Atomic Motion in Laser Light 31

from interferences between different scattering amplitudes. The high
intensity limit will be considered in Chapter 7, and the dipole force will
be interpreted in this limit in terms of gradients of dressed state energies.

4. Moving atom . Friction force

We consider now an atom moving with a velocity ve, so that its position
r is given by
r = Vgt (41)

if we take r =0 at ¢t = 0.

4.1. Simple case of a laser plane wave

The laser wave is supposed to be a plane wave with wave vector kp
[sce Equ. (3.20) }. Since the amplitude and the polarization of the
taser electric field do not depend on r, the Rabi frequency is position
independent and consequently does not depend on time

Q1 (r = vo t) = Q = constant (4.2)
On the other hand, the phase & varies linearly with ¢
$(r)=—-kr-r “ {(4.3)
so that o

QMEE'V@KVQ'V(I’:*—I(L‘V(} (44)

Since Q; and ¢ are time independent, optical Bloch equations are
still a set of coupled linear differential equations with time independent
coefficients. They thus have a steady-state solution which is denved
from the solution obtained in section 3.1 { where vy was equal to zero )
by the substitution

§— 643 =6—ki vo {4.5)
or equivalently, since § = wg —wa, by the substitution
wy —+ wL—kL'Vg (46)

Such a result means that the atom moving with velocity vo “sees ” the
laser frequency shifted by the Doppler shift —kg - vo.
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Figure 3.a represents an atom moving with velocity vo in a laser plane
wave propagating along the negative direction of the 0z axis, so that its
wave vector can be written ky = —kg €z. If v = €z v is the projection
of v, along the Oz axis, we have —k-vo = kr, vo. Figure 3.b represents
the component along Oz of the mean force experienced by the atom
plotted versus kpvg [we just replace in Equ. (3.25) 6 by 6 + &L v ]. We
have assumed that & is negative. The force is negative and reaches its
maximum value when § = —k, ve, i.e. when the apparent laser frequency
wr, + kr ve coincides with the atomic frequency wa. Near vg = 0 we can
write

Folvo) = Felve =0) —avg + ... (4.7)

where the term linear in vp is a friction force , since it is proportional
to vg with the opposite sign. The coefficient « is called the friction
coefficient.
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Fig. 3. (a) Atom moving with velocity va in a laser plane wave with wave
vector k. (b) Mean force experienced by the atom versus krvg.

Replacing 8 by 6 — kg v in (3.25) and expanding the result obtained
for F{vo) in powers of k vo/I', we get for the following expression

$ &7

— —hk?
o= R TR EE (/4

(4.8)

where s is the saturation parameter defined in (3.6). It clearly appears
on (3.8) that o is positive for § <0. Fora fixed value of s, the value of 6
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which optimizes (4.8) is § = —I'/2. Taking this value of §, we can then

look for the optimal value of s which is found to be 5 =1, corresponding

to 2y = . Taking these values of é and ;, we determine the maximum
value of a r 12
L

max = 4.9

e = g (49)

If we come back to Equ. (4.7), and if we suppose that Felve =0) is

compensated for by a static external force, we find that the equation of

motion of the center of the atomic wave packet is

d
M—a‘;—" — F = —auve (4.10)

which means that the atomic velocity is damped with a rate

& hk% ER
Y= T AM o (4.11)

where Ejg is the recoil energy defined in (1.8). We have thus established
the result announced in section 1.3 according to which external variables,
such as the atomic velocity, have a characteristic damping time on the
order of Thxy =7 ' =~ R/Eg.

{.2. Laser standing wave

The laser wave is supposed now to be a standing wave along the Oz axis,
linearly polarized along 0z, so that {1.2) becomes

Ei(r,t) = ¢; &{z)coswit {4.12)
where the amplitude &/(z)} is given by
Eo{z) =2& coskpr (4.13)
Inserting {4.13) into (4.12), we get
Ei(r,t) = e, &fcos{wpt — kpz) + cos(wrt + ki)l (4.14)
which shows that the laser wave can be considered as the superposition

of two counterpropagating plane waves, with the same amplitude &.
It must be emphasized however that the force exerted by the standing
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wave is not simply the sum of the radiation pressures of the two coun-
terpropagating waves. There are interference effects between these two
waves which play an essential role.

In a standing wave, the phase of the field is the same everywhere, so
that # = V& == 0. On the other hand, the Rabi frequency is position
dependent and can be writien

QI(IE) - =

igg—({)ﬁ =20 coskpx (4.15}

where

_d&
R

is the Rabi frequency associated with each of the two counterpropagating
plane waves forming the standing wave. It follows that

1y = (4.16)

= Zs‘:zi:;) == v;j()g;) = —2kptankyr €, (4.17)

is different from zero. According to Equ. (2.37), the mean force ex-
perienced by the atom depends only on the component u of the Bloch
vector.

In order to find u, we have to solve optical Bloch equations (2.46). If
the atom is moving whith velocity v along Oz, we can replace z by vol.
We then see on Equ. (4.15) that Qy(z) becomes a sinusoidal function
of ¢, with frequency krve. On the other hand, ® vanishes since ¢ does
not depend on z. We conclude that , for an atom moving in a standing
wave, optical Bloch equations form a set of coupled hnear differential
equations with coeflicients depending sinusoidally on time. Contrarily
to what happens for a plane wave, it is in general impossible to solve
analytically these equations, and we must use some approximations.

4.2.1. Limit of small velocities (kpve < T')

We present here a method of resolution of optical Bloch equations, first
introduced in Ref. 8, and which consists of looking for an expansion
of the solution in powers of kvg/I'. The zeroth order term represents
the “adiabatic” solution, corresponding to a situation where the atom
is moving so slowly along 0z that its internal state, when it passes in z,
is the same as the one associated with an atom at rest in z. The first
order term gives the first correction to the adiabatic approximation. It
is linear in vp, more precisely in kvg/T" which is the nonadiabaticity
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parameter, equal to the ratio between the distance wpI'™! over which
the atom travels during the internal response time I'! and the laser.
wavelength k~! which characterizes the spatial vaniations of the laser
field. When inserted into the expression (2.37) of the force, this first
order correction gives rise to a force linear in vo, which is precisely the
friction force.

In order to find the terms linear in v in the solution of optical Bloch
equations , we first write Equations (2.46) in a compact matrix form

()= (24w () =B -(X) (@19

where the eolumn vectors X (Bloch vector) and X, (source term} and
the square matrix B {Bloch matrix) are given by

u 0 I f2 ] 0
W=(v] xy={ 0o ) ®={ 5 -2 2@
w _T/2 0 O(z) T
(4.19)

In(4.18), we have used the “hydrodynamic derivative” d /dt = (8/0t) +
vo{8/0z).After a transient regime which lasts a time on the order of
I'~!, the contributions of X /3t vanishes and we have

a
vo5-(X) = (B)(X) — (Xe) (4.20}
We now insert the expansion
(X) = (XY +(xW)+... (4.21)

of X in powers of kug/I into (4.20). To order 0 in kuvg /T, the left-hand

side vanishes and we get
0= (B)(X*”) - (X.) (4.22)

or equivalently

(X®) = (B)"Y(X,) (4.23)

which is just the steady-state Bloch vector for an atom at rest in . To
order 1 in kv /T, we then get

vﬂ%(x@) = (B)(x) (4.24)
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which can be transformed, using (4.23) into
1 1. 9 v 1 9
(XD = (B) oy 5-(XO) = (B) Two 5-(B)H(X)  (4:29)
Jz Oz

Finally, we insert the expansion u = w(®) + u(1) + ... of the first com-
ponent of X into the expression (2.37) of the force . We don’t give here
the expression of the friction force which results from such a calculation,
since it can be found in Ref. 8. We just point out a few important
characteristics of such a friction force.

Farce B
(arbﬁfn;ruj -
vnels) y

Fig. 4. Principe of Doppler cocling. Because of the Doppler effect, the
radiation pressures exerted by the two counterpropagating waves forming the
standing wave get unbalanced { curves in dotted lines ), resulting in a net
force opposite to the atomic velocity { curve in solid line ).

Consider first the weak intensity limit: sq < 1, where sg 18 the sat-
uration parameter associated with each of the two couterpropagating
waves forming the standing wave. One finds in this limit that the fric-
tion force, averaged over one wavelength, coincides with the sum of the
two friction forces exerted by the two counterpropagating plane waves.
1t thus appears that, at weak intensity, the interference effects between
the two counterpropagating waves acting upon a moving atom vanish
when averaged over one wavelength. Such an important result will be
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rederived in Section 6.5 from a different point of view using scattering
amplitudes. It actually provides the justification for the physical pic-
ture usually given for Doppler cooling'®. Consider an atom moving with
velocity vy along a weak standing wave, formed by two counterpropagat-
ing waves +kz and —ky,, slightly detuned to the red side of the atomic
frequency { Fig. 4 ). Because of the Doppler effect, the atom gets closer
to resonance with the wave opposing its motion, farther from resonance
with the other wave, so that the two forces exerted by the two waves
become unbalanced, resulting in a net force opposite to vg .

At high intensity (so 3> 1), one finds that, contrarily to what happens
at low intensity, the friction force F(z,v), averaged over one wavelength,
becomes an “antidamping” force for a red detuning (wr < wa) and a
friction force for a blue detuning (wy, > wa ). The physical interpretation
of such a surprising result will be given later on, using the dressed-atom
approach (see Chapter7, Section 7.4).

§.2.2. Arbitrary velocity. Method of continued fractions.

When kv becomes on the order of I', or larger than T', it is no longer
‘ possible to use the expansion (4.21} of the Bloch vector in powers of
kvg/T'. We present in this section another approach to the problem,
first introduced in Ref.14, and using the fact that the components of the
Bloch vector are periodic functions of time, which itself is a consequence
of the sumsoidal dependance on t of 1,(z) = Qi{vet) [see Equ.(4.15)].

Since u,v,w are periodic functions of time, we can expand them in
Fourier series. Inserting these expansions in optical Bloch equations
(4.18) leads to a set of recurrence relations between the various coeffi-
cients of the Fourier series expansions of u, v, w. It turns out that these
equations can be formally solved in terms of continued fractions, which
are very convenient for computer calculations. We will not give here the
details of such calculations, which can be found in Ref. 14. We just
mention a few important results obtained in this way, and give their
physical meaning.

In Figure 5, we have sketched the vanations with krvg of the static
part of the force F = —hQ;(z) u(z,v) @, averaged over one wavelength.
We have supposed a red detuning (§ < 0), and a intensity high enough
so that the slope in vg = 0 is positive, contrarily to what happens at low
intensity where we have a friction force for & < 0 (see end of the previous
subsection 4.2.1). For larger values of kpvov, we see on Fig.5 that the
force changes sign and exhibits resonant variations around values of kzvg
which, after extrapolation to zero laser intensity, correspond to kvg =

_5§/3,—~6/5...
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Fig.. 5. Variations with kzvg of the static part of the mean force ex-
perienced by an atom moving in a high intensity standing wave. This curve
corresponds to § = —2T, ; = 5. The radiative shifts of the Doppleron

resonances are already quite large.

Fig. 6. {a) Frequencies of the two counterpropagating waves forming the
standing wave in the laboratory frame and in the rest frame. (b) Resonant
multiphoton process responsible for the resonance krve = —§/3.

The resonances appearing on Fig. 5 can be simply interpreted in terms
of resonant multiphoton processes. For example, Figure 6 represents
such a multiphoton process, responsible for the resonance krvg = —&/3.
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In the atomic rest frame, the apparent frequencies of the two counter-
propagating waves forming the standing wave are Doppler shifted to
wr, + krve and wp — kgvp respectively (Fig.6.a). The atom can make
a resonant transition from g to e by a three-photon process involving
the absorption of one wy, + kpve photon, the stimulated emission of one
wyr — krve photon and the absorption of a second wr + krve photon
(straight arrows of Fig.6.b). Such a process is resonant if

2(UJL+]£LUU)_(WL—*}CLUQ)EWA (426)

ie. if
wy —wa = —3krvg (4.27)

The width of the resonance is determined by the natural width I' of
the upper state. Once in e, the atom falls back in ¢ by a spontaneous
emission process (wavy arrow of Fig.6.b}. Similar diagrams involving
n + 1 absorptions, n stimulated emissions and one spontaneous emission
. could be given for explaining the resonance kpvg = -8 /(2n + 1).Such
resonant multiphoton processes involving photons with Doppler shifted
frequencies are called "Dopplerons”!®.

8 The ot- o~ configuration for a J, = 0 «+ J, = 1 transition.
g g

Figure 6.b clearly shows that redistribution processes play an impoertant
role in the resonances appearing on Fig. 5, since we have absorption of
photons from one wave followed by stimulated emission of photons in
the counterpropagating wave. Actually, all the difficulties encountered
in the theoretical description of the force experienced by an atom in a
standing wave come from these redistribution processes which involve
interference efects between the two waves. We will come back to these
problems in Chapter 6. We present now another laser configuration
and another atomic transition, for which there are no redistribution
processes, and which consequently lead to much simpler results for the
velocity dependent force’.

We consider an atom with a transition J; = 0 & J. = 1, having a
single Zeeman sublevel go in the ground state and three Zeeman sublevels
e_1.e0 and ey in the excited state (Fig.7.a). This atom is moving with
velocity v along the same axis as two counterpropagating waves having
respectively a right circular (0F) and a left circular (¢7) polarization
(Fig.7.b). Because of angular momentum conservation, the o wave
excites only the transition go ¢+ e4; and the o7 wave excites only the
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Fig: 7. {a) Zeeman sublevels for an atomic transition Jg = 0 «— Je =

1. (b) Laser configuration formed by two counterpropagating waves having
respectively a right circular (o) and a left circular {0~ ) polarization.

transition go « €—1. It follows that if the atom absorbs a ¢+ photon and
goes from go t0 €41, 1t cannot come back to go by stimulated emission
of a photon in the other ¢~ wave. In other words, conservation of
angular momentum prevents any redistribution of photons between the
two counterpropagating waves. This explains why the calculation of the
velocity dependent force is, in this case, much simpler than for a two-level
atom. As shown in Ref. 7, the force can be exactly calculated. Fora red
detuning (wr < wa), it remains 2 friction force for all intensities. No
resonances, corresponding to Doppleron multiphoton processes, appear
in the curve giving the variations of the force with the velocity.

5. Fluctuations of radiative forces

After having studied in the preceding two chapters 3 and 4 the mean
value F of the force, we consider now the fluctuating part &F of this
force given by (2.32) and (2.33). Such a fluctuating force introduces
noise in atomic motion and is responsible for a diffusion of atomic mo-
mentum which limits the efficiency of laser cooling and laser trapping.
In this chapter, we explain how it is possible to describe theoretically
such fluctuations and we discuss the physical content of the results.
Since atomic motion in laser light presents great similarities with
Brownian motion, we have thought it would be useful to recall first
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(Section 5.1) a few basic results concerning classical Brownian mation.
We then approach the problem of fluctuations of radiative forces, first
in the Heisenberg picture ( Section 5.2 ), where we follow closely the
presentation of Ref. 8, then in the Schrodinger picture ( Section 5.3 ),
where we summarize the results derived in Ref. 17.

5.1. Classical Brownian motiont®

5.1.1. Langevin equation

Tn order to describe the random motion of a heavy particle, with mass
M and momentum p , immersed in a fluid of light particles, Langevin
introduced the following equation (for each component p of p)

S p(0) = —vplt) + F(®) (5.1)

, The total force acting on the particle is split into two parts : a friction
force, —yp(t), representing the cumulative effect of collisions which damp
the particle momentum with a “relaxation time”

Tp =~ (5.2)

and a Auctuating force F(t), called the “Langevin force”, responsible for
the fluctuations of p(t) about its mean value. In (5.1}, F(¢) is considered
as an external force, independent of p(t), having a zero average value

F(t)y=10 {(5.3.a)
and a correlation function equal to
F()F(t') = 2D g(t — t') (5.3.5)

where D is a coefficient which will be interpreted later on, and where
g(t — t') is a normalized function of t — ¢’

+oo
f_ g{r)dr =1 (5.4)

which is an even function of t —t' (since F(t) is stationary), and which
has a width on the order of the collision time ..

g
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Usually, the collision time 7. is much smaller than the relaxation time
Tr
Te & Tr (55)

which means that we have two well separated time scales in the problem.
Tt follows that, with respect to functions of ¢ —t' varying with a char-
acteristic time T, Eq.(5.3.b) can be approximated, taking into account
(5.4), by o

FOF(#) ~ 2D 8(t —t') (5.6)

5.1.2. Momentum diffusion coefficient
The solution of Eq.(5.1) corresponding to p(te) = pe can be wrtten

¢
p(t)zpﬂﬁ““’“%u}*/ dt’ F(t') e 707 (5.7)

tg

From (5.3.a), it follows that
p(1) = poe™ 77 (5.8)

which means that the mean momentum of the particle is damped with
a time constant Tp = 7.
We now evaluate the variance oZ(t) of p

72(t) = [p(t) ~ 7)) (5.9)

Using (5.7),(5.8), (5.3.b) and (5.6), and assuming t — to 2> 7, we get

¢ ¢
Ui(f) e j dt’ / at" F(t')F(tn) e“'}f{t—t’)e——ﬂt«»—:”)
t t
oo (5.10)
D ~2y(t~10)]
[1 — e |

~

For time intervals short compared to the relaxation time {t — {p <
~~1), we can expand the exponential of {5.10) and we get

Te Lt —tg Ly — o2(t) = 2D (t — ta) (5.11)

It follows that, at short times, the variance of p(t) increases linearly
with t —fg, with a rate 200, This shows that ) is a momentum diffusion
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coefficient. For long time intervals (t — fg > +~1), the exponential of
(5.10) becomes negligible and we get, using (5.8)

— — D
t—t°>>’y"“1 et gi:pg—g_;{z:pzmw (5.12}
The variance of p tends to a fixed value equal to D/~. On the other hand,
if the particle is assumed to reach an equilibrium at the temperature T

of the surrounding fluid, we have

pr 1
= = kT 513
53 = 378 (6.13)
Equating (5.12) and (5.13) gives the Einstein’s equation

D = M~kgT (5.13)

which relates the fuctuations of F, characterized by D, to the damping
rate vy which characterizes the dissipative force damping the particle
momentbuim.

5.1.8. Classical regression theorem

* In this section, we present a simple method for calculating the correla-
tion function of p(t), which can be easily extended to quantum correla-
tion functions.

We first calculate the correlation function F{(t)p(¢'), involving both
F(t) and p(t'). If we let o go to —oo in (5.7), we get a steady-state
correlation function given by

y
F(t)p(t') = / at" FEF(E") e =" (5.15)
oo T i
2DE(t—1)

If t > t', more precisely if t — ¢ > 7, the delta function &(f — ") of
(5.15) is outside the domain of integration, so that

t—t > 7. — F(t)p(t')=0 (5.186)
Such a result means that p(f'), which depends on the Langevin force
F(#") in the past of ', cannot be correlated with the Langevin force
F(t) in the future of t'. On the other hand, if ¢ < t', more precisely

if ' — ¢ > 7., we can extend to oo the upper limit of the integral of
(5.15) which is then easily evaluated

-t 7 s FOpty=2De (5.17)

Finally, for ¢ close to ¢/, F(t) p(t') varies rapidly between 2D and 0 over
an interval of width 7., taking the value D for t = t' ( since F($)F(t") is
an even function of t — ¢"). All these results are regrouped on Figure 8.
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b Fop®

Fig: 8. Variations of F(t) p(t') versus L.

We calculate now the autocorrelation function p{t) p(t') of p(t}). For
. that, we multiply both sides of (5.1) by p(#') and we take the average
value

E%E p(t) p(t') = —v p(t) p(t') + F(2) p(t') (5.18)

For { — # > e, the last term of (5.18) vanishes, according to (5.16), and
we get

i s

R CL.G R OF CONMCEY

For 0 < t —t' < 7., £(t)p(#') is on the order of D, according to Fig. &,
<o that the contribution of the last term of (5.18) to p(t) p(t'}, which is
equal to the integral over t” from ¢ to t' of F(t) p(t"), remains bounded
by Dr.. Since 7. < y7F, this contribution is very small compared to
D~~1, which is nothing but the initial value p? of p(t)p(t'), for t = ¥/
(see Equ. (5.12)). We can therefore ignore, for t > t', the last term
of (5.18) and consider that the “two-time average " p(t) p(t') obeys the
equation

S KO RE) = 7 ) (5:20)

which is quite similar to the equation

%p’({j = 50 (5.21)
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obeyed by the “one-time average’ —;;(5")" In other words, the fluctuations
“regress” as the mean values. Sucha result can be extended to quantum
correlation fonctions and is known as the “quantum regression theorem”
{see Ref. 18 and Ref. 2, Complements Crv and Ay ).

5.1.4. Kramers-Fokker-Planck equation
Consider a Brownian particle moving in a one-dimensional potential

well U(z). Its position z(t) and its momentum p(t) obey the following
equations

%;i — .g.% (5.22.a)
9P o () - S Ua)+ F(t) (5.22.5)

which are a straightforward extension of the Langevin equation {5.1).
We want here to give the principle of the derivation of the evolution
Lequation of the distribution function P(z,p,t), which is the probability
density of finding the particle with position z and momentum p at time
i.

It is clear on (5.22) that the rates of variation of z(t) and p(t) de-
pend only on the state of the system at the same instant ¢, and not on
its “history” in the past of {. For that reason, the stochastic process
{z(t),p(t)} is called a “Markov” process. Note that {p(#)} alone would
not be a Markov process, since dp(t)/di depends, according to (5.22.b)
on dU(z)/dz, i.e. on z(f) = foto dt'p(t')/M which involves the whole
past history of p(t).

The distribution function P(z,p,t) associated with the Markov pro-
cess {z(t),p(t)} obeys the equation

P(x,p,t)z[jdxdp H(Zt,p,t/z',p’,t’)‘p(;g"p’j') (5.23)

where [I(z,p,t/z',p/,t') is the conditional probability for ending in z,p
at time f if one starts from z', p' at time ¢'. This probability is normal-
ized, so that

/J[d:r:dp (z,p, t/z',p,t') =1 (5.24)

We now choose a time interval 6t such that 7. € 8t < Tg . Replacing
in (5.23) and (5.24) t by ¢t 4 6t and ' by t, we derive from (5.23) the
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following equation
P(z,p,t +6t) — Plz,p,t) =
== //dx' dp' li(z,p,t + 6t/2',p', t) P(z', P, 1) (5.25)

- j / de dp TI(a", p7 ¢ + 812, p, ) P(x, P, )

which has a clear physical meaning. After division by 6t, such an equa-
tion expresses that the rate of variation of P(z,p,t) in z,p is equal to
the rate in minus the rate out. It can thus be considered as a master
equation for Pz, p,1).

We suppose now that the variations

bz = z(t + 8t) — z(1)

bp = p(t + 6t) — p(1) (5:28)

‘of z(t) and p(t) between ¢ and ¢ + 6 are small compared to the widths
Az and Ap of P(z,p,t) in z and p respectively (limit of small jumps).
By expanding in (5.25) P(z',p',t) in powers of ' —z and p’ —p, it is then
possible to approximate the master equation (5.25) by a partial differ-
ential equation. If the Taylor series expansion of P(2',p',t) is stopped
after order 2, one gets

(5.27)

where we have used the simplified notation z; = z,z2 = p and where
M; and D;; are given by

bz
M= 1l hihul g
ro<steTy bt (5.28.a)
1 bz;6xz;
D = — i L 23,
I rcngls?é;q*n 5t (5.28.b)

In order to calcule M; and Dj; we come back to equations (5.22}, and
we derive, after calculations similar to those of subsection 5.1.2,, the
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following relations

_p o _ 40
e o " (5.29)
z zép P
e 2 ) = — =20

&5t 0 &t 5t 2

which inserted into (5.27) give the K ramers-Fokker-Planck equation

d p 0

ap(mspat)”*ﬁap(xapvt) i}
i} AU i (5.30)
Pl o s = ¢

5.2, Analysis of mementum diffusion n the Heisenberg picture

5.2.1. Momentum diffusion coefficient and Langevin force operator
By definition, the momentum diffusion coeflicient D is related to the

rate of increase of the momentum vanance

— d 2
2D = = AP(D) (5.31)

with

AP(t) = ([P(t) — (P(t))") (5.32)

Starting from the Heisenberg equation for P(t), given in Section 2,
d
—(—imiP(t) = F(t) (5.33)

where F(#) is the force operator, we get

(P~ PO = [P -2 5P (P) (5.34)
={F-P+P-F)-2(F)-(P)

Inserting into (5.34) the solution

P@ymﬂdeFuwr) (5.35)

g
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of (5.33), and using (5.31) leads to

5D =2 Re [Dde [(F(t) - F(t — 7)) — (F(8) - (F(t = 7))

o (5.36)
=2 Re / dr (8F(t)-6F(t — 7))
a
where §F(#) is the fluctuating part of F(t)
SF(t) = F(t) — (F(t)) (5.37}

It thus appears that the momentum diffusion coefficient 1s related to the
time integral of the correlation function of the Langevin force operator.

In the following subsection, we give a brief outline of the calculation of
such a correlation function, leading to the expression (5.44) for D. The
physical interpretation of this expression is then given in Subsection
5.2.3. The reader, not interested in the method of caleulation of (5.36),
can thus directly proceed to Subsection 5.2.3.

5.2.2. Correlation funciion of the Langevin force operator

We have seen in Chapter 2 (see (2.32) and (2.33)) that the Langevin
force §F(r,t) is the sum of two forces éFy,.(r,t) and 6F vac(r, f) repre-
senting respectively the contributions of the laser field and the vacuum
field to the Langevin force. From the expression (2.4) of Var and the
fact that only the z-component of d is non-zero, we easily get

5Fia.s - [dz - (dz)]VELz (538)

where §d, = d, —{d.) is the fluctuating part of d.. A similar calculation
starting from (2.5) and (2.14), allows one to transform (2.33.b) into

§Fyac = d,V(E?)" 4+ [V(EY) 7] d. (5.39)

Replacing 8F by 8Fiss + 6Fvac in (5.36) shows that the correlation
function {§F(¢) - 6F(t — 7)) is a sum of 3 contributions, one involving
only 6F,s, one involving only éFyac and one involving both éF.s and
§F,.c. One can show that this last crossed term is zero as a result of
the fact that the vacuum free field gradients, appearing in (5.39) and
evaluated at time t, commute with the dipole operator d.(t') evaluated
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at any other time ¢' {*). This allows one to put V(EY*)T at ihe extreme
right, and V(EY*)~ at the extreme left, which then gives zero when the
vacuum average value is taken (see (2.15)). This shows that D can be
written

D= Dlas + Dvac (5~4G)
where -
Dis =2 Re / dr (6Fas(t) - §F1s(t — 7)) (5.41)
0
(v ]
Dvac =2 Re ] dr {8Fvac(t) - §Fvaclt — 7)) (5.42)
0

In (5.38), VEL, 15 a c-number, so that the correlation function of
§F\.s is proportional to the correlation function of éd,. To calculate
(6d.(¢)6d.(t — 7)), one can first express &d, in terms of éIl., and &1,
where Mg =| a){b | with a,b = ¢ or g(see (2.39)). Now, we have
already mentioned in Section 2.5 that the equation of motion of 1.
has the structure of a Langevin equation with damping terms and a
'Langevin force (see (2.41)). Multipling both sides of the equation giving
1.4(2) by ea(t'), and taking the vacuum average value, one can then
show, by an argument very similar to the one used above in Subsection
5.1.3, that, for £ > t, the two-time averages (Mas{t)1a(t")) obey the
same equations as the one-time averages (ILo5(t)} (c and d being fixed),
i.e. optical Bloch equations. Such an important result, known as the
“quantum regression theorem” (see Ref. 18 and Ref. 2, Complements
Cry and Ay) means that the correlation functions of the atomie dipole
moment can be calculated from optical Bloch equations.

It remains to evaluate (5.42). Inserting (5.39) into (5.42), one sees
that, due to (2.15), the only non-zero term is

(01 d.(t) [V(EPT ) [VER)(t ~ )] de(t =) [0} (5.43)

The order of the two field operators appearing in (5.43) can be changed
using their commutator, which is a c-number. The contribution of this
commutator is therefore proportional to the correlation function of d;,

(*) To demonstrate such a result, one can express the annihihation oper-
ators a;(t) appearing in the field gradients as a function of a;{(i') and of
the source field radiated between t' and t. a;{t') commutes with d,(&').
The remaining commutator appears as an integral over the modes ke of
an odd function of k and thus vanishes.

r
o
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which can be calculated from optical Bloch equations. The remaining
term can be transformed, using the fact mentioned above that the vac-
wum free field gradient operators commute with the dipole operators at
any time. One can then easily show that this term is equal to zero, as a
consequence of {2.15).

To summarize, we have shown that D is a sum of 2 terms. The first
one, Dy, , involves §Fj,s and thus VE, , i.e. a and f given in (2.36).
The second one, Dyac , comes from the commutator of the vacuum free
field, i.e. from the quantum nature of this field, and is independent of a
and 8. Both Dy, and D,,. involve correlation functions of the atomic
dipole moment which can be calculated from optical Bloch equations,
using the quantum regression theorem.

5.2.8. Physical discussion

For a 2-level atom at rest in r = 0, the method of calculation outlined
in the previous subsection leads to the following result

| A
D =+ Pk —
-t L4 t1ts
T s 126% - I'? )
_K2gr = 2
R 4(1%}3{“ 452+r2“”“}
T s —485% + 312 482 + 12
2 2 2 3
tha Z(HS)S{ e ST T 3}
2 4]:‘2
—Ka- 5
e ﬂ6(1+s)3{46?+1‘2+3}

(5.44)
where s is the saturation parameter in 0, given by (3.6}, and where «
and B are the logarithmic Rabi frequency gradient and phase gradient
in 0 given in (3.3.b) and (3.3.c).

The first line of (5.44), which is independent of a and 8 is Dvac, which
comes from the non commutation of the vacuum free field operators

I' s

Dyoe = Bk} —
“ Lg14s

(5.45)

Such a term describes the momentum diffusion due to the random direc-
tion of the spontancously emitted photons. The atomic momentum P
accomplishes a random walk in momentum space, the size of each step
being fiky , and the number of steps during 6t being equal to To2iét,

€
where 5! is the steady-state population of the upper state, given by
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(3.7). 1t follows from the well-known properties of random walk that
the increase of the variance of p during 6t can be written

@p?) — (5p)" = Kk} Toltét 5.4

5.46
gg S st |
4 1+4s

= h%k

The comparison of (5.45) and (5.46) then shows that the right-hand side
of {5.468) can be written 21),..6t, which confirms the physical nterpre-
tation of Dyac-

The three other lines of (5.44) correspond to Dias. For a laser plane
wave, § = —kg and a = 0O, so that only the second line of (5.44)
contributes to Dias. Such a term then describes the momentum diffusion
due to the fluctuations of radiation pressure, more precisely due to the
Suetuations in the number of absorbed photons. It can be written, using

(3.7}, as

Ll ¥ ~
Dans = 5 kLD 1—%—3(1 +@) (5.47)

where @ is a dimensionless factor given by

0= 2Q2(46% — 31
(2w} + 482 + T2)°

(5.48)

In order to interpret {5.47), we introduce the number 4N of laser photons
absorbed during 6t, and the corresponding momentum transferred to the
atom &p = hkr 6N Since §N is a random variable,there is an increase of
the atomic momentum variance due to the fluctuations in the number
of absorbed photons

@p?)— (3p)° = w2#} [6W2 - GN) (5.49)

Consider first the mean number of photons absorbed during &1, which 1s
given by (see Equ. (3.17))

e ' s
SN =T o8 6t = ~—
ol bt 5150

5t (5.50)

If 6N was following a Poisson law, the variance of § N would be equal
to 6N. Actually, this is not the case, and one can show!® that there
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are corrections to Poisson statistics in resonance fiyorescence which are
precisely described by the factor @ given in (5.48)

SNT - (6N)’ =8N (1+Q) (5.51)

It thus appears that (5.49) can be rewntten, using (5.51), {5.50) and
(5.47) as
(5p%) — (3P )" = 2 Daps 6t (5.52)

which confirms the physical interpretation of D,ps as being due to the
fluctuations in the number of absorbed photons. The comparison of
(5.45) and (5.47) shows that Dyaec and D,pe have the same order of
magnitude.

In a laser standing wave, § = 0 , so that only the third line of (5.44)
contributes to Di.s. Such a term then describes the fluctuations of dipole
forces and will be denoted by Dgip. We consider here a laser standing
wave along the Ox axis, linearly polarized along Oz, and having a node
mzr =0

Br(z,t) =€, 28 sinkz coswt (5.53)

In (5.53), & is the amplitude of each of the two counterpropagating
waves forming the standing wave, the corresponding Rabi frequency be-
ihg equal to £2;. The standing wave Rabi frequency in x is thus equal
to

Qy(z) =28 sinkpz (5.54)
so that v (2) .
T Th(z) M tankpe (5-55)
Finally, the saturation parameter in z, s(x), is equal to
s(z) = 4sgsin’ kpz (5.56)
where .
27/2 max
S0 /2 (5.57)

T8 (T2 4

is the saturation parameter of each of the two counterpropagating waves
and S, the maximum value of s(z). We will not discuss bere the
general expression of Dy;, obtained when (5.55) and (5.56) are inserted
into the third line of (5.44). We will restrict ourselves to the low intensity
limit (sq < 1) and to the high intensity limit (so > 1).
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If s < 1, the third line of (5.44) reduces to
Daip = R*kE T sgcos’ kpz = RAEET f—“fi cos’ kpz (5.58)
whereas the first line is equal to
Duae ~ K22 Dspsin’ kpz (5.59)

Near a node, for example near z = 0, we gel a very surprising result.
Since there is no light in a node, we expect that there are no fluorescence
photons. Effectively, Dvac — 0 if z — 0. But Dgj, takes in z = 0 its
maximum value, equal to hzk% Isq = A* k2 T smax/4 . We will come
back to this problem in Section 6.3 and show that, near a node, the
large value of Dy;p is due to a new kind of correlated redistribution.

If so > 1, the third line of (5.44) tends to(*)

2
Dygip =~ K2k} cos® kpz & (5.60)
2r
Contrarily to Dy, and to Daps given in (5.45) and (5.47), Daip does
not saturate at high laser intensities. A dressed atom interpretation of
this result will be given in Section 7.3. We have seen above, in Section
3.4, that the depth of the optical potential well associated with dipole
forces increases hinearly with ©; . The fact that the heating due to the
fuctuations of dipole forces increases quadratically with €21, as shown
by (5.60), introduces severe limitations for laser traps. Note however
that it is always possible, as suggested in Ref. 20, to aliernate in tume
cooling and trapping phases.

5.8.4. The Doppler limit in laser cooling

The equilibrium temperature reached in laser cooling results from a
competition between laser cooling which damps the atomic velocity with
a rate 7 = a/M, where a is the friction coefficient (see (4.8))

5p/5t = —Yp (5.61)

and the heating due to momentum diffusion

& 2
(w&) = 2D (5.62)
6t diffusion

(*) Equation (5.60) is not valid near a node, since s{z) — 0 in such a
place
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From (5.61), it follows that

2z
(—(2}2—) = —2vyp? (5.63)
6t cooling

In steady-state, the two rates (5.62) and (5.63) cancel out so that yp* ~
D. The order of magnitude of the equilibrium temperature is thus

2
P D
R . 5.64
ot ~ kT M~y (5.64)

From (4.8), it follows that, at low intensity, and for §= -T/2, a~
A k% s¢ , so that
hk?
A MA?C—SG (5.65)
On the other hand, from the results derived in this section (see (5.45),

{(5.47) and (5.58)), we have, at low intensity
D ~ 1 ki Tsg {5.66)

Inserting (5.65) and (5.66) into (5.64) leads to
D
kgTp ~ —— ~ Al .67
5Tp ~ 37~ (5.67)

It thus appears that the temperature reached by laser cooling for 2-level
atoms is determined by I'. The exact value of the minimum temperature
which can be reached is given by kpTp ~ RI'/2 (see Refs. 8, 21, 22) and
is called the Doppler limit. Ty is on the order of 240 pK for Na and
125 uK for Cs.

5.8. Quantum kinetic equation for the atomic Wigner function

We try now, using the Schrddinger picture, to derive an equation of mo-
tion for the reduced atomic density operator describing the translational
degrees of freedom of the atom. We just give the outline of the deriva-
tion, putting the emphasis on the new results and on the new physical
insights. More details may be found in Refs.17 and 23.
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5.3.1. Atomic Wigner function

When both internal and external degrees of freedom are treated
quantum-mechanically, the atomic density matrix is labelled by two
types of quantum numbers. For example, if one uses the position rep-
resentation for the center of mass, the atomic density matrix elements
are {i,r'lo]j,r'"), where {,j = ¢ or g and r'and r" are eigenvalues of the
position operator R. Similarly, if we use the momentum representation,
we get {7, p'lols, p")-

A very useful representation, which treats in a symmetrical way posi-
tion and momentum, is the so called “Wigner representation” 24 which
associates with the atomic density operator o, a function of r and p
given by

1 . : u . u
Wi(r,p) = 73 [ Cuexp(~ipu/h) (ir+ 5 lolsr—3)
h3 2 2
v v (5.68)
=73 dgvexp(—i—ir.v/ﬁ)(i,p«%«-i}dij,p_—éw)
From (5.68), one can introduce the Wigner function
f(r: p) = Wca(ra p) + ng(r; p) (569)

which is a density of “quasi-probability” to find the atom in r with mo-
mentum p, regardless of its internal state. The atomic Wigner function
is real, normalized and appears as an ordinary probability density for
all completely symmetrical functions of R and P. For example,

—;(R.P +PR) = fd3rd3p r.p f(r,p) (5.70)

Note however that f(r,p) can take negative values, which shows that it
is not a true probability,

5.8.2. Generalized optical Bloch equations

These equations of motion generalize those discussed in Section 2.5
above, to the case where the external degrees of freedom are treated
quantum-mechanically. They have the same structure as in 2.42, i.e.
the sum of hamiltonian terms coming from the atomic hamiltonian H 4
and the atom-laser interaction hamiltonian V4, and damping terms due
to spontaneous emission. The new features are the appearance of the
external quantum mumbers.
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For example, the equation of motion of W, ,(r,p) is found to be

g
'é‘;wyg(r, P) =

p 4

- ﬁ ) —é; Qg(ry p)

+ Eg_ dsk {6—(k)e—ik,rWeg(r1p - _?:gf_) . £+(k)€+ik'rwgﬁ(r,p 4 E;)]

T f 2k () Wee(r, p + Bk 4%)
(5.71)

The first term comes from the commutator of o with # &= P?/2M,
the second one from the commutator of o with Var, £7 (k) and £ (k)
being respectively the Fourier transforms of the positive and negative
frequency components of the laser field. Finally, the last term describes
the feeding of the ground state from the excited state by spontaneous
emission, ¢(r) being the relative probability of spontaneous emission of
a photon in the direction & and k4 being equal to wa/c.

Tt clearly appears on (5.71) that the atomic momentum undergoes
discrete changes during the absorption and emission processes. It fol-
lows that the generalized optical Bloch equations are finite difference
equations coupling the four functions W;;(r,p) with i,j = e or g. Such
equations are not easy to deal with, other than numerically, and we
introduce now some approximations to simplify them.

5.8.3. Approzimations leading to a Kramers-Fokker-Planck equation

We begin by introducing two small parameters characterizing atomic
motion
B hky recoil momentum

€1

o (2
Ap  momentum spread (5.72)

_kpAp Doppler effect
27 "MT 7 natural width (573)

Condition ¢; < 1 means also that the atomic coherence length {4 =
kh/Ap is small compared to the laser wavelength k7!, which is equivalent
to the localization assumption (2.28) introduced above and defining the
semiclassical limit. Conditions ¢; < 1 means that the atomic velocity
has been already damped enough (by laser cooling), so that one can treat
the Doppler effect perturbatively. Such a condition is also equivalent to
the localization assumption in momentum space, introduced above in
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(2.21). Actually, near the Doppler cooling limit, we have, according to
(5.67), Ap®/2M ~ hT', which leads to

€, ~ €3 ~ / ErfkL (5.74)

By expanding the generalized optical Bloch equations in powers of €;
and €2, it is then possible to replace these finite difference equations by
coupled partial differential equations, easier to deal with. Another im-
portant point is that, at order 0 in €; and €3, the Wigner function (5.69)
does not evolve whereas all other variables vary with a time scale on the
order of T'=!. This means that, in the limit of zero photon momentum
(k1 = 0), photon-atom interactions cannot change the position or the ve-
locity of the atom. This means also, since €;, €2 < 1, that thereisa slow
variable in the problem, f(r,p), in terms of which all other variables can
be adiabatically eliminated, leading to a single reduced evolution equa-
tion for f(r,p), which is a quantum kinetic equation describing atomic
motion.,

Such a general procedure has been followed in several papers
and leads to a Kramers-Fokker-Planck equation for f {r,p). The ad-
vantage of the treatment presented in Refs. 17 and 23 is that it uses
an operatorial method not limited to two-level atoms, leading for the
diffusion and friction coeflicients, to general expressions with a more
transparent structure in terms of two-time averages of the Heisenberg
force operators. It is then possible to prove the equivalence of the results
obtained in the Schrédinger and in the Heisenberg pictures and to get
new physical insights in the friction coefficient and in the equilibrium
temnperature.

5.9.4. Physical discussion
The equation of motion of f(r, p), derived in Ref. 17 has the following
form h

3528
3

Bf i s
p W[Dlis(rHDvic(r)l 575
a
+ Yy Tij(r)gz;‘(l’jf)
ij=1,y, '

+ Terms in 8°f/8pior;

The term —(p/M).(0f/8r), which is of order 0 in & and €;, describes
the free flight of the atom. The next term —~(8f/8p).F(r), which is of
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order 1 in ey, describes the drift in momentum of the Wigner function
due to the mean radiative force F, studied in Section 3 for an atom at
rest in r. The remaining terms are all of order 2 in €; and e, the last
one {in 8 f/8piOr;} being negligible in most cases.

The terms in 8* f/Op;Op; describe momentum diffusion. D{J and DI,
are diffusion tensors given by equations similar to (5.41) and (5.42), each
of the two 6F operators being replaced by its ¢ or 3 component. This
shows that the two diffusion coefficients Dias and Dyac introduced in
Subsection 5.2.2 are just the traces of the diffusion tensors appearing in
(5.75).

The term in d(p; f)/0p;, with

ih %
i) = e [ e ((Pue, ) Fise, 0D (370)
where Fy = —VVar is the force operator associated with Vi (first

term of (2.16)), and where the average value is taken in the steady state
,of an atom at rest in r, describes the friction. Combining this term with
the term in 8f/0p indeed gives

-

: -5%: fi(l‘)_zj:’ﬁj}?;} fle,p) (5.77)

so that — > ;7VijPj appears as a friction force, linear in p, correcting the
force F; obtained in Chapter 3 for an atom at rest in r. In order to
interpret the expression (5.76) of the friction tensor 7vij, we first recall
a well known result of linear response theory?®. If a physical system S
is in a stationary state o.q, and if it is perturbed by V() = —A{t)M,
where A(t) is a classical function of £ and M an observable of S, then,

the mean value, ai time t, of another observable NV of S is given, to order
lin A, by
+o0
(N(8)) = (V) eq + / at'x (2= ) NE) (5.78)

hade ¢

where x NM(T) is a linear response function equal to

¥ 4f(7) = 5 6) (NG, MO, (5.79)
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In (5.79), 8(r) is the Heaviside function (equal to 1 forr >0 and to 0
for T < 0) and N(7) and M(0) are free Heisenberg operators (evaluated
in the absence of V). The fact that the mean value of a commutator
appears in the expression (5.76) of the friction tensor then suggests to
interpret vi; as a linear response function. More precisely, the interaction
hamiltonian between the laser and a moving atom can be written

P P;
—d-EL (r + ot _t{,)) ~ —d-Ey(r) +jmzy zw-h——}(t — t)V;d-EL(r)
(5.80)
The lasi term, where we recognize Fir; = V;i{d.Ey), can be considered
as a perturbation due to atomic motion and can be written as

_ %(twto)FL}-(r) (5.81)

J=r.y,z

ie. asa sum of terms analogous to V(¢), with A(t) = —(to —£)F;/M and
M = Fp;. It follows then from (5.78) that the mean value of N = Fri(r)
at time tg is, to orderl in p, equal to

(FLi(r; P,fo)) m{FL,'(i', P = o, tﬂ))

e [T [r g o0 [0

(5.82)
where we have put t = to. Using (5.79), one can then show that the
last term of (5.82) can be written — ) ;7i;jp; and coincides with the
friction force found in (5.77). The friction force thus appears as the
linear response of the force to the perturbation due to atomic motion.

To summarize the results of this section, we see that there is a close
analogy between atomic motion in laser light and Brownian motion in a
potential well. Starting from the generalized optical Bloch equations, it
is possible to derive for the atomic Wigner function, a kinetic equation
quite analogous to the Kramers- Fokker-Planck equation (5.30) and to
get simple physical interpretations for the diffusion and friction {ensors
in terms of correlation functions and linear susceptibilities. Finally, the
equilibrium temperature can be written, according to (5.64) and to the
results of this subsection, as

bpT ~ 2 o J5 dr ({SF(r)5F(0) + SF(0)8F(r)})
M~y L [Zrdr ({§F(r)§F(0) — 6F(0)6F(7)})

(5.83)
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If the mean values of the anticommutator and commutator appearing
respectively in the numerator and denominator of (5.83) are of the same

order, we predict that
h

kpT ~ — (5.84)
(n
where {r) is on the order of the correlation time of the Langevin force
operator §F. We have seen in Subsection 5.2.2 that the correlation func-
tion of &F is proportional to the correlation function of the atomic dipole
moment d,, so that {r) is on the order of an internal atomic time Tiq.
It follows that "

int

kpT ~ (5.85)
For a two-level atom, Tin, ~ I'"!, and we find again in (5.85) the Doppler
limit (5.67). Equation (5.85) suggests that much lower temperatures can
be reached if internal times much longer than I'"! exist. Examples of
such situations will be given in the second part of this course.

6. Basic physical processes in the perturbative limit

6.1. Introduction

At low saturation (s < 1), i.e. at low intensity or large detuning, photon-
atom interactions can be analyzed perturbatively in terms of elementary
absorption and emission processes. For an atom in a plane wave, such an
analysis, combined with the basic conservation laws, provides a simple
interpretation of the main features of radiative forces : mean value,
velocity dependence, fluctuations (see Sections 3.3, 4.1 and Subsection
5.2.3).

The situation becomes more complicated when the laser wave is a
superposition of several plane waves. Because of the phase relations
which exist between these waves, their contributions cannot be added
independently. There are interference effects which make, for example,
atomic motion in a laser standing wave more difficult to analyze than
in a plane wave. An example of such difficulties is given by the very
intriguing behaviour of an atom put in a node of a standing wave. In
such a place, there is no light and no photon absorption, so that one
would expect the atomic momentum diffusion coefficient D to vanish.
However, such a naive prediction is not confirmed by the calculation of



