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1. General Introduction

1.1. Purpose of this course

The purpose of this course is to discuss the basic processes and the
physical mechanisms which govern atomic motion in laser light. During
the last few years, spectacular results have been obtained concerning
the possibility to “manipulate” atoms with laser light. A new expand-
ing résearch field, called laser cooling and trapping, has come out (see
for example the courses of W. Phillips, R. Blatt and H.Walther in this
volume). In order to explore the limits of these new methods, several
‘theoretical approaches have been developed. In this course, we review
some of these approaches and we compare their advantages, their diffi-
culties and their domains of validity.

The emphasis will be put here on physical ideas and physical mecha-
nisms. The details of the calculations will not be given when they are
avalaible in the litterature. We will just recall the principle of such cal-
culations, devoting more time to the interpretation of the results and
to the discussion of the various approximations which are introduced.
We will consider only the case of neutral atoms. Laser cooling of ions is
discussed in detail in the courses of R.Blatt and H.Walther.

1.2. The inieracting systems

The atomic medium is supposed to be very dilute, so that one can ignore
atom-atom interactions. We thus consider here a single atom A, with
an excited state e and a ground state g separated by an energy interval
w4 being called the atomic frequency. Important atomic observables are
the electric dipole moment d, the position R and the momentum P of
the center of mass. This atom A is coupled, on the one hand, to the laser
field L, and on the other hand to all the other modes of the radiation

- field which initially do not contain any photon and which form what we
- call the quantum vacuum field V (see Fig. 1 ).

6
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Fig. 1. The interacting systems and their various couplings.

The laser field L is assumed to be monochromatic, with a frequency
wr. If the initial state of the laser field is a coherent state, one can show
( see Ref. 1 and exercise 17 in Ref. 2 ) that it is legitimate to describe
it as a c-number external field

Er(r,t) = e(r)é(r) cosfwrt -+ ()] {1.2)

where e(r),£(r) and ®(r) are respectively the polarization, the amplitude
and the phase of the laser field in r. The atom-laser coupling Var is
characterized by the Rabi frequency (i, which is proportional to the
scalar product of the dipole moment matrix element (e | d | g} by
the laser field Er(r,t). The hamiltonian evolution due to V4 can be
analyzed in terms of elementary processes of absorption and stimulated
emission of laser photons by the atom.

The atom-vacuum field coupling Vav is responsible for spontaneous
emission of photons by the excited atom. It is characterized by the natu-
ral width T of the excited state e, which is also equal to the spontaneous
emission rate of photons from e. Since Visa large system with an infi-
nite number of degrees of freedom, the coupling Vav introduces damping
and fluctuations in the evolution of 4. One of the main objectives of
this course is to study the limits introduced by these fluctuations and to
explain how it is possible to reduce them to their minimum value, and
even to circumvent them.

Two extreme regimes can be considered for the evolution of A. For
very short interaction fimes, i.e. for t < I'!, one can neglect sponta-
neous emission, and the evolution of A+ L is described by 2 Schrddinger
equation. For very long interaction times, i.e. for t » ', several

e

¥,
R



8 . Cohen-Tannoudy

spontaneous emission processes occur during the interaction time {, and
the “reduced” evolution of A (traced over the vacuum field degrees of
freedom) is then described by a master equation or by a Langevin equa-
tion. This second case is the most frequent one and it will be analyzed
in detail in the following.

1.3. Characieristic {imes

For subsequent discussions, it will be useful to introduce here a few
characteristic times and to compare their orders of magnitude.

The shortest time of the problem is the correlation time 7. of the vac-
aum field. Vacuum fluctuations ( see Ref. 3, Chap. 3 and Ref. 4, Chap.
Il ) have a very broad frequency spectrum J(w), which varies very
slowly with w around the atomic frequency w4 : the typical frequency
scale for the variations of J(w) is w4 itself. It follows that

Te ™ l/wA (13)

The fact that 7. is much shorter than all other characteristic times will
allows us to consider the vacuum field V as a “reservoir” and to describe
its effect on the evolution of the atom A as a relaxation process { see
Ref. 5, Chap. 4 and references in and Ref. 2, Chap. IV).

For the atomic internal degrees of freedom, the most obvious charac-
teristic time is the radiative lifetime 7 of the excited state e

tp = 1/F (1.4)

which is the inverse of the natural width I' of e and which can be consid-
ered as the relaxation time associated with spontaneous emission. The
well known relation I’ € w4 implies that 7g > 7.

The existence of several Zeeman sublevels in the ground state gives
rise to other internal relaxation times which are associated with opti-
cal pumping®. Absorption-spentaneous emission cycles, which are also
called fluorescence cycles, can transfer the atom from one Zeeman sub-
level g,m of g to another one gnr. At low laser intensity Iy, it is possible
to define a rate I for the occurence of such optical pumping cycles ,
which is proportional to I;,. The inverse of this rate

p = 1/IY (1.5)

is called the optical pumping time 7p and can be considered as the mean
time the atom has to wait before undergoing an optical pumping cycle.
At low laser intensity I,

TP P TR (1.6)
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We will show in the second part of this course how the existence of such
long internal relaxation times for multilevel atoms can give rnise to very
efficient new cooling mechanisms.

Note that, for two-level atoms, one can still define at low intensity
o fluorescence rate I and a mean time 1/I" between two fluorescence
cycles experienced by the same atom, mean time which is much longer
than 7. But such fluorescence cycles bring back the atom into the same
ground state and they do not give rise to additional internal relaxation
times. Actually, for a two-level atom, the only damping times appear-
ing in the optical Bloch equations which describe the evolution of the
internal degrees of freedom are all on the order of Tg.

For the external (i.e. translational) atomic degrees of freedom, a very
important characteristic time is the damping time of the atomic velocity.
We will show in Chapter 4 (Section 4.1) that it is of the order of

Text = h/ER (1?)

swhere

Eg = Wk 2 /2M (1.8)

is the recoil energy of the atom when it absorbs or emits a single laser
photon. In (1.8), M is the total mass of the atom and kf = wr/c.
For most atomic transitions,

Kl > Eg (1.'9)

For example, for the resonance line of Sodium, AT’ = 400Egp. When
there is a single internal time Tiny = TR, it follows from (1.4}, (1.7) and
(1.9) that

Text > Tint (1.10)

This separation of time scales introduces great simplifications in the
analysis of atomic motion. As shown in the next chapters, one can then
adiabatically eliminate the fast internal variables and derive reduced
equations of motion for external variables.

However, it must be kept in mind that condition {1.10) in not always
fulfilled. For atoms with degenerate ground states, the internal time 1p
can become, at low intensity, comparable to the external time (1.7), and
even longer. External times shorter than {1.7) can also appear, such
as the oscillation period Tpsc of the atom in the bottom of an optical
potential well. In such cases, it 1s no longer possible to eliminate in-
ternal variables, and the theoretical analysis is more complicated. But,

k)



10 C. Cohen-Tannoudji

as shown in the last part of this course, such situations are also quite
interesting, since they generally lead to much lower limits for the tem-
peratures which can be achieved by laser cooling.

1.4. Outhne of the course

In the first part of this course, i.e. from chapter 2 to chapter 7, we
restrict ourselves to atoms with a nondegenerate ground state. This is
for example the case for a transition J; = 0 «— J, = 1. If we suppose
in addition that a high static magnetic field B is applied, which pushes
the two Zeeman sublevels | e,m = 1} very far away from resonance,
we are left with a two-level atom {| ¢),} ¢)} , with | e} =| e, = 0}
and | g) =] g,m = 0). The only nonzero matrix elements of the dipole
moment operator d can then be written

(eld|g)=de.=(gld]e) (1.11)

where we have assumed that d is real and where €, is the unit vec-
tor along the 0z axis. Note however that some papers’ keep the three
Zeeman sublevels | e,m = —1,0,+1) of the excited state with B = 0.

Assuming that the atomic wave packet is very well localized in the
laser wave (semiclassical limit), we first derive in Chapter 2 the expres-
sion of the radiative force operator which governs the motion of the
center of the wave packet. The mean value of the force operator is then
analyzed for an atom initially at rest (Chapter 3) and for a moving
atom (Chapter 4), which allows us to introduce the notions of reactive,
dissipative and friction forces. The fluctuations of the radiative force
around its mean value are responsible for a diffusion of atomic momen-
tum which heats the atom and which limits the efficiency of laser cooling.
These fluctuations are studied both in the Heisenberg picture and in the
Schrodinger picture {Chapter §). All these results are now well known
and we just present here a brief sketch of their derivation, referring the
reader to existing publications for more details. On the other hand, we
devote more time to the discussion of the physical mechanisms. In par-
ticular, we present in chapter 6 original results concerning the intriguing
problem of an atom put at the node of a laser standing wave. We show
that the anomalously large momentum diffusion which occurs in such
a place {where there is no light) is due to interference eflects between
different scattering amplitudes and reveals the existence of a new kind
of “correlated redistribution” process. The physical mechanisms occur-
ring at high intensity are also analyzed in Chapter 7, using the so called
dressed atom approach.

et



Atamic Motion in Laser Light 11

The second part of the course (Chapters 8 to 11) deals with atoms
having several Zeeman sublevels in the ground state. We consider for
example simple atomic transitions with Jy = 1/2 or Jy = 1. We first
recall in Chapter 8 a few basic results concerning the effect of a weak
intensity light irradiation on the internal dynamics of a slowly moving
multilevel atom. Several effects, such as optical pumping and light-shifts
are briefly reviewed. We then show how these effects can conspire fo im-
prove the efficiency of laser cooling by orders of magnitude. T'wo recent
developments are studied in detail. The first one concerns laser cooling
with laser configurations exhibiting strong polarization gradients (Chap-
ter 9 and 10 ). The physical mechanisms responsible for the very low
temperatures which have been recently measured (a few microkelvins)
are analyzed. Some new results concerning the limits of polanization gra-
dient cooling are presented. Finally, we discuss in Chapter 11 a method
using velocity selective coherent population trapping for cooling atoms
below the so called recoil limit.

;
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PART I: TWO-LEVEL ATOMS

2. Radiative force in the semiclassical limit
We will follow in this chapter the presentation of Ref. 8.

2 ! Hamiltonien

The hamiltonian H of the global system represented on Fig. 1 can be
written

H=Hs+ Hyv +Var + Vav (2.1)
The first term

2
His = Ho* + Hint. =

ATHA TEA ToMm
is the atomic hamiltonian, which is the sum of the kinetic energy of the
‘center of mass and of the internal energy. The second term

+hwafe){e] - (22

1
Hy = ) hwj(afa; + -) (2.3)
i

is the energy of the quantum radiation field (see Ref. 4, Chap. III ),
initially in the vacuum state, expressed as a sum of contributions of the
various modes j. Note that , since the laser field L is treated here as a
c-number external field, there is no hamiltonian Hy, for L in (2.1). The
third term of (2.1} is the coupling

Vap = —d - EL(R,t) (2.4)

between the atomic dipole moment d and the laser electic field EL(R, £)
given in {1.2) and evaluated at the position R of the center of mass
{electric dipole approximation). Finally, the last term of (2.1) describes
the atom-vacuum field coupling

Vav = —d - B(R) (2.5)

where the mode expansion of the electric field operator (see Ref. 4,
Chap. III } is given by

E(r)=i) Eajee™ ™ +he (2.6)
J
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a} (and a;) being the creation (and annihilation) operators of a photon
of momentum hk;, energy fuv; = hck; and polanzation €;, and £; being
a normalization constant equal to

[ hw;
— 2.
& 2epl3 (2.7)

(L* is the quantization volume}.

One very often uses the so called “rotating wave approximation”
(r.w.a.) which consists of neglecting the “antiresonant” terms of Var,
and Vav. Using for d the expression

d=de. (Je){g|+{lg}el) (2.8)

which results from (1.11), introducing the Rabi frequency §; given by
A (r) = —d E(r) €..€(r) (2.9)

and neglecting the antiresonant terms e~ wet jgY e} (and h.c.) of Var
then leads to

LR : :
Var = —ww———ﬁ 12( ) [e"@(m e et teYg 4+ he } {2.10)

One can similarly neglect the antiresonant terms a; { g){el (and h.c.)
of Vav.

2.2. Heisenberg equations

In order to study the dynamics of the center of mass of A, we start from

the Heinsenberg equations for R and P. The equation of motion of R
is

1 gH P

SR H] = e = = 11

> ﬁ[R ] 5~ M (2.11.a)
and shows that P/M is the velocity of the center of mass. it follows
that the force operator, F(R) = MR = P, is given by the Heisenberg

equation for P

R =

. L1 OH
P=MR=(PH|=-55
= ~VVaL(R) — VVav(R) (2.11.5)

= Force operator F(R)
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The quantum electric field operator E(R) appearing in VV,v(R) can
be transformed using the Heisenberg equation for aj(t). The general
solution of this equation, which is a linear differential equation with a
source term, can be written { sec Ref. 9 and Ref. 2, Complement Ay )

a;(t) = a;(0) e 4 a3 (2) (2.12)

where the first term

ai*(t) = a;(0) et (2.13)

is the general solution of the homogeneous equation and corresponds to
the vacuum field evolving freely between the initial time ¢ = 0 and ¢,
and where the second term is a particular solution of the inhomogeneous
equation which corresponds to the “source field” originating from the
atomic dipole moment between ¢ = 0 and {. Inserting (2.12) into the
mode expansion (2.6) of E{R, t) allows one to separate two contributions
in the electric field operator

E(R,t) = E*%(R, t) + E"(R, ) (2.14)

corresponding respectively to the vacuum free field and to the source
field.

In all previous expressions, the total field operator a;(t) commutes
with all atomic operators taken at the same time, since field and atomic
operators commute at ¢ = 0 (they act in different spaces), and since
the unitary hamiltonian evolution between t = 0 and f preserves the
commutation relations. All possible orders between a;(t) and atomic
operators are thus equivalent. This is no longer true for a}*°(¢) and
a$*""°¢(t ) separately. Depending on the choice made initially for ordering
the a;{t} and the atomic operators, the respective contributions of the
vacuurn field and of the source field will appear to be different; wheras
their sum of course does not depend on this initial choice { see Ref. 9
and Ref. 2, Complement Ay ). From now on, we will choose the normal
order, where all the annihilation operators a;(t) are put at the extreme
right, and all the creation operators a}" (t) at the extreme left. Such an
order leads in general to simpler calculations, in particular when one
takes average values in the vacuum state | 0 ) of the quantum field. As
a consequence of the well known relations

aj{0){0)=0 (0]af(0)=0 (2.15)
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the contribution of the vacuum field to the vacuum average values van-
ishes. It must be kept in mind however that other orders may be useful.
For example, the completely symmetrical order is more convenient for
physical interpretations®.

We insert now {2.14) into the second term, —VVav{R), of the second
line of (2.11.b). One can show that the source field Es°u¢(r,t) due to
the atomic dipole moment d has no gradient at the position R where
this dipole moment is located (this field is an even function of r — R).
The contribution of the source field to the force operator thus vanishes,

and we get finally
F(R,t) = —VVarL(R,t)—: VVIVF(R, 1) : (2.16)

where V)¢ is obtained from Vav by replacing the total field by the
vacunm field and where the notation : X : means that the normal order
has been chosen for ordering X.

2.9. Semiclassical limit

Up to now, no assumption has been made concerning the atomic wave
packet. We now assume, as in References 8 and 11, that such a wave
packet is sufficiently well localized in position space and in momentum
space to allow the quantum description of atomic motion to be as close
as possible to the classical description where the atom has a well defined
position and a well defined momentum.

9.8.1. Conditions for having a localized atomic wave packet et ¢ given
time

At t = 0, the external atomic state 1s supposed to be described by a
wave function {r) centered on

rp = {R{0)} (2.17)

and having a width AR(0). In momentum space, the same state is
described by a wave fonetion centered on

po = (P(0)) (2.18)
with a width AP(0) related to AR(0) by the Heisenberg inequality

AR(0) AP(0) > k (2.19)
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We will say a few words below (in Subsection 2.3.2) on the more general
case where the external state is a stastistical mixture described by a
density operator rather than a pure state described by a wave function.

The force exerted by the laser wave on the atom varies over distances
on the order of the laser wavelength Az, or larger. It also depends on
the velocity v of the atom because of the Doppler effect krv, where
kg = 2x/Ap . The velocity change év producing an appreciable change
of the atomic response to the laser excitation is such that kr6v is on the
order of the natural width I' of the excited state, or larger.

If one wants the force experienced by the atomic wave packet to be
quasiclassisal, i.e. with very small fluctuations around its mean value,
two conditions must be fulfilled. First, the position spread AR(0) must
be small compared to A

- AR(0) € AL or equivalently kL AR(0) <1 (2.20)

Secondly, the velocity spread Av(0) = AP(0)/M must be small enough
40 allow the corresponding spread of Doppler shifts to be negligible com-
pared to I'.
ki AP(0)
i <

Note that condition (2.21) does not imply any relation betweenI' and the
mean Doppler effect kppg/M of the wave packet. Such a mean Doppler
effect may be large compared to I'. Condition (2.21) bears on the spread
of Doppler shifts, not on the mean Doppler shift.

Equations (2.20) and (2.21), which express the localization of the wave
packet in position space and in momentum space, impose upper bounds
on AR(0) and AP(0), which can be in conflict with the Heisenberg
inequality (2.19). Multiplying both sides of (2.20) by the corresponding
both sides of (2.21) and using (2.19), we get the compatibility condition

r (2.21)

hk?
—J\—f «T (2.22)

One finds again the condition Eg < AT, written in (1.9), and equivalent
to Tuxt > Tine (see Bqu. (1.10)). The existence of two time scales thus
appears as a necessary condition for the semiclassical limit.
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2.9.2. Is localization maintained at later times ¢
Conditions (2.20) and (2.21) have been imposed at time ¢ = 0. Can we
still consider the atom as well localized both in position and momentum
at a later time 77

Suppose first that T & Text, so that one can neglect the change of
atomic momentum between ¢ = 0 and ¢ = 7 (remember that Texe 15 the
damping time of P). One can thus write

P(r) ~ P(0) (2.23.a)}

from which one deduces, using (2.11.a)

R(7) ~ R(0) + Eglv' (2.23.5)
It follows that
AP(r) ~ AP(0) (2.24.a)
AP(0)

AR(T) ~ AR(0) +

v T (2.24.b)
Because of (2.24.a), momentum localization is unchanged. Equ. (2.24.b)
describes the well known spatial spreading of the wave packet. In order
to maintain spatial localization at time { = 7, one must have

ELAP(O)

2.
T <1 ) (2.25)

which means that 7 must not be too long. If 7 o Tiny > I'™1, one easily
checks that (2.25) is equivalent to (2.21). The spatial spreading of the
atomic wave packet during a time on the order of '~! orafew ', is
thus negligible. It follows that one can choose time intervals 7 such that

tF‘n:tt. << T Tex% (226)

which are short enough compared to Tey so that one can neglect the
variations of atomic momentum during 7, and sufficiently long compared
to Tine to allow the internal degrees of freedom to reach an equilibrium
state. It is therefore possible to use the concept of steady-state force for
a well localized wave packet.

At much longer times, 7 3 Text, it is no longer possible to consider
that the atomic momentum has not changed. Because of the random

[
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character of the momentum exchanges between the atom and the field,
there is a momentum diffusion which tends to increase AP. But if the
laser frequency is properly tuned, there is also a laser cooling which
tends to reduce AP. One can show (see Subsection 5.2.4) that, as a
result of the competition between these two processes, AP tends to
values which still satisfy (2.21). There are therefore situations where
the atomic momentum remains well localized. By contrast, and except
for a few special cases where the atom is strongly confined by a trapping
potential {for example, near the nodes of an intense standing wave),
it seems impossible to maintain equation (2.20) for all times. Spatial
diffusion tends in general to increase AR well above A.

There is however an important point which is overlooked by such an
analysis. At long times, the state of the center of mass can certainly no
longer be described by a wave function, even if this was true at { = 0.
Several fluorescence cycles have occurred and quantum nonseparable
correlations have appeared between the various degrees of freedom, with
the result that the reduced state of the center of mass is a statistical

. mixture of states described by a density operator o%*, rather than a pure
state described by a wave function. In such a case, the characterization of
spatial localization by condition (2.20) is too crude, and a more precise
definition must be given. Let {r' | o5 | r'') be the density matrix
representing 0% in the basis of the eigenstates of the position operator
R of the center of mass. The width of the spatial distribution R(r) =
{r | o5 | r), given by the diagonal elements of o, is the widith
AR considered above, which can increase well above Az. But there is
also another important characteristic length, called the spatial coherence
length ¢4, and defined as the typical distance beyond which the off
diagonal elements of 0% (spatial atomic coherences) vanish

(r' ot {x")~0 if jr' —r" > €4 (2.27)
Now, one can show that, in the problem considered here, £4 remains
always much smaller than Az. This is due to the fact that scattering
destroys spatial coherences'?. Consider a target particle 7 that scatters
at random times projectile particles P having a de Broglie wavelength
Ap. One can show!? that the spatial coherence length of 7 is reduced
to values much shorter than Ap by these scattering processes. Here,
the target is the atom A, the projectiles are the laser photons with

wavelength Ar, and the scattering processes correspond to fluorescence
cycles occurring at random times. It follows that

Ea <AL (2.28)

g
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In order to understand the implications of (2.28), imagine that we
express o5 at time ¢t = 7 as a statistical mixture of wave packets.
Each of these individual wave packets must have a spatial extension
much smaller than Ay since, otherwise, (2.28) would be violated; and the
centers of these wave packets are distributed over an interval AR, which
is the width of the spatial distribution and which can be much larger
than Ar. Such an analysis shows that we can consider that localization
is maintained for all times, but this localization concerns the individual
wave packets in terms of which the stastistical mixture can be expressed,
and not the whole spatial distribution. The fact that we are obliged to
consider several wave packets at time £ = 7, even if we start from a
single wave packet at t = 0, is due to the randomness of fluorescence
cycles, which introduces fluctuations in the atomic evolution. Actually,
the various wave packets into which % can be decomposed at time
t = 7,/ can be considered as a stastistical ensemble, in the classical sense,
representing the various possible “histories” which can happen to the
atom between ¢ = 0 and £ = 7.

#

2.4. Mean force and Langevin force

Suppose that, at ¢t = 0, the atomic wave packet is well localized around
ro, with a sufficiently small velocity spread around

Vg == _ﬁ-:f (2.29)

If we are interested in the rate of variation of the mean value of P,
d{P)/dt, and of the variance of P, d(AP)?/dt, in the neighbourhood of
¢ = 0, we must calculate one-time average values such as (F(R(1), 7))
and two-time average values such as (F{R(7),7)-F(R(r"), 7’ )} where F
is the force operator defined in (2.16) and where 7 and 7' are times close
enough to 0, i.e. much smaller than Tex: (but which can eventually be
as large as a few Tjny = I'~1). Since 7,7 & Text, We can use (2.23.b)
for reexpressing R(7) and R(7') as a function of R(0), P{0), 7, 7'
Furthermore, since the wave packet is well localized in position and in
momentum, we can replace in the one-time and two-time averages the
operators R(0) and P(0) by the c-numbers ro and po . It thus appears
that, for calculating d(P)/dt and d(AP)?/dt around ¢t = 0, we can
replace F(R(7),7) by F(ro+vor,7). Note that F(ro+ver, ) acts only
on internal atomic variables and field variables whereas F(R(r),7) acts
also on external variables.
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The rate of variation of {P) is equal to the mean value of F(ro+vot, t),
which we note F(rg+vot,t). Since the mean value of the second term of
the right-hand side of (2.16) vanishes because of the normal order (see
(2.15)), we get for the mean force

J:(r0+vﬁt=t) = _(VVAL(r?t))ir=ro+Vot (2'30)

The fluctuating part of F(rg+vot,t), i.e. the difference between the force
and its mean value,

§¥(r,t) = F(r,t) — F(r,1) (2.31)

plays an important role in the calculation of d(AP)*/dt. Such a fluc-
tuating force, with zero mean value, is called the Langevin force. Using
(2.16) and (2.30}), we get

SF(r,t) = 6F1as(r, 1) + 6Fvac(r, t) (2.32)

~where
6F as(r, t) = —~VVar(r,t)— F(r,t) (2.33.a)
EFyac(r, ) = — : VVav(r,t): (2.33.5)

represent respectively the contributions of the laser field and of the vac-
aum feld to the Langevin force.
We finally reexpress —VVar(r,t). Using (2.10), we get

—VVar(r,t) = M% Lelg | e ™t V[Qu(r)e @ + ke (2.34)

The calculation of the gradient gives

VRi(r)e 0] = Qi(r)e O a(r) - iB(r)] (2.35)

where
a(r) = Y(—%i? (2.36.a)
B(r) = V&(r) (2.36.)

characterize respectively the spatial variations of the Rabi frequency and
of the phase. If we insert (2.35) and (2.36) in (2.34) and if we use {2.30)
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and the fact that the mean value of | e}{g | is 04.(t) where o is the

internal atomic density operator, we finally get the following expression
for the mean force

Fr,8) = Re {oe () () e e a(r) —i8(r)

(2.37)
= =m0 () [u{)a(r) + v(t)B(r)]
with
u(t) = Re age(t) e~ Lo 2] (2.38.a)
v(t) = Im og.(t) e Hert+2(x)] (2.38.5)

In all these equations, r means rg + vot.

2.5. Optical Bloch Equations (O.B.E.)

The force operator {2.34) depends on the internal atomic operator
| e}{ g |, and the mean force (2.37) depends on the average value of
e g|,ie on the off diagonal element oy, of the internal atomic
density matrix 0. We now briefly explain how it 1s possible to derive the
equations of motion of o , which are called the optical Bloch equations
( for more details, see Ref. 9 and Ref. 2, Complement Ay ).

We start from the equations of motion of the four operators

M. =|a)(b] (2.39)
with a,b = eorg, which can be written
iR T1ap = [Mab, H = [Tap, HF* + Var + Vav] (2.40)

since M,5 commutes with H5 = P?/2M and Hy. As in section 2.2
above, we replace the field operator a;(t) appearing in the mode expan-
sion of Vv [see (2.5) and (2.6) | by the solution (2.12) of the Heisenberg
equation for a;(#). One can then show that, if the normal order has been
chosen in (2.40), the contribution of the source field, a}*****(f), to the
rate of variation of I, reduces to damping terms, proportional to the
spontaneous emission rate I'. On the other hand, the contribution of
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the free field appears as a Langevin force with zero average value. The
structure of the equation of motion of I, is thus the following

& — l int
ﬂab = ﬁiﬂabg HA -+ VAL] (2.41)

+ Damping terms + Langevin force

Taking the average value of (2.41) and using the fact that the Langevin
force has a zero average value, we get

oa =~ (1 HE 4+ Var o] la) + (;}}a) (2.42)

where the damping terms ( due to spontaneous emission )} have the
following form

(igee> = ~To. (2.43.a)
sp

dt
d
a“"‘t'“ggg == +F0'ec (2-43.5)
sp
d I
(.a.-zo“cg) = — -éw Teg (24430)
sp
d r
(EE"“) - Lo (2.43.d)
sp

Equations (2.43.a) and (2.43.b) describe the departure of the atom from
e by spontaneous emission and its transfer to ¢ with a rate I'. Equations
(2.43.c) and (2.43.d) describe the damping of optical coherences with a
rate I'/2. (Strictly speaking, there are also terms describing a radiative
shift of the evolution frequency of the optical coherences, but this shift
is supposed to be reincluded in the atomic frequency w A-)

From (2.42) and (2.43), it is clear that

d
a’t‘("ee +0ge)=0 (2.44)

since the trace of a commutator is zero. It follows that g.. + g4 is
constant and equal to 1 and that the four matrix elements 0,5 are not
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independent. We introduce the so-called Bloch vector with three inde-
pendent components u,v,w, where u and v are given by {2.38.a) and

(2.38.b) and where

w(t) = 3 [oeelt) = 905(1)] (2.45)

Note that u(t) and v(t) depend on t, not only through og.(t) and Teg(t),
but also through ®(r) = #(re + vot).

From (2.38), (2.45), (2.42) and (2.43), we get, using (2.2) and {2.10),
the following equations of motion of u, v, w, written in matrix form

" ~-r/2 §+& 0 u 0
v} =1-(+@ -T/2 - v+ 0 {(2.46)
kY 0 2 -I w ~T'/2
In these eguations, _
P =vyg- V@ =vy (2.47)

and Q, and ¢ are evaluated in r = rg 4 vot.

Equations (2.46) look like the usual Bloch equations of NMR. The
components u,v,w of the Bloch vector can be considered as the com-
ponents S, Sy, S; of a fictitious spin 1/2 submitted ( in the rotating
frame ) to two static fields, one along 0z, proportional to —{(é + &), one
along Oz, proportional to §2;.

3. Mean radiative force for a two-level atom initially
at rest

The general results of Chapter 2 are applied here to the particular case
of an atom initially at rest , in a point which we take as the origin of
coordinates

g - 0 (31(1)
Vg = ) (3.1b)
The origin of time can always be chosen in such a way that the phase

&(0) of the laser field in r = O is zero. The laser electric field (1.2) at
the position of the atom can then be written

E;(0,t) = e(0)E(O) coswit = Eo coswt (32)

L

o

e
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where £9 = €(0) £(0). We use in the following the simpler notation

Q1(0) = Q4 (3.3.0)
V.|

a0)= 5t  =a (3.3.8)

6(0) = V(I) irﬂo = ﬁ (33.1’3)

Note finally that, as a consequence of (3.1.b)

$ = vy V| =0 (3.4)

$.1. Steady-state solution of optical Bloch equations

Using (3.4) and the fact that the Rabi frequency (3.3.a) is time inde-
pendent { since the atom is at rest in r = 0 ), we see that the optical
Bloch equations given in (2.46) are here a set of coupled linear differ-
ential equations with time independent coefficients. They thus admit a
stea,dy state solution which is easily found to be (see Ref. 2, Chap. V )

Uyt = ‘“g% 1 is (3.5.a)

Vst = 5% 1 i - (3.5.5)

Wt = ——‘2—(—1“1"@*5 (3.5.¢)
where /2

S E (7 &0

is called the saturation parameter.

We will also need in the following the steady-state value 0! of the
population of the upper state, which can be deduced from (2. 45) {3.5.¢)
and the relation of + o} =1

1
sl
Tee &= 5 f Wyt =

2

5

1
2 1+s

(3.7)

It clearly appears on (3.7) that o2f tends to 1/2 for high saturation
parameters (s > 1).
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8.9, Reactive response and dissipative response

Fquation (2.37) shows that the mean force F is the sum of two con-
tributions respectively proportional to u and v. In order to nterpret
physically these two contributions in steady-state, we first show in this
section that u,: and vy describe respectively the reactive response and
the dissipative response of the atom to the laser excitation.

We take the steady-state average value of the dipole moment operator
d given in (2.8). This gives, using (2.39)

<d>31 = dez(ncg + nge)st

=de. (o)t +0ly) = 2de; Re Tae

(3.8)

On the other hand, the definition (2.38) of u and v and the fact that
$(0) = 0 lead to

gt + 1y = G»;i e—~ith emid?(ﬁ) . 0-;2 e—iwz,t (39)
‘so that )
Re o), = Re {{1ae ivg |eTE} (3.10)
= U COSWLE — Vg SIDW L '
From (3.8) and (3.10) it follows that
(Yo zQdez{ustcosw,gt-—vstsinw;,t] (3.11)

Comparing (3.11) with the expression (3.2} of the laser electric field at
the position of the atom, we conclude that u,: and v, are proportional
to the components of the mean dipole moment respectively in phase
and in quadrature with the driving laser field. They thus describe the
reactive response and the dissipative response of the atom to the laser
excitation.

The previous result suggests that, in steady-state, the mean energy
absorbed per unit time by the atom, and consequently the mean number
of photons absorbed per unit time (dN/dt)s, are related to the dissi-
pative response v, For the following discussion, it will be useful to
establish the equation relating (dN/dt}, to v,:.

The work dW done during dt by the laser cleciric field (3.2) acting
upon the charge ¢ of the atomic electron is

AW = qeoswyt Eg - dr (3.12)
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where dr is the displacement of the charge during dt. Using d = qr, we
conclude that the mean energy absorbed by per unit time in steady-state
is given by
W .
-(-iww = coswrt £g {d s (3.13)
dt /,,

If we now use the expression (3.11) of {d )¢, we get
dW 2 .
= = —2d 6, Egwi]vsecos® wpt + Uge sinwptcoswpt] (3.14)
si

Averaging over one optical period gives

dW
<—§—>st _ ﬁQIWL Vot (315)

where we have used the definition hQl; = —d €,-&¢ of the Rabi frequency.

Since each absorbed photon provides an energy hwy, the mean number
‘of photons absorbed per unit time in steady-state is given by

AN 1 /AW
<_.d_t_>at - <_§.>$t — v (3.16)

<§£> =Toll (3.17)
dt /., .

since it follows from (3.5.b) and (3.7) that

or equivalently

inst = FO’:; (318)

Equation {3.17) has a clear physical meaning. It expresses that, in
steady-state, the mean number of photons absorbed per unit time {
left-hand side ) is equal to the mean number of photons spontaneously
emitted per unit time (right-hand side ).

3.8. Dissipative force - Radiation pressure

We will call dissipative force the component of the mean force (2.37)
which, in steady-state, is proportional to v,

fdissip = “ﬁal vstﬁ (3 19)
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The physical meaning of Fgissip 18 particularly clear when the laser
wave is a plane wave with a wave vector kg

Ep{r,t) = €, cos{wrt —kr-r) (3.20}
It follows from (3.20) that the phase of the field is then
@(r) = —ki-r (3.21)

so that
B = "’V@‘rzo = Kz (3.22)

Inserting (3.22) into (3.19) gives in this case, using (3.16)

dN
Faiusip = B Ky vae = kg <fa—t_~> (3.23)
E3

.The interpretation of (3.23) is straightforward. During the time interval
di, the atom absorbs dN photons and gets a momentum dP = dNFRkg
corresponding to a steady-state mean force

dpP dNv
. = h — .
¢ > w () (3.24)

In the previous argument, we have not considered the momentum asso-
ciated with spontaneously emitted photons. The reason is that sponta-
neous emission occurs with equal probabilities in fwo opposite directions
so that the loss of momentum due to the reemission process is zero on
the average. The dissipative force is also called radiation pressure, or
scattering force, since it originates from absorption-spontaneous ernis-
sion cycles.

If one uses the expression (3.5.b) of vy, and the definition (3.6) of the
saturation parameter s, one can write (3.23) in an equivalent form

r Q2/2
2 82 +(I'2/4) +{(0Q%/2)

fdissip - hkL (325)

which displays more clearly the dependence of Fgissip on the various
parameters. Plotted as a function of the detuning é§ = wr —wa, Faissip
varies as a Lorentz absorption curve centered about § = 0, as expected
for a dissipative process. Let us consider now the vanations of Faissip

“E*"—E':-.é i
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with the laser intensity I, which is propertional to Q%. At low intensity
(more precisely for s < 1), one finds that F dissip 18 proportional to I
At high intensity (more precisely for s > 1), F dissip tends to a maximuin
value given by hk; ['/2, corresponding to a maximum acceleration

hkp T

3max — _ﬂ;f' "2’ (3‘26)

It is interesting to discuss some orders of magnitude. In (3.26), hkp /M
is the recoil velocity Vie associated with the absorption or the emission
of a single photon. Such velocities are usually quite small, for example
on the order of 3cm/s for Sodium or 3mm/s for Cesium. But the number
of fuorescence cycles per second can reach ( for s 3 1) values equal
to I'/2 which can be quite high since I'! is on the order of a few 1077
s. For example, for Sodium, I'"! = 16 107%s, so that a@max is on the
order of 10% m/s?, i.e. on the order of 10% ¢, where g is the acceleration
due to gravity. This explains how it 1s possible to stop an atomic beam
with resonant radiation pressure in a small distance, on the order of one
‘meter ( see W.D.Phillips’s lectures ).

8.4. Reactive force - Dipole force

We will call Freace the component of the mean force (2.37) which, in
steady-state, is proportional to us,

Freact = —h{l v (327)

In a laser plane wave, €& cos(wrt — ki, - 1), the amplitude £ and the
polarization € of the laser field are independent of r, so that V{1, and
consequently a, vanish {see the definitions (2.9) of 1, and (2.36.2) of
. It follows that Freace = 0 in a plane wave. The reactive force can
appear ouly if the laser wave is a linear superposition of several plane
waves. On the other hand, Fieact cannot involve a net absorption of
energy by the atom since it is associated with the reactive response of
the atom. These two properties suggest that Freace 15 associated with a
redistribution of photons between the various plane waves forming the
laser wave. Photons are removed from one plane wave by absorption
processes and transferred into another plane wave by stimulated emis-
sion processes. During such a redistribution, the energy of the field does
not change since all plane waves have the same frequency wy,. There is
no net absorption of energy by the atom. But, since the momenta of
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the photons associated with the various plane waves are not the same,
such a redistribution changes the total momentum of the field, and con-
sequently the momentum of the atom.

In order to make such an argument more explicit, let us eonsider the
simple case where the laser wave 1s formed by two plane waves with
wave vectors k; and k; { see also Ref. 2, Chapter V, Subsection C.2.d
). Fig. 2 represents, in the complex plane, the complex amplitudes E;
and Es of the two fields in a point r where they are assumed to be in
quadrature, so that the two vectors E; and Ej are perpendicular. We
will consider only the reactive response u of the atom to the total field £,
which has the same phase as E ( or the opposite phase, depending of the
detuning }. Let u; and ug be the projections of v onto E, and E;. The
component u; of u in phase with E; does not absorb energy on the wave
1. The same argument holds for uz and E5. On the other hand, us 1s
advanced in phase by 7/2 with respect to E,, whereas u; is retarded by
x/2 with respect to Ey. It follows that if E gains energy by interacting
with u,, E; loses energy by interacting with u;. Furthermore, since
‘1 By || uz =] B2 1} u1 |, the energy gained by one wave is exactly equal
to the energy lost by the other wave. We understand in this way, on
the one hand the existence of a redistribution between the two waves,
on the other hand the coherent character of such a redistribution which
has a sense { 1 — 2 or 2 — 1) depending on the relative phases of
the two waves at the point where the atom is located. Note finally that,
depending whether u has the same phase as E or the opposite phase, the
sense of the redistribution is different. This explains why the reactive
force is an odd function of the detuning,.

If one uses the expression (3.5.a) of u,, and the definition (3.6) of s,
one gets for Freact the following expression

hé vas
react ™ T F 3.28
Freact = =4 FT(T7/4) + (2 /2) (3.28)
The reactive force varies with § = wy — w4 as a Lorentz dispersion

curve, as expected for a reactive process. For § < 0 (wr < wa), the
reactive force pushes the atom towards the regions of higher intensity
since it has the same sign as V§?. The opposite result holds for 6 > 0
{(wr > wa). For each value of (%, i.e. of the intensity Iy, the value of &
which optimizes Freact 15 on the order of §;, the corresponding maximal
value of Freact being on the order of
2
(Freact )pax = ﬁgﬂi ~ hV (Y, (3.29)

1
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Fig, 2. Representation in the complex plane of a laser field E resulting
from the superposition of two fields E; and E7 in quadrature. The vectors u,
wy and ug represent the dipoles in phase respectively with E, E; and Fo.
Contrarily to Fdissip Which remains bounded when [ increases, Freact
increases indefinitely with Ir. Equation (3.29) shows that Freact Can
reach values on the order of fiky Y, since V2 can be on the order of
k;Q;, for example in a standing wave. Such a result corresponds to
exchanges of momentum hk; occurring at a rate §2;, as expected for a
redistribution process involving absorption-stimulated emission cycles.
It has to be compared with the corresponding result for Fgissip Which
ceaches maximum values on the order of hky times the spontaneous
emission rate T '

Note finally that the reactive force (3.28) derives from a potential U
since one can write

Freact = -VU (330)
where
2
Utr) = E;- La {1 + %%} (3.31)

For § < 0 {wy < wa), 2 region of maximum intensity appears as an
attractive potential well for the atom, the maximum depth of such a
potential well being on the order of | RQP* |.

In the following chapters, we will present other physical pictures for
the reactive force, which is also called the dipole force. In Chapter 6,
we will interpret the redistribution process at low intensity as resulting





