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Physics 511, Electrodynamics 
Problem Set #3 

Due. Thursday Feb. 20, 2025 
 

Problem 1 (20 points):  Boundary-valued problem 
Consider a point charge q, a distance Z from the center of a grounded sphere at the origin 
(take q on the z-axis). 
 

 
 

(a)  Using the method of images, show that the electrostatic potential outside the sphere is 
(in spherical coordinates) 
 

 
 

(b) Show that the surface charge density induced on the surface of the sphere is 
 

 
and the total induced charge is -qR/Z, going to zero when q is infinitely far from sphere. 
 
(c)  With Dirichelet boundary conditions, show that the Green’s function is 

  
where     

 
(d) From the Green’s function, with boundary condition of a potential on the surface 
given by F(R,q,f), show that the solution to Laplace’s equation outside the sphere is 
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Introduction to the method of images (continued)

Thus, for, the two-charge 
potential satisfies the Poisson 
equation  and the boundary 
conditions for the single charge 
–grounded plane problem: it is 
a solution to this problem. 
But there is no “a” solution, 
only “the” solution, because 
solutions of electrostatics 
problems are unique.
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Potential for a point charge and a grounded sphere 
(Example 3.2 + Problem 3.7 in Griffiths)

A point charge q is situated a 
distance Z from the center of 
a grounded conducting 
sphere of radius R.
� Find the potential 

everywhere.
� Find the induced surface 

charge on the sphere, as 
function of θ.  Integrate 
this to get the total 
induced charge.

� Calculate the potential 
energy of the system.
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Potential for a point charge and a grounded sphere 
(continued)

So the potential at some point                 outside the sphere is given by 

Now for the induced charge density:

Differentiate the formula above for the potential, and evaluate it at r = R:
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Potential for a point charge and a grounded sphere 
(continued)
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Problem 2 (15 points) 
 
(a) For each the charge distributions drawn below, explicitly calculate the first three 
(monopole, dipole, quadrupole) Cartesian and Spherical multipole moments (all 
components). 
 

   
   
 
(b)  Using these Cartesian multipole expansion, write the potential as a function of x,y, 
and z to order (d/r)3 
 
(c) Write the exact potential and expand to the same order to check your result. 
 
(d)  Extra credit (5 points).  Plot the equipotential contours in the x-z plane for the exact 
potential and the approximate potential found in part (b)  (set q=d=1).  Plot for regions 
for r/d~1 and r>>d.  Comment on these plots. 
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Physics 511, Electrodynamics 
Problem Set #3 

 
Due Thurs. Feb. 10, 2012 

 
 
Problem 1 (10 points) 
 
(a) For each the charge distributions drawn below, explicitly calculate the first three 
(monopole, dipole, quadrapole) Cartesian and Spherical multipole moments (all 
components). 
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        (i)              (ii) 
 
(b)  Using these expressions, write the potential as a function of x,y, and z to order (d/r)3 
 
(c) Write the exact potential and expand to the same order to check your result. 
 
(d)  Plot the equipotential contours in the x-z plane for the exact potential and the 
approximate potential found in part (b)  (set q=d=1).  Plot for regions for r/d~1 and r>>d.  
Comment on these plots. 
 
 
Problem 2:  Jackson 4.4   (10 points) 
 
Problem 3:  Jackson 4.6 (10 points) 
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Problem 3:  A Jackson Problem!  (15 points) 
 

 
  



P.S. #3,  Page 4 

Problem 4 (15 points)  
 
Multipole moments for an azimuthally symmetric charge distribution. 
 
Consider a disk of radius R and surface charge/area s surrounded by an annulus of 
charge with outer radius , inner radius R, and surface charge/area –s as sketched 
below. 

 
 
(a)  Find the multipole expansion of the potential up to the quadrapole moment.  Express 
your final answer for the potential in spherical coordinates in terms of Legendre 
polynomials. 
 
(b)  Use direct integration to show that on the z-axis, the potential is 
 
  

 
(c)  Check your result.  Since the charge distribution is azimuthally symmetric, outside 
the charge distribution the potential satifies Laplace’s equation as given in in the form, 
   

 

 
For r > R use the answer to part (b) as a boundary condition at q=0, (i.e. 

 ), together with the b.c. , to find 

the expansion coefficients,  up to order (R/r)3. 

2R
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Problem 4 (10 points)  
 
Multipole moments for an azimuthally symmetric charge distribution. 
 
Consider a disk of radius R and surface charge/area s surrounded by an annulus of 
charge with outer radius , inner radius R, and surface charge/area –s as sketched 
below. 
 

                      
 

(a)  Find the multipole expansion of the potential up to the quadrapole moment.  Express 
your final answer for the potential in spherical coordinates in terms of Legendre 
polynomials. 
 
(b)  Use direct integration to show that on the z-axis, the potential is 
 

  

 
(c)  Check your result.  Since the charge distribution is azimuthally symmetric, outside 
the charge distribution the potential satifies Laplace’s equation as given in in the form, 
Jackson Eq. (3.33).   

 

 
For r > R use the answer to part (b) as a boundary condition at q=0, (i.e. 

 ), together with the b.c. , to find 

the expansion coefficients,  up to order (R/r)3. 
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