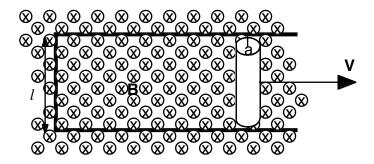
Physics 511

Electrodynamics

Problem Set #5: DUE Thurs. Mar. 13

Problem 1: (15 Points)

A cylindrical resistive material with mass density ρ_m (mass/volume) and conductivity σ slides frictionlessly on two parallel conducting rails. The cylinder has length l and cross-sectional area, a. A uniform magnetic field, \mathbf{B} , pointing into the page fills the entire region. The bar moves to the right, starting with a velocity v_0 .



- (a) What current flows through the circuit, and in what direction?
- (b) What is the magnetic force on the rod? In what direction?
- (c) Use Newton's equation to show that velocity of the rod as function of time is

$$\mathbf{v}(t) = \mathbf{v}_0 e^{-\Gamma t}_{-\Gamma t}$$
, where $\Gamma = \frac{B^2 \sigma}{B \sigma_2}$
 $\rho_M c^2$

(d) The initial kinetic energy was $\frac{1}{2}mv_0^2$. At $t=\infty$ the rod loses all this energy. Where does it go? Prove that energy is conserved by showing that the total energy that goes into this sink is $\frac{1}{2}mv_{\theta}^2$.

Problem 2: Energy conservation and magnetic fields (20 points)

To see explicitly why we put energy into creating a magnetic field, consider the work per unit length necessary to spin up a long cylindrical shell of charge so that it rotates about its axis at constant angular frequency ω_0 . Let the radius of the cylinder be R, the surface charge density be σ , so that $\lambda=2\pi R\sigma$ is the total charge per unit length. After we spin the cylinder up, we have

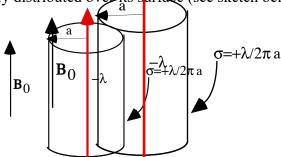
$$\mathbf{E}_{0} = \begin{cases} 0, & \rho < R \\ \frac{2\lambda}{\rho} \hat{\mathbf{e}}_{\rho}, & \rho > R \end{cases}, \qquad \mathbf{B}_{0} = \begin{cases} \frac{4\pi}{c} \sigma \omega_{0} R \hat{\mathbf{e}}_{z}, & \rho < R \\ 0, & \rho > R \end{cases}.$$

Now suppose we spin the cylinder up from rest, slowly over some time interval T. If T is much greater than R/c, we can neglect the displacement current. Then **B** as a function of time is just the expression above with ω_0 replaced by $\omega(t)$. With $\mathbf{B}(\mathbf{x},t)$ in hand, we can find the electric field as a function of time from Faraday's law:

- (a) What is $\mathbf{E}(\mathbf{x},t)$ as a function of time for all space? You may assume that the time dependent part of \mathbf{E} is in the $\hat{\mathbf{e}}_{_{h}}$ direction.
- (b) If you are the external agent spinning up the shell, you must provide energy per unit volume at a rate $-\mathbf{J} \cdot \mathbf{E}$, over and above the energy you must put in to increase the mechanical rotational energy. Show that the volume integral of this expression per unit length along the z-axis is equal to the time rate of change of the total magnetic energy per unit length.
- (c) From the above, it is clear that the "source" function for electromagnetic energy, $-\mathbf{J} \cdot \mathbf{E}$, is localized at $\rho = R$. Electromagnetic energy then flows from its creation point into $\rho < R$. Calculate the flow of energy per unit length to $\rho < R$ by integrating the Poynting vector over a cylindrical surface just inside $\rho = R$. Show that the expression is equal to the time rate of change of the total magnetic energy per unit length inside $\rho = R$.
- (d) You must also provide an additional torque per unit volume of $-\mathbf{x} \times (\rho_{charge} \mathbf{E} + \frac{1}{c} \mathbf{J} \times \mathbf{B})$ to spin up the cylinder. Calculate the volume integral of this expression per unit length along the z-axis. Show that the rate of creation of electromagnetic angular momentum at $\rho = R$ is just the energy creation rate divided by ω .
- (e) (Extra Credit 5 points) Where doe the electromagnetic angular momentum you are creating at $\rho = R$ go to? In your answer consider the flux density of electromagnetic angular momentum, $-\mathbf{x} \times (\ddot{\mathbf{T}} \cdot \hat{\mathbf{n}})$, just inside and outside of $\rho = R$. Where is this electromagnetic angular momentum stored? Can you get it back if you despin the cylinder?

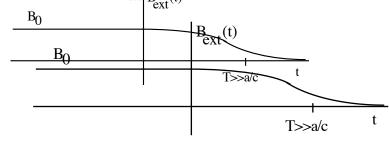
Problem 3: Angular momentum conservation and magnetic fields (Extra Credit 15)

An infinitely long wire carries a charge per unit length of $-\lambda$ and lies along the z-axis. A plastic cylindrical $\frac{1}{2\pi \omega} \frac{1}{2\pi \omega} \frac{1}{$



The cylindrical shell is suspended in such a manner that it rotates freely about the z-axis. Its moment of inertia per unit length for rotation about its axis is I. The cylinder is initially at rest, and immersed in a uniform external magnetic field \mathbf{B}_0 , produced by external currents.

- (a) Initially, what is the total electromagnetic angular momentum per unit length?
- (b) Now assume at t=0 we slowly begin to reduce the external currents and B-field to zero over some time T>>a/c, TB>=a/c, TB



The cylinder will begin to rotate about the pair with angular frequency $\omega(t)$. What is the total magnetic field for $\rho < a$?

- (c) From mechanics we know that the time rate of change of angular momentum equals the applied torque (per unit length) $\frac{d}{dt}(I\omega) = \left(\frac{d}{ut}(I\omega)\right) = \left(\frac{d}{ut$
- (d) What is the final value of ω (for t>>T)? What is the final value of the magnetic field for ρ <a. Show that the final angular momentum of the system (mechanical plus electromagnetic) for t>T is the same as your part (a) for t<0.