2)1/2 is the polar coordinate in the xy-plane. The gradient of the magnitude
of magnetic field (5.3) varies with direction. For this reason, the magnetic dipole force in
field (5.3) is neither central, nor harmonic.

At typical magnitude of the magnetic moment about the Bohr magneton, µ ≈ µB, and a
moderate magnetic field strength at the edges of the trap, B = 100 G, a quadrupole magnetic
trap can hold atoms with a temperature of the order of 10 mK.

The principal shortcoming of magnetic traps having a zero magnetic field minimum is
the presence of a channel for the atoms to leave the zero-field region. When the moving
atom traverses the zero-field region sufficiently fast, its magnetic moment cannot adiabatically
follow the rapidly changing magnetic field direction. As a result, the change of the mutual
orientation of the atom magnetic moment and the magnetic field causes an atom to leave the
trap. Atom transitions from trapped to untrapped states (non-adiabatic Majorana transitions or
spin flips) have a noticeable probability even for very cold atoms (Bergeman et al 1989, Petrich
1995). In the quadrupole magnetic trap, this escape mechanism usually limits the lifetime of
cold atoms in the central region to a few seconds. At the same time, it should be borne in mind
that when the volume of this central region is but a small fraction of the total trap volume, the
fraction of atoms pushed out of the trap may be small.

The first experiment on trapping of cold atoms in a static magnetic field was done with
a quadrupole magnetic trap (Migdal et al 1985). The trap was loaded with 23Na atoms
preliminarily cooled to a temperature of 17 mK by a counter-propagating laser beam. The
trapping time was no longer than a minute because of collisions between the trapped atoms
and the residual gas particles. Among the latest experiments can be mentioned the following
ones. Weinstein et al (1998a, b), reported on magnetic trapping chromium atoms via buffer-
gas loading. The large chromium magnetic moment of 6µB allowed for trapping at elevated
buffer-gas temperatures, opening up the possibility of trapping the chromium sample inside
a simple cryostat. A microscopic quadrupole magnetic trap for atoms was realized with a
combination of permanent magnets, coils, and ferromagnetic pole pieces (Vuletic et al 1998).
The attainable magnetic field gradients of 3 × 105 G cm−1 infer a spatial extension of the
ground state of the trapped atom much smaller than the wavelength of the optical transitions.
The field gradient could be varied over a wide range allowing for an efficient loading of 4×105

lithium atoms from a shallow potential by adiabatic transport and compression. During the
compression a 275-fold density increase was observed.

In recent years, quadrupole magnetic fields have found wide application in the MOTs
considered in section 6.

A most important example of a static magnetic trap of the second kind is the Ioffe trap
first developed for use in plasma confinement schemes (Gott et al 1962, Artsimovich 1964,
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Ioffe coils

Figure 35. Geometry of currents in the Ioffe trap. Figure 36. Magnetic trap combined of the Ioffe
coil and quadrupole coils (Esslinger et al 1998).

Krall and Trivelpiece 1973, Bergeman et al 1987). In this trap, the magnetic field of two equal
circular currents provides for the axial confinement of atoms, and four rectilinear currents
serve for their transverse confinement (figure 35). The Ioffe trap has recently been used for
trapping atoms at ultralow temperatures of the order of 100–10 nK attained by the evaporative
cooling technique (Ketterle and Van Druten 1996).

An experimentally attractive variety of the Ioffe trap is the trap proposed by Hänsch and
co-workers. It consists of two circular currents, as in the case of quadrupole trap, and a third
circular current normal to the first two and located at a certain distance from the quadrupole
configuration (figure 36). A smooth activation of the third circular current transforms the
magnetic trap of the first kind into one of the second kind (Esslinger et al 1998, Bloch et al
1999). Atoms in such a trap are initially caught in the quadrupole field and then transferred to
the trap of the second kind by activating the third circular current.

Along with static magnetic traps based on the magnetic fields produced by electric currents,
there have been developed a number of traps built of permanent magnets (Frerichs et al 1992,
Höpe 1993, Ricci et al 1994, Tollet et al 1995). Such traps are very easy to manufacture, but
not always convenient in experiments, for they permit no manipulation of the magnetic field.

5.2. Quadrupole magnetic trap with time-orbiting potential

One of the direct ways to close the channel whereby atoms escape from the central region of
the quadrupole magnetic trap is to displace potential (5.4) in the symmetry plane of the trap and
effect its rapid circling in this plane, i.e. to convert the static potential into an orbiting potential.
Thanks to the fact that the minimum of the orbiting potential moves about the central point of
the quadrupole trap, the time-averaged orbiting potential (TOP) proves other than zero at the
centre of the trap, which closes the channel whereby atoms are lost on account of the Majorana
transitions (Petrich et al 1995).

In the TOP quadrupole magnetic trap, the total magnetic field Bt consists of the quadrupole
magnetic field (5.3) and the homogeneous rotating field b,

Bt = B + b. (5.5)

The homogeneous magnetic field b rotates with angular frequency . in a plane normal to the
symmetry axis of the trap:

b = b0(ex cos.t + ey sin.t), (5.6)

where ex and ey are the unit vectors along the x- and y-axis, respectively. The rotation
frequency . is assumed to be higher than the characteristic oscillation frequencies ωosc of an
atom in potential (5.4), but naturally lower than the Larmor precession frequency ωL in order
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Figure 37. The time-averaged value U0 of the time-
orbiting potential (5.7) as function of the cylindrical
coordinates ρ and z. UL = µb0 is the magnetic
interaction energy in the centre of the trap, r0 is the
radius of a circular orbit for rotating potential.

that the rotating and hence oscillating field cannot destroy the coupling between an atom and
the trapping field.

The addition of the rotating field transforms potential (5.4) into an orbiting potential which
for atoms having a negative projection µl of the magnetic moment µ on the field direction,
µl = −µ(µ > 0), has the form

U = −µBt = µ

√
(b0 cos.t − 1

2ax)
2 + (b0 sin.t − 1

2ay)
2 + a2z2. (5.7)

As follows from expression (5.7), the time-dependent magnetic dipole interaction potential U
rotates around the z-axis so that its minimum moves in the xy-plane in a circle with a radius
r0 = 2b0/a.

The motion of an atom in periodic potential (5.7) can conveniently be analysed on
expanding the potential into a Fourier series and going over to the cylindrical coordinates
x = ρ cosϕ, y = ρ sin ϕ, z:

U = U0 − U1 cos(.t − ϕ)− U2 cos 2(.t − ϕ)− · · · . (5.8)

In expansion (5.8), different parts play different roles. The time-independent potential U0

causes slow atomic motion on characteristic timescale τslow
∼= 1/ω, where the quantities

ω define the characteristic eigenfrequencies of atomic oscillations in the potential U0. We
stress that the time-constant potential U0 is other than zero at the centre of the trap. The
oscillating parts of the potential, U1, U2, . . . , cause fast oscillations of the atomic momentum
and coordinate on a characteristic timescale τfast

∼= 1/..
When an atom is at a short distance from the centre of the trap, the amplitudes of the

orbiting potential harmonics U0, U1, U2, . . . can be expanded into the powers of the small
coordinates ρ, z. When expanding up to the second order in ρ and z, the amplitudes of the
first three harmonics are as follows:

U0 = UL + 1
2k(ρ

2 + 8z2), U1 = 2kr0ρ, U2 = 1
2kρ

2, (5.9)

where UL = µb0 = h̄ωL is the magnetic interaction energy at the trap centre r = 0, ωL is the
Larmor frequency, and k = µb0/2r2

0 is the spring constant of the harmonic part of the potential
U . According to expression (5.9), the harmonic potential U0 causes an atom to oscillate along
the x-, y-, and z-axes with the frequencies (figure 37)

ωx = ωy = ωρ =
√
k/M, ωz = 2

√
2ωρ. (5.10)

In accordance with the idea of a magnetic trap with a time-orbiting potential, the three
fundamental frequencies ωρ , . and ωL are assumed to be related by the inequalities

ωρ 	 . 	 ωL. (5.11)
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The left-hand inequality in expression (5.11) is necessary in order that the effect of the time-
averaged potential U0 can exceed that of the potential harmonics U1, U2 . . . . The right-hand
inequality in expression (5.11) excludes the non-adiabatic Majorana transitions on account of
the rotation of the magnetic field b. In typical experimental conditions, ωρ/2π ∼ 10–100 Hz,
./2π ∼ 104 Hz, and ωL/2π ∼ 107 Hz, so that ωρ/. ∼ 10−2–10−3 and ./.L ∼ 10−3.

Quantum mechanical analysis shows that the motion of the atom in the TOP trap is a
sum of two basic motions: a slow oscillatory motion in the time-averaged potential and fast
oscillations with a frequency governed by the rotation frequency of the magnetic field. At
the typical experimental values of the three fundamental frequencies ωρ , . and ωL the fast
oscillation amplitude of the atomic coordinates is negligibly small compared with the amplitude
of slow atomic oscillations in the time-averaged potential. By contrast, the amplitude of the
high-frequency oscillations of the atomic momentum is, generally speaking, commensurable
with the momentum distribution width for the vibrational ground state of the atom in the
potential of the trap. Such a deep modulation of the momenta of atoms becomes substantial
at low atomic temperatures, when the average thermal atomic energy becomes comparable
with the energy of atomic oscillations in the time-averaged potential. Accordingly, at low
temperatures the momentum distribution of atoms acquires a ring-shaped structure in the
symmetry plane of the trap (Minogin et al 1998a, b).

5.3. Magnetic trap with an optical plug

One more way to ‘close’ the central, zero magnetic field region in the quadrupole magnetic trap
is to irradiate this region by a blue-detuned laser beam. With this method, the atom is acted on
by the gradient force which pushes atoms out of the central part of the trap. Davis et al (1995)
used as an ‘optical plug’ an argon laser beam focused into a spot 30 µm across at the centre
of the quadrupole magnetic trap. The potential barrier produced by the laser beam amounted
to 350 µK, which was sufficient to ‘close’ the region where the Majorana transitions were
possible. Figure 38 shows the shape of the potential produced by the quadrupole magnetic
trap with an optical plug. As one can see, the potential has two minima displaced from the centre
of the trap by 50 µm. Near its bottom the potential can be approximated by a 3D anisotropic

harmonic potential defined by the frequencies ωx = ωy

√
4x2

0/w
2
0 − 1, ωy = √

µB ′/2Mx0,

ωz = √
3ωy , where x0 is the distance from the centre of the quadrupole trap to the potential

minimum, µ is the atom’s magnetic moment, M is the atom’s mass, B ′ is the axial magnetic
field gradient and w0 is the laser beam waist. The magnetic trap with an optical plug was
successfully used for the experimental observation of the BEC in a gas of sodium atoms
(Davis et al 1995).

5.4. Magnetic mirrors and cavities

Magnetic dipole force (5.2) acting on an atom with a magnetic moment µ in an inhomogeneous
magnetic field B = B(r) can be used not only for trapping cold atoms, but also to produce
magnetic mirrors for slow atoms, similar to the atom mirrors based on evanescent laser waves
(see section 2.2.3). One type of magnetic mirror can be formed by exponentially decaying
magnetic fields produced by either arrays of permanent magnets (Opat et al 1992, Sidorov
et al 1996) or magnetic surfaces such as audio (video) tapes or flexible computer disks (Roach
et al 1995, Hughes et al 1997, Hinds and Hughes 1999). The other type of magnetic mirrors
for atoms can be realized with arrays of current-carrying wires (Drndic et al 1998, Lau et al
1999). A magnetic mirror of this second type was earlier used for the reflection of cold neutrons
(Vladimirskii 1960).
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Figure 38. Adiabatic potential due to the magnetic quadrupole field, the optical plug, and the rf
field. This cut of the 3D potential is orthogonal to the propagation direction (y) of the blue-detuned
laser. The symmetry axis of the quadrupole field is the z-axis (Davis et al 1995).

Figure 39. Scheme of magnetic mirror for atoms formed by an array of permanent magnets. The
insert shows the magnitude of the magnetic field as function of coordinate z (Sidorov et al 1996).

Figure 39 shows a schematic of a magnetostatic mirror for cold atoms. The magnetic
field of the mirror is produced by an array of permanent magnets having their length along the
x-axis much greater than the period a and a varying magnetization M(y, z) = ±M0. Away
from the surface of the magnets, z � a/2π , the magnetic field is

B(y, z) = B0e−kz(1 + 1
3 e−2kz cos 2ky + · · ·), (5.12)

whereB0 = 2µ0M0/π and k = 2π/a. For an atom occupying the hyperfine-structure magnetic
sublevel F,mF the magnetic energy of atom in field (5.12) is

U(y, z) = mFgFµBB(y, z), (5.13)

where gF is the Landé g-factor and µB is the Bohr magneton. When the atom is in a ‘positive’
magnetic state where mFgF > 0, its energy decreases as it moves away from the surface of
the magnets. This means that when the kinetic energy of the atom is lower than the barrier
height, potential (5.13) reflects the atoms incident thereon.

For slow atoms whose magnetic moment adiabatically follows the varying magnetic field,
the quality of the magnetic mirror based on potential (5.13) depends mainly on the ratio between
the first terms in relation (5.12). The second term in equation (5.12), which depends on the y-
coordinate, distorts the atomic wave front and thus causes the diffuse scattering of the reflected
atomic wave. At the same time, this term decays much faster than the first. In this connection,
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Figure 40. Magneto-gravity trap. The energy diagram on the right shows the 85Rb D2 line used
for trapping atoms in the F = 3 ground state and the transition used for repumping atoms from
F = 2 state into F = 3 state. On the left are shown six MOT beams directed along Cartesian axes.
The cloud of 5 × 106 cold atoms formed in the trap has a 1 mm diameter. After release from the
MOT the atoms are cooled by optical molasses to a temperature of 20 µK and optically pumped by
a pair of circularly polarized laser beams. Atomic cloud falls a few cm onto the magnetic mirror
below, whose diameter is typically 1 or 2 cm. (Adapted from Hughes et al 1997.)

its contribution is substantial for relatively fast atoms that penetrate deep into the field and is
less important for cold atoms.

A practical implementation example is the magnetostatic mirror assembled of rare-earth
neodymium–iron–boron permanent dipole magnets 1.04 mm wide, 20 mm long, and 12 mm
thick. A set of 18 such magnets produced a magnetic field of form (5.12) having an initial
strength B0 = 4200 G and a characteristic decay length a/2π = 0.33 mm (Sidorov et al
1996). This magnetic mirror was used to reflect cold caesium atoms occupying the magnetic
sublevel F = 4, m = 4 of the ground state 62S1/2. At an effective atom temperature 20 mK
the experimentally measured mirror reflection coefficient proved close to 100%.

Another very similar approach to the development of atom mirrors for cold atoms is the
use of a periodically magnetized ferromagnetic surface which reflects atoms like a mirror on
account of the magnetic potential produced by this surface. The experimental testing of this
approach showed that the ferromagnetic mirror is also capable of reflecting practically 100%
of the incident atoms (Roach et al 1995).

The successful implementation of these two types of magnetic mirror made it possible to
develop gravito-magnetic traps and cavities for cold atoms on the basis of a combination of
reflecting magnetic mirrors and the gravity field (Hughes et al 1997, Saba et al 1999).

A schematic diagram of one such cavity is shown in figure 40 (Hughes et al 1997). It
consists of a horizontally arranged concave magnetic mirror made of a piece of a computer
floppy disk magnetized in a sinusoidal fashion. The radius of curvature of the mirror is
R = 54 mm. The source of rubidium atoms used in the experiment was a MOT located at a
distance of R/4 from the surface of the mirror. When the laser and magnetic fields of the trap
were switched off, the trapped Rb atoms started falling onto the mirror in the gravity field.
During their fall the atoms were pumped by an additional laser radiation to a ‘positive’ magnetic
sublevel (F = 3,mF > 0). The number of reflected atoms was measured by catching them
again in the trap a certain time after their release.
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To study the dynamics of reflection and focusing of atoms by the concave mirror of
the magneto-gravitational cavity, the atoms were irradiated with a probe laser beam, and the
scattered photons were recorded with a video camera. It was shown that as the atomic cloud
propagates, it expands as a result of thermal spreading and then gets focused again to its initial
size following the reflection of the atoms. In the experiment (Saba et al 1999), they observed
a clear image of the atoms following their 14-fold reflection. The main factor responsible for
the diffuse spreading of the atomic cloud is the imperfection of the magnetic mirror.

5.5. Magnetic trapping of molecules

Similar to paramagnetic atoms having a permanent magnetic moment in a specific magnetic
state, paramagnetic molecules can be trapped in different kinds of magnetic traps. The key
problem in the magnetic trapping of molecules is the preliminary cooling of a molecular sample
to low temperature where the thermal energy is of the order the depth of the trap. This key
problem has been recently solved by the buffer-gas loading technique, relying on the cooling of
molecules by thermalization with a buffer gas (Weinstein et al 1998a). Because the technique
is based on the elastic collisions it can be applied practically to any molecule independently
of the internal energy-level structure. Applying this technique Weinstein et al (1998a, b) have
reported on cooling CaH molecules down to 400 mK and confining the cold molecular sample
in a magnetic trap.

6. Magneto-optical trapping

6.1. Simplified scheme and basic configuration

The idea of magneto-optical trapping of atoms can be understood by considering the idealized
1D scheme shown in figure 41(a) (Dalibard 1987). In this scheme, the atoms are placed in
a weak magnetic field B = Bez which increases linearly in the positive direction of the z-
axis, B(z) = az, being equal to zero at the central point z = 0. For simplicity, the atoms
are assumed to have two electronic states: the ground state with the energy E0

g and the total
angular momentum equal to zero, Fg = 0, and the excited electronic state with the energy E0

e
and the total angular momentum Fe = 1. The excited electronic state is split in the magnetic
field into three Zeeman magnetic sublevels, me = 0,±1. The energies E±1

e = h̄ω0 ± µB(z)

of two extreme magnetic sublevels, me = ±1, depend on the atomic coordinate z, where ω0

is the atomic transition frequency in a zero magnetic field, i.e. at the point z = 0, and µ is the
projection of the magnetic moment �µ onto the field direction. The atoms are irradiated by two
circularly polarized σ +, σ− laser beams propagating in the directions ±z. The frequency ω of
the laser beams is assumed to be red-shifted with respect to the frequency of the unperturbed
atomic transition, ω < ω0.

In the above scheme, the atom is acted on by the radiation pressure force F = Fez caused
by the one-photon transitions between the ground state and two upper-state magnetic sublevels
me = ±1. For a motionless atom, the rate of atom excitation to the upper-state sublevels
depends on the atom’s coordinate. When the coordinate z is positive, the atom is excited with
a higher probability to the magnetic sublevel me = −1 and with a lower probability to the
sublevel me = 1, and when the coordinate z is negative, it is excited with a higher probability
to the sublevel me = 1 and with a lower probability to the sublevel me = −1. As a result,
the direction of the radiation pressure force on a motionless atom depends on the sign of the
coordinate z. When the atom coordinate is negative, z < 0, it mainly interacts with the σ +-
polarized radiation, and experiences a force in the positive direction of the z-axis. In contrast,
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Figure 41. (a) Scheme of a 1D magneto-optical
trapping of atoms. (b) The radiation pressure force
as a function of atom velocity for three values of
atomic coordinate, z < 0, z = 0 and z > 0. Atoms
are assumed to have a nondegenerate ground-state
magnetic sublevel |g〉 = |Fg = 0,mg = 0〉 and
three excited-state magnetic sublevels |e±1〉 =
|Fe = 1,me = ±1〉, |e0〉 = |Fe = 1,me = 0〉.
Two counter-propagating σ +, σ− laser waves are
red-detuned with respect to the optical transition
|0, 0〉–|1.0〉.

with a positive atom coordinate, z > 0, the atom mainly interacts with the σ−-polarized laser
light and is subject to a force in the negative direction of the z-axis. The radiation pressure
force in the scheme of figure 41(a) is thus always directed opposite to the displacement of the
atom. Accordingly, the radiation pressure force produces a potential well for atoms located at
the central point z = 0.

For an atom moving near the centre of the trap, the efficiency of atom excitation by a
red-detuned laser light depends strongly on the direction of the atom velocity. When the
atom moves in the positive direction of the Oz axis it is more effectively excited by the σ−-
polarized laser light. In contrast, the atom moving in the negative direction is mostly excited by
the σ +-polarized laser light. For these reasons, the radiation pressure force is directed opposite
to the atomic velocity and thus produces the cooling of atoms. The qualitative dependence
of the radiation pressure force on velocity for three different atom coordinates is shown in
figure 41(b).

Thus, in the above scheme the radiation pressure force simultaneously displaces atoms to
the centre of the trap and cools atoms near the central region.

The 1D magneto-optical trapping scheme considered above can easily be generalized
to three dimensions. The most frequently used 3D scheme of MOT includes a magnetic
field in the form of spherical quadrupole (5.2) and a laser field produced by three orthogonal
pairs of counter-propagating laser beams with polarizations σ± (figure 42). In this basic
configuration of the MOT, the radiation pressure force is responsible both for the formation of
a 3D potential well for atoms and for a 3D cooling of atoms near the centre of the trap. Some
other configurations of MOT can be found in the literature cited in section 6.6.
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Figure 42. Scheme of a 3D MOT. Two circular currents
produce a magnetic field in the form of spherical quadrupole.
The laser field is produced by three pairs of counter-
propagating laser beams with circular polarizations σ±.

6.2. (1 + 3)-level atom model

For the above-considered (1 + 3)-level atom model, the interaction of the atom with the 1D σ±

laser field configuration defined by equation (2.58) is described by a three-level V-scheme. The
lower energy level E0

g retains its magnitude at any value of the coordinate z, and the energies
of the upper levels E±1

e (z) are the linear functions of the displacement of the atom from the
central point z = 0.

In the case of weak optical saturation, the radiation pressure force in the above interaction
scheme may be written in the form of a sum of two forces (2.20a) taken in a linear approximation
in the saturation parameter G:

F = h̄kγG

{
1

1 + (δ − kv − ωL(z))2/γ 2
− 1

1 + (δ + kv + ωL(z))2/γ 2

}
, (6.1)

where ωL(z) = µB(z)/h̄ = µBgeaz/h̄ is the position-dependent Larmor frequency, ge is the
g-factor and the detuning δ = ω−ω0 may have any sign. In a linear approximation in velocity
and coordinate, i.e. for atoms slowly moving in the vicinity of the centre of the trap, radiation
pressure force (6.1) in the case of red detuning is reduced to a sum of two forces, a friction
force and a harmonic restoring force:

F = −Mβv −Mω2
vz, (6.2)

where the friction coefficient β and oscillation frequency ωv are defined by the relations

β = 8Gωr(|δ|/γ )/(1 + δ2/γ 2)2, ωv =
√
β(µBgea/h̄k), (6.3)

and ωr = h̄k2/2M is the recoil frequency.
In the same linear approximation in the saturation parameter, the longitudinal momentum

diffusion coefficient for a three-level V-scheme is reduced to the sum of the two diffusion
coefficientsDzz (2.64) for the two counter-propagating laser waves. For small atomic velocity
and displacement, the longitudinal diffusion coefficient according to equation (2.64) is

D = Dzz = h̄2k2γ
G

1 + δ2/γ 2
(1 + αzz). (6.4)

The cooling and restoring force (6.2) jointly with the diffusion coefficient (6.4) fully define
the steady-state atomic velocity and coordinate distribution in the 1D MOT. According to



Electromagnetic trapping of cold atoms 1489

the steady-state solution of a 1D Fokker–Planck equation with force (6.2) and diffusion
coefficient (6.4) the steady-state atomic distribution is a Gaussian one,

w(v, z) = 1√
πu

exp

(
−v2

u2

)
· 1√

πs
exp

(
−z2

s2

)
, (6.5)

where the velocity distribution half-width is

u =
√

2kBT/M, (6.6)

the coordinate distribution half-width is

s =
√

2kBT /Mω2
v, (6.7)

and the temperature is defined as

T = D

MβkB
= 1 + αzz

4

h̄γ

kB

( |δ|
γ

+
γ

|δ|
)
. (6.8)

The minimum temperature attained at detuning δ = −γ is defined by the natural linewidth:

Tmin = 1 + αzz
2

h̄γ

kB
. (6.9)

The above-considered model of the MOT thus describes the trapping and cooling of atoms by
the radiation pressure force coming from the one-photon processes. Accordingly, the model
describes only the so-called Doppler cooling of atoms inside the MOT. In this model, the
minimum temperature is of the order of the Doppler limit temperature, Tmin ≈ TD = h̄γ /kB.
This minimum temperature accordingly defines both the minimum velocity width (6.6) and
the minimum spatial size (6.7) of the trapped atomic cloud.

6.3. (3 + 5)-level atom model

The theory of the magneto-optical trapping of atoms in the case of an interaction scheme
featuring two-photon or higher-order multiphoton processes substantially differs from the one
considered above, for multiphoton processes sharply change the friction force and momentum
diffusion tensor.

Steane and Foot (1991) were the first to suggest that the Doppler theory is not always
adequate to describe the behaviour of atoms in the MOT. Their measurements of such MOT
parameters as the friction coefficient, elastic constant, and the size of the atomic cloud showed
that the multilevel structure of atomic levels might play an important role. In their experiment,
the temperature of Cs atoms in the MOT proved substantially lower than the Doppler limit and
amounted to some 30 µK. In later experiments (Townsend et al 1992, Drewsen et al 1994) it
was found that at a low atomic density in the MOT the temperature of atoms is identical to that
in an optical molasses free from an external magnetic field.

The main differences occurring between two-level and multilevel atoms in the MOT can
be illustrated using as an example a model of a (3 + 5)-level atom interacting with a 1D red-
detuned σ± laser field configuration (2.58) in the presence of a nonuniform magnetic field
B(z) = az (figure 43). In such a scheme, the radiation pressure force on an atom slowly
moving in the central region of the trap contains the friction force and a harmonic force due to
the two-photon processes (Jun et al 1999a, b). As a result, along with a deeper, sub-Doppler
cooling of the atoms, there takes place their localization in a region whose size is much smaller
than that defined by equation (6.7). The spatial behaviour of the radiation pressure force
on a (3 + 5)-level atom in the laser field (2.58), which illustrates the contributions from the
two-photon processes, is shown in figure 44.
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Figure 43. The Zeeman-shifted energy levels for a
(3 + 5)-level atom interacting with counter-propagating
laser beams with circular polarizations σ±.

Figure 44. The radiation pressure force for a
motionless (3+5)-level atom as a function of
the atom’s coordinate at saturation parameter
G = 4 and for detuning (a) δ = −10γ and
(b) δ = −20γ . The central structure is due
to the two-photon process related with the
ground-state coherence.

For a motionless atom the radiation pressure force on a (3 + 5)-level atom includes an
ordinary one-photon restoring force and a two-photon restoring force,

F(z) = −25

11

Gγ 3

|δ|3 h̄kM − 60

17

Gγ

|δ|
µ2

µ2 +M 2
h̄kM, (6.10)
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whereM = µBgaz/h̄ is the Zeeman frequency shift assumed to be the same for the upper and
lower magnetic sublevels. Force (6.10) creates the double-structure potential well where the
first and second terms come from the one-photon and two-photon processes,

U(z) = 25

22

Gγ 3

|δ|3 h̄γ
kz2

zm
+

5

88
h̄γ

G2γ 3

|δ|3 kzm, (6.11)

where zm = h̄γ /µBga is the characteristic distance from the centre of the trap at which the
Zeeman frequency shift equals one-half of the natural linewidth.

6.4. 3D MOT

The dynamics of atoms in any real 3D MOT is much more involved than that described in
section 6.1. Two factors substantially complicate the motion of atoms in the 3D trap. First, in
actually used atoms the lower and upper states are hyperfine-structure levels including several
magnetic sublevels. For this reason, the atom–laser field interaction always proceeds by a
complex multilevel scheme. Secondly, the polarization direction and intensity of the laser
field in the scheme of figure 42 vary on the scale of the optical wavelength. This circumstance,
as in the case of optical lattices (section 4.2), causes a small-scale modulation of the magnetic
sublevel populations and coherences between the magnetic sublevels. These effects may give
rise to additional friction forces due to the non-adiabatical time evolution of the magnetic
sublevel populations and atomic coherences for moving atoms (Ungar et al 1989, Weiss et al
1989, Dalibard and Cohen-Tannoudji 1989).

It should be noted that the hyperfine structure in the ground and excited states is no obstacle
for magneto-optical trapping. If there are a number of hyperfine-structure levels in the excited
state, any of them can be chosen to serve as the upper working level. If the ground state of the
atom is split into several hyperfine-structure levels, a multi-frequency laser light then can be
used to excite the atoms from the hyperfine-structure levels.

6.5. Density effects

The above estimations for atomic temperature defined by equation (6.8) and (3.15) are valid
for a low-density atomic cloud in the MOT. At a high density and (or) for large number of
trapped atoms the absorption of the laser light and subsequent reabsorption of the spontaneous
emission may strongly effect both the temperature of atoms and the spatial distribution of atoms
in the MOT (Drewsen et al 1994, Walker et al 1990, Cooper et al 1994, Castin et al 1998).
Simple estimates show that the increase in the temperature of atoms caused by rescattering of
absorbed laser light is proportional to the cube root of the number of trapped atoms (Cooper
et al 1994).

The absorption of a photon from the laser light and subsequent emission of a photon
increases the momentum diffusion coefficient in equation (6.8) and accordingly increases the
temperature of atoms as

Td = T (1 + ξf ), (6.12)

where T is the temperature in a low-density atomic cloud, Td is the temperature in a dense
cloud, f = σnl is the fraction of the spontaneous emission reabsorbed by atoms before leaving
the trapped atomic cloud, σ is the absorption cross section, n is the number density, l is the
dimension of the cloud and ξ is a factor of order unity. The temperature of trapped atoms can
thus be expressed as a sum of the temperature for non-interacting atoms and an additional term
including the fraction of photons that are reabsorbed after emission by the atoms. Introducing
the total number of atoms,N = nl3, gives the fraction of reabsorbed atoms as f = σn2/3N1/3.
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Accordingly, the temperature for a dense atomic cloud includes a term proportional to the cube
root of the total number of atoms,

Td = T (1 + ξσn2/3N1/3). (6.13)

This estimate has been verified experimentally.
In the MOT, the restrictions on the maximum density and minimum temperature of atoms

stem from the very nature of the trap: the scattered laser photons are absorbed again by the
atoms, which gives rise to effective forces that push the atoms apart and thus limit their density
and temperature. The effect of the radiation trapping in a dense atomic sample localized in the
MOT was directly observed for Cs atoms as the lengthening of the natural radiative lifetime
(Fioretti et al 1998b).

6.6. Experimental results

The first magneto-optical trapping scheme was experimentally tested with sodium atoms (Raab
et al 1987). Since the ground state 3S1/2 of sodium atom is split to two hyperfine-structure
levels with the total angular momentaF = 1, 2, the atoms were excited on the dipole transition
3S1/2 → 3P3/2 by a two-frequency laser light. The two-frequency excitation avoided the
optical pumping of atoms to one of the two lower hyperfine-structure levels and thus provided
for a long-term atom–laser light interaction. In the first experiment, about 107 atoms were
confined in the MOT for about 2 min at a temperature below 1 mK. The trapping time of the
atoms was mainly limited by the collisions with the residual gas particles.

The principal features of the MOT are its ability to simultaneously cool and trap atoms,
a fairly large potential well depth, the relatively large capture velocity, and a weak sensitivity
to disturbances in the directions of the laser beams and their polarization imperfection. The
MOT is capable of effective operation not only in the standard geometry shown in figure 42,
but also with the use of only four laser beams in a tetrahedral geometry (Shimizu et al 1991).
The trap parameters also vary but insignificantly when replacing one or several beam pairs of
σ + − σ− configuration by linearly polarized beam configurations (Walker et al 1991).

An important advantage of the MOT over purely magnetic traps is that it uses very weak
magnetic fields, approximately 100 times weaker. In the MOT, the magnetic field is used
only to produce a small Zeeman shift of the magnetic sublevels, whereas pure magnetic traps
require a substantial magnetic field strength to produce magnetic dipole force (5.1). A no less
important advantage of the MOT is also the possibility of injecting atoms into it both from an
atomic beam and from an atomic gas (Monroe et al 1990).

Over the years, the MOT has become the most popular trap for cold atoms. To date, there
is a very impressive list of atom isotopes that have been successfully localized in MOTs. This
includes atom isotopes of such alkali metals as lithium (Lin et al 1991), sodium (Raab et al
1987, Lu et al 1994), potassium (Williamson III et al 1995, Santos et al 1995, Wang et al
1996, Behr et al 1997, Catoliotti et al 1998, Prevedelli et al 1999), rubidium (Fox et al 1993,
Gwinner et al 1994), caesium (Monroe et al 1990, Sagna et al 1995, Dudle et al 1996, Jun
et al 1999a, b) and francium (Simsarian et al 1996, Lu et al 1997, Grossman et al 1999); atom
isotopes of alkali earth metals, such as calcium and strontium (Kurosu and Shimizu 1990)
and atom isotopes of inert gases, such as helium (Bardou et al 1992, Kumakura et al 1992,
Rooijakkers et al 1997), neon (Shimizu et al 1989), argon and krypton (Katori and Shimizu
1990), and xenon (Walhout et al 1993). Recently, the MOT was loaded with chromium atoms
(Bell et al 1999) and a magneto-optical trapping of Yb atoms was successively carried out
using both the singlet 1S0–1P1 transition (Honda et al 1999) and the intercombination 1S0–3P1

transition (Kuwamoto et al 1999).
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In typical MOTs, the temperature of the atomic cloud ranges between 1 mK and 10µK, and
the density of atoms, between 108 and 1011 cm−3. Attaining high atomic densities in MOTs is
mainly limited by collisions between the trapped atoms and residual gas particles, the trapping
of radiation, collisions between atoms in the lower states with the optically excited atoms, and
the above-barrier momentum diffusion-associated escape of atoms from the trapping region
(Sesko et al 1989, Townsend et al 1992, Metcalf and van der Straten 1994, Anderson et al
1994, Willems et al 1997).

A material increase in the atomic density has been attained in what is known as the
dark MOT wherein the localized atoms are optically pumped to a hyperfine-structure sublevel
at which they are off resonance with the main localizing laser field. This method was
successfully used to localize sodium atoms (Ketterle et al 1993). They demonstrated a
substantial improvement of the trap parameters in comparison with the standard MOT: the
atomic density amounted to 1012 atoms cm−3 at a large total number of localized atoms
(over 1010). The application of the dark MOT technique to other elements comes up against
considerable problems (Townsend et al 1996). As a rule, an increase in the density of atoms
is achieved at the cost of their increased temperature.

Balykin (1997) suggested a method to increase the density of atoms in the MOT, based on
the irradiation of the atomic cloud with a pulsed laser radiation. The method is essentially as
follows. At a certain instant of time, the laser field localizing the atoms is switched off, and the
atoms freely fly away from the centre of the trap during a time long enough for their density to
decrease. Thereafter the atoms are irradiated with a short pulse of the laser light used initially
to form the trap. If the atom–laser pulse interaction time is commensurable with the inverse of
the decay coefficient of the atoms in the trap, the velocity of the atoms is reversed and damped
to a value governed only by the magnitude of the magnetic field and the atomic coordinate at
the instant the laser pulse is switched on. The time it takes for the atom to return to the centre
of the trap is the same for all the atoms, and this leads to a substantial (∼102) increase of the
density. Arlt et al (1998) suggested the use of the pyramidal MOT with a small hole at its
vertex as a source of slow atoms. Atoms are first captured in the trap and then pushed through
the hole by a laser beam. The flux of cold atoms was about 109 s−1 and found to be readily
scalable to obtain higher fluxes. Note also the proposal on a booster for ultrafast loading of
the trap (Vredenbergt et al 1998).

7. Gravito-optical traps and cavities

In recent years, another effective method of trapping cold atoms has been developed: the
gravito-optical method based on a combined use of electromagnetic and gravitational forces.
The key element in this method is the atom mirror (Cook and Hill 1982), which was
experimentally implemented for a beam of sodium atoms (Balykin et al 1987, 1988a, Kasevich
et al 1990), caesium atoms (Aminoff et al 1993), and a variety of other atoms (Dowling and
Gea-Banacloche 1996).

Conceptually, the simplest gravito-optical atom trap cavity can consist of a single concave
atomic mirror arranged horizontally (figure 45). In this geometry, the role of the second mirror
is played by the gravitational field (Liston et al 1995a, b, Wallis et al 1992, Wallis 1997). A
cavity of this geometry is the simplest version of the two-mirror vertical cavity proposed by
Balykin and Letokhov (1989). In this cavity, the curvature of the mirror is small, and the vertical
atomic motion spectrum at not very small quantum numbers (quasiclassical approximation)
is determined by the well known quantum mechanical problem of the bouncing of a particle
on an absolutely elastic plane in the gravity field (see, for example, Flugge (1971)). The
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Figure 45. Gravito-optical atom trap cavity based on a
single concave atom mirror arranged horizontally.

corresponding spectrum is defined by the eigenvalues of the Airy functions:

εn = Mglg

[
3π

2

(
n− 1

4

)]2/3

, (7.1)

where lg = (h̄2/2gM2)1/3 is the characteristic gravitational length governed by the mass of the
particle. For atoms of medium mass, the characteristic gravitational length is of the order of a
micron, and the characteristic values of energy (7.1) correspond to the effective temperatures
of the order of 10 nK.

In this cavity, the transverse (horizontal) size of the atomic mode can be expressed in
terms of the distance L from the surface of the mirror to the classical turning point, which
determines the length of the cavity. For estimation purposes, the gradient force potential can
be taken to be stepped near the surface of the mirror. The surface shape of the mirror in the
simplest approximation can be treated as a paraboloid of revolution,

z = x2 + y2

2R
, (7.2)

where R is the radius of curvature of the mirror at its centre.
Assuming that the atom mirror has a parabolic shape, the transverse size of the atomic

mode in the vicinity of the mirror is estimated as

δxM
∼=
(

2l3gR
2

R − 2L

)1/4

, (7.3)

and at the upper point of the classical trajectory at a distance L from the mirror as

δxS
∼= (2l3(R − 2L))1/4. (7.4)

The distance to the upper point of the classical trajectory is determined by the atomic velocity
in the neighbourhood of the mirror, L = v2/2g, and can be associated with the energy of
longitudinal motion given by (7.1). With the typical gravitational length being, as indicated
above, of the order of a micron, the size of the atom mode comes to a few tens of microns.

The gravito-optical trapping scheme was experimentally investigated for caesium atoms
(Aminoff et al 1993). The atoms were preliminarily localized and cooled in a MOT. When
the MOT was switched off, the atoms fell freely onto the atom mirror from a height of
3 mm. The atoms were observed to execute about ten bounces. In each reflection event,
around 40% of the atoms were lost as a result of (a) photon scattering during the reflection,
(b) background gas collisions and (c) residual misalignment of the mirror with respect to the
vertical axis.

Note that the intensity of the evanescent wave in the atomic mirror can be increased by
two or three orders of magnitude on account of the excitation of the surface plasmons pro-
duced by introducing a thin metal layer in the dielectric–vacuum interface (Esslinger et al
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Figure 46. (a) Scheme of a gravito-optical trap based on the inelastic reflection of atoms from an
evanescent laser wave. (b) The atom transitions between hyperfine-structure states responsible for
cooling atoms in the trap (Ovchinnikov et al 1995, Soding et al 1995).

1993, Feron et al 1993, Seifert et al 1994). Another method to intensify the evanescent wave
is to introduce a dielectric film of high refractive index, which produces a dielectric optical
fibre for laser radiation. The repeated reflection of the laser light from the dielectric–vacuum
and dielectric–dielectric interfaces substantially increases the intensity of the evanescent wave
(Kaiser et al 1994).

The reflecting surface formed by the evanescent wave is a very rich structural component
for creating atomic traps and waveguides of varying geometry (figure 48). In the past few
years, such light surfaces have formed the basis for several types of half-open traps and waveg-
uides. Further development of the simplest gravito-optical trapping scheme resulted in the
vertically arranged pyramidal and conical traps (Dowling and Gea-Banacloche 1995, 1996,
Ovchinnikov et al 1995) and also atom gravitational cavities based on hollow optical fibres
(Harris and Savage 1995).

Figure 46(a) presents a schematic diagram of a gravito-optical trap where atoms are
cooled as a result of their inelastic reflection from an evanescent wave (Ovchinnikov et al
1995, Soding et al 1995). With this scheme, Cs atoms were trapped in a horizontal plane by
the gradient force produced by a hollow blue-detuned laser beam (Ovchinnikov et al 1997).
The trap implemented for caesium atoms embedded a cooling mechanism associated with the
optical pumping of the atoms between the hyperfine-structure states (figure 46(b)). An inelastic
reflection takes place when the atom enters the evanescent wave in a lower ground state and,
by scattering a photon during the reflection process, it is pumped into the less repulsive state.
The dot in figure 46(b) shows a Cs atom that approaches the dielectric surface at the lower
hf state, then scatters a photon, leaves the evanescent wave at the upper ground state, and is
finally pumped back into the lower state. The experimental dependence of the temperature of
the trapped atoms as a function of the time storage is shown in figure 47. Open circles describe
the vertical temperature of atoms in the trap and closed circles, the horizontal temperature. The
solid lines are the theoretical fits. As is seen from figure 47, the vertical temperature follows
an exponential decay caused by the cooling mechanism. The horizontal motion is not cooled
directly: its temperature decreases due to the motional coupling of the horizontal and vertical
degrees of freedom of the atom.
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Figure 47. Temperature of Cs atoms localized in the gravito-optical trap based on an inelastic
reflection as a function of the trapping time (Ovchinnikov et al 1997).

Figure 48. Schemes of dipole traps based on evanescent waves:
(a), (b) traps based on atom mirrors; (c) gravito-optical trap based
on a single concave mirror; (d) gravito-optical trap with laser
sheets as atom reflectors; (e) box-type trap with evanescent side
waves.

The use of light surfaces formed by evanescent waves makes it in principle possible to
create atom traps as well (figure 48). One possible version is the enclosed trap in the form
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of a cube having all its sides coated with evanescent waves (figure 48(e)) (Cook and Hill
1982, Dowling and Gea-Banacloche 1995, 1996). Yin and Zhu (1998) proposed a novel
gravito-optical trap composed of a blue-detuned plug beam and blue-detuned dark hollow
beam generated from the output beam of a LP01 mode in a micrometre-sized hollow fibre.

8. Applications

The methods developed during the past decades for the electromagnetic trapping of neutral
atoms are of interest in applications in many domains of physics. Among them one may note
briefly the following.

8.1. Laser trapping spectroscopy

The idea of Doppler-free ultrasensitive laser spectroscopy was first discussed in 1975 (Letokhov
1975). At that time the method seemed a distant goal. Nowadays, the method is commonly
employed in many spectroscopic experiments. Two impressive applications are listed below.

First, one may note the use of cold trapped atoms in ultrahigh-resolution spectroscopy.
A striking example is the observation of a two-photon transition 1S → 2S in cold hydrogen
atoms localized in a magnetic trap (Cesar et al 1996). Two-photon Doppler-free spectroscopy
of trapped atoms was reported by Cesar et al (1999). A cold trapped atomic sample may
provide a unique source for improved measurements of the fine-structure constant (Zhao et al
1989).

Second, we should mention the first experiments with rare atoms. Rowe et al (1999), have
measured the ground-state hyperfine structure of the laser-trapped radioactive 21Na (t1/2 =
22 s) collected in a MOT on-line at the cyclotron at Lawrence Berkeley National Laboratory.
Lu et al (1997) realized efficient collection of 221Fr (t1/2 = 4.9 min) in a vapour cell MOT.
They measured energies and the hyperfine structure of the 72P3/2 and 72P3/2 states with 900
trapped atoms with a signal-to-noise ratio of about 60 in 1 s. These experiments show the good
prospects for the laser trapping spectroscopy of very rare atomic samples.

8.2. Bose–Einstein condensation

The most impressive application of the methods for cooling and trapping neutral atoms is the
observation of BEC in dilute atomic samples (Anderson et al 1985, Bradley et al 1995, Davis
et al 1995). The first attempts to observe a BEC of atomic hydrogen started 20 years ago (Silvera
and Walraven 1980, Greytak and Kleppner 1984). However, only after the development of
laser cooling techniques, MOTs and the evaporative cooling technique has it become possible
to produce cold dense atomic samples satisfying the BEC condition (1.6) for the critical phase
density for Rb atoms (Anderson et al 1995), Li atoms (Bradley et al 1995), and Na atoms (Davis
et al 1995). Recently, the critical phase density has been achieved for atomic hydrogen (Fried
et al 1998). Nowadays, the study of BEC in atomic samples is one of the fastest-developing
areas in atomic physics. The latest experimental and theoretical progress in the field can be
found in recent reviews (Dolforo et al 1998, Burnett 1996, Parkins and Walls 1997).

8.3. Atom laser

The progress of BEC research has recently resulted in the development of an atom laser, i.e.
a device which emits a coherent atomic beam. In a BEC a macroscopic number of bosonic
atoms occupy the ground state of the system, which can be described by a single wavefunction.
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A pulsed output coupler which coherently extracts atoms from a condensate was demonstrated
by Mewes et al (1997) and Andrews et al (1997). Producing BEC in a novel magnetic trap
(Esslinger et al 1998) T Hänsch and co-workers realized an atom laser with a CW output
coupler (Bloch et al 1999). Obviously, this very promising application of atom trapping is
likely to see speedy development in the near future.

8.4. Intense atomic beams

Cold atoms localized in the electromagnetic traps can be used as sources of slow incoherent
atomic beams with high phase density. Lu et al (1996) used the MOT to produce a slow CW
atomic beam with intensity 5 × 109 atoms s−1 and brightness 5 × 1012 atoms sr s−1. Atomic
beams with much higher brightness can be obtained under the pulse extraction of atoms from
the MOT. Fukuyama et al (2000) have used the pulse release of atoms from the MOT to
produce an atomic beam with brightness 1.1 × 1015 atoms sr s−1. The incoherent but very
intense atomic beams may have various important applications in atomic spectroscopy and
atomic physics.

8.5. Nuclear physics

Cold and trapped radioactive atoms open new experimental opportunities in nuclear physics.
Trapped radioactive atoms can be used in the fundamental symmetry experiments, including
the experiments on nuclear β-decay, atomic parity nonconservation, and the search for parity
and time-reversal violating electric dipole moments. The first successful experiments on the
trapping of radioactive atoms were realized for isotopes 21Na (Lu et al 1994), 79Rb (Gwinner
et al 1994), 210Fr (Simsarian et al 1996), 38mK, 37K (Behr et al 1997), 221Fr (Lu et al 1997).
It is expected that further activity in this direction will be concentrated on efforts to undertake
meaningful measurements with trapped radioactive species.

Recently, experiments on nuclear decay have started to use the MOT as a source of cold
well localized atoms. The low-energy recoiling nuclei can freely escape the MOT and be
detected in coincidence with β-decays to reconstruct the information on the properties of the
particles coming from the nuclear reactions. An example of such an experiment is the beta–
neutrino correlation measurement on laser trapped 38mK and 37K (Behr et al 1999). In the
experiment ions 38mK and 37K produced at the on-line isotope separators TISOL and ISAC at
TRIUMF (Canada) were converted to neutral potassium atoms by stopping in a Zn foil. Next,
the rethermalized low-energy atoms were captured by the first MOT and finally transferred by
a laser push beam and magneto-optical funnels into the second MOT free of a large number of
the non-localized atoms. The overall capture efficiency into the second MOT was 7 × 10−4.
The experiment has detected several hundred thousand recoil-β+ coincidences, sufficient for
further use with a goal to test the standard model.

Many new nuclear experiments are now in progress which explore the MOT as a convenient
target for the measurements. Typically, the mass-separated ion beam is first converted to neutral
atomic beam and after that the neutral atoms are captured initially by the first MOT and finally
transferred to the second MOT used as a target. This principal scheme developed by the Los
Alamos National Laboratory was used for trapping radioactive isotopes 82Rb (Gückert et al
1998) and 82–84Rb, 135,137Cs (Vierra et al 1999). It is expected that the target MOT can be
used for the following measurements: (1) the high-precision parity violation measurement of
beta-decay asymmetry on polarized 82Rb; (2) measurements of the properties of ultracold 84Rb
fermionic atoms sympathetically cooled by 87Rb atoms in the state of the BEC; (3) ultrasensitive
measurements with the use of trapped atoms.
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Electromagnetic trapping of atoms is also considered to be the most likely scheme for
the production of atomic antihydrogen and its spectroscopic investigation. The crucial point
here is the laser cooling of the hydrogen atoms. The only possible optical transition for
the effective laser cooling of hydrogen is the 1S–2P transition with the vacuum ultraviolet
wavelength 121.6 nm. Pahl et al (1999) reported on the development of the first CW source
of coherent Lyman-α radiation. The source is based on four-wave mixing in mercury vapour.
Ultrahigh-resolution laser spectroscopy of a few trapped antihydrogen atoms opens a unique
opportunity to compare the spectra of hydrogen and antihydrogen and thus realize a stringent
test of the fundamental CPT symmetry (Bluhm et al 1999), and to compare the gravitational
forces on matter and antimatter.

Particularly suitable for the spectroscopic investigation of trapped atomic antihydrogen
is the use of resonance-enhanced two-photon spectroscopy (RETS) (Hijmans, 1999). This
technique is based on the stimulated absorption of photons at two different wavelengths,
one nearly resonant with the 1S–2P transition, the other with the 2P–3S(D) transition. The
sensitivity of RETS is much higher than the two-photon spectroscopy method that uses
resonant two-photon excitation at the 1S–2P transition. RETS had previously been tested
for temperature and density measurements in atomic hydrogen localized in a magnetic trap
(Mosk et al 1998).

8.6. Ultrasensitive isotope trace analysis

An important property of the MOT consists in the ability to catch the atoms whose optical
frequencies are shifted from the laser frequency by only a few natural linewidths. This property
has been applied for ultrasensitive isotope trace analysis. Chen et al (1999) developed the
technique for the detection of a counted number of radioactive isotopes 85Kr and 81Kr with
abundances 10−11 and 10−13 against the stable isotope 83Kr. The technique was called atom
trap trace analysis (ATTA). At present, only the technique of the accelerator mass spectrometry
(AMS) (Collon et al 1997) has a detection sensitivity comparable with that of ATTA. Unlike
the AMS technique based on the high-power cyclotron, the ATTA technique is much simpler
and does not require a special operation environment. In the experiments by Chen et al (1999)
krypton gas was injected into a DC discharge volume where the atoms were excited to the
metastable level. 2D transverse laser cooling was used to collimate the atomic beam and the
Zeeman slowing technique was used to load the atoms in the MOT. Under the specific laser
frequency chosen for trapping 81Kr or 85Kr isotopes, only the chosen isotope could be trapped
by the MOT. The experiment was able to detect a single trapped isotope which remained in the
MOT for about a second. Figure 49 shows the fluorescence produced by an individual 81Kr
isotope stored in the MOT in the experiment. Note that the fluorescence signal coming from
a single isotope atom considerably exceeds the noise due to the scattered laser light.

8.7. Ultracold atom collisions

The trapping of ultracold atoms gives an opportunity to study the collisional processes in
cold atomic samples. Süptitz et al (1994) reported on the simultaneous cooling and trapping
of two different Rb isotopes and measurement of a cross-isotope collisional rate. A similar
experiment was done by Santos et al (1995) with two different atomic species, Na and K. This
experiment gave an estimation on the elastic collisions cross section of the Na–K system as
3.8×10−13 cm2. Houbiers et al (1998) studied the elastic and inelastic collisions of 6Li atoms
in magnetic and optical traps. This research was important for estimation of the possibility to
achieve quantum degeneracy in a fermionic gas. In the case of fermionic 6Li, it has been shown
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Figure 49. Fluorescent single-atom detection of the rare long-lived radioactive isotope 81Kr using
the MOT (Chen et al 1999).

theoretically that a transition to a superfluid state could be realized at a critical temperature
of the order of temperatures obtained in BEC experiments (Stoof et al 1996, Houbiers et al
1997): see also the theoretical study of interacting Fermi gas in a harmonic trap (Bruun and
Burnett 1998).

Anderson et al (1998) studied the resonant dipole–dipole energy transfer in nearly frozen
Rb Rydberg gas in a MOT. In a room temperature vapour of Rb Rydberg atoms, resonant
dipole–dipole energy transfer occurs via binary collisions. In contrast, in the 300 µK vapour
in the MOT many atoms interact simultaneously, as in an amorphous solid. As a result
of simultaneous multiple atom interactions, the energy transfer resonances are broadened
substantially in frequency. In the laser-induced collisions between ultracold atoms, the
combination of low velocities and long-range interactions results in collision times which
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can exceed the excited-state lifetime. Using pulsed excitation, Gensemer and Gould (1998)
found this collisional process for Rb to take place on a 10−6 s timescale.

Many collisional processes have been investigated on cold atoms localized in a MOT.
Among numerous important experiments one may note the following: observation of a
Feshbach resonance in cold atom (Rb) scattering (Courtelle et al 1998); study of Penning and
associative ionization of two metastable cold (1 mK) helium atoms (Mastwijk et al 1998); study
of elastic and inelastic collisions of cold spin-polarized 133Cs atoms (Arndt et al 1997, Söding
et al 1998, Leo et al 1998); observation of cold collision frequency shift of 1S–2S transition
in hydrogen (Kilian et al 1998); measurement of long-range forces between cold Cs atoms
(Fioretti et al 1999); measurements of ionizing collisional rate of metastable rare-gas atoms
(Kr, Ar) in an optical lattice (Kunugita et al 1997). By confining 3He and 4He in their respective
MOTs, ionization rate coefficients for Penning collisions between the cold He (2s3S1) atoms
have been measured (Kumakura et al 1999). At a temperature of 0.5 mK, the rate coefficients
obtained are 3.8×10−10 cm3 s−1 for 4He–4He collisions and 1.1×10−9 cm3 s−1 for 3He–3He,
a difference of a factor of 3. Similar results were reported by Tol et al (1999) who achieved
the large number (1.5 × 109) of cold metastable helium atoms in a MOT. Measurements of the
collisional rates in a Na/Rb mixture in a MOT were done by Telles et al (1999).

Finally, note the collisional experiments with different atoms captured in a MOT. Shaffer
et al (1999a, b) described a comprehensive investigation of a trap loss in a two-species Na–Cs
MOT. Observed losses, due to the interspecies interactions, are attributed to collisions in which
a change in the fine-structure state of the Na partner causes the escape of atoms from the trap.
Results are described in terms of the heteronuclear pair potentials and the interaction of the
colliding pairs with the radiatively active environment.

8.8. Formation of cold molecules

The application of well established laser cooling techniques to molecules does not seem to be
possible because of the absence the cyclic interaction schemes which could keep molecules
from being optically pumped into inaccessible states. The most successful technique to produce
translationally cold molecules is the combination of the techniques of trapping atoms with the
photoassociation technique (Thorsheim 1987). Photoassociation of cold atoms can be realized
by both a single-colour excitation (figure 50) (Nikolov et al 1999) and two-colour excitation
(figure 51) (Band and Julienne 1995).

The first experiment on the formation of cold molecules (Cs2) by the technique of
photoassociation of cold Cs atoms in a MOT was done by Fioretti et al (1998). A pair of
ground state cold Cs atoms is resonantly excited to a O−

g rovibrational state of Cs2 using a
CW laser. A significant fraction of these molecules decay to bound levels of the 3P+

n ground
state, yielding long-lived translationally cold molecules. The latter are detected by pulsed
laser ionization into Cs+

2 ions, thorough a time-of-flight mass selection. Takekoshi et al (1998)
realized the first observation of optically trapped cold neutral molecules Cs2. Caesium dimers
in the electronic ground state were produced directly in a MOT and transferred to a dipole
trap formed at the focus of a CO2 laser beam. A cold molecule’s trap lifetime was on the
order of one-half a second. Takekoshi et al (1999) also observed translationally cold dimers
Cs2 produced directly in a MOT and the photoassociation of cold Cs atoms in the trap. The
measured translational temperature of the neutral caesium dimers was about 100 µK.

In another pioneering work (Nikolov et al 1999) ultracold potassium molecules were
produced in the X1P+

g electronic ground state by photoassociation in a MOT. The authors
observed deeply bound molecules with vibrational quantum numbers about v ≈ 36 and
translational temperature of about 300µK. About 103 molecules s−1 were produced, and much
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Figure 50. Single-photon photoassociation of cold 39K atoms to the v = 191 level of the AP+
υ

state 39K2 yields the formation of translationally cold 39K2 molecules in vibrationally excited levels
(e.g., v = 36) of the X1P+

g ground electronic state (Nikolov et al 1999).

Figure 51. Scheme for the formation of translationally ultracold molecules by two-colour excitation
of 39K2 (Band and Julienne 1995).

higher production rates should be attainable in the future. Ultracold heteronuclear molecules
NaCs were produced by Shaffer et al (1999) in a novel two-species MOT. Individual trap atom
densities were about 1010 cm−3 with around 106 Na atoms and 107 Cs atoms. The formation of
ultracold heteronuclear molecules opens up new and exciting avenues of research in molecular
spectroscopy.
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8.9. Cavity QED, single atoms etc

New and interesting applications of the MOT were recently demonstrated by Kimble and co-
workers. His group realized the trapping of single cold atoms in a cavity (Ye et al 1999). This
opened an opportunity for the deterministic control of atom–photon interactions quantum by
quantum. Cavity QED has led to many new effects, including the realization of a quantum
phase gate (Turchette et al 1995), the creation of Fock states of the radiation field (Walther et al
1999) and the demonstration of quantum nondemolition detection for single photons (Nogues
et al 1999) etc. Ye et al (1999) note that ‘all serious schemes for quantum computation and
communication via cavity QED rely on developing techniques for atom confinement’. This
explains the importance of the experiments on trapping of single atoms under conditions of
cavity QED. Kimble’s group used in the experiments the FORT, providing a confining potential
to trap atoms within the cavity mode.

Among other interesting applications of the MOT one may note the quantum
nondemolition (QND) measurements with the use of cold trapped Rb atoms (Roch et al 1997,
Sinatra et al 1998) and observation of the superfluorescence from optically trapped Ca atoms
(Kumarakrishnan and Han 1998).

Atom interferometers built around atomic waveguides and quantum mechanical atomic
gravitational cavities seem very promising for high-precision measurements (Harris and Savage
1995). The Saniac effect for atoms is larger than for photons (Scully and Dowling 1993). Atom
interferometers have already demonstrated the potential for precision measurement of gravity
and inertial effects (Adams et al 1994).

An interesting technological application of optical lattices can be the deposition of atomic
structures with a resolution better than the optical wavelength. In one such experimental
attempt, sodium atoms, after being channelled in periodic potential wells, were deposited on
a surface, forming lines a few tens of nanometres wide (Timp et al 1992, Gupta et al 1996,
Drodofsky et al 1997). In another example of nanolithography using optical lattices, chromium
atoms were deposited on the surface of 1D and 2D gratings (McClelland et al 1993).

The list of applications of the methods of electromagnetic trapping of cold atoms and
molecules will certainly grow fast and expand into different fields of science. As one
remarkable example one may note the measurements of Earth’s gravity gradient (Snadden
et al 1998) and gravitational acceleration by dropping cold atoms from the trap (Peters et al
1999). In the coming years we should see many productive ‘marriages’ of trapping techniques
with many advanced fields of science and technology.
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