
Physics 511 
Electrodynamics 

Problem Set #8:  Due Friday April 11, 2025 

Problem 1:  Reflection and Transmission (25 points) 

Consider two semi-infinite homogeneous media characterized by complex permeability 
and permittivity  µ  A ,εA and  µ  B ,εB respectively, with the interface    at z=0.  A plane 
wave propagating in medium A will be partially transmitted and partially reflected as 
sketched. 

(a) With the directions of E and H as shown, define the amplitude reflection and
transmission coefficients  r = Er / Ei  and  t = Et / Ei .  Using the boundary conditions at
z=0, show that,

r =
ZB − ZA
ZA + ZB

,     
 
t = 2 ZB
ZA + ZB

,

where  
Z = µ / ε  is the wave impedance.  Reflection is thus due to an impedance 

mismatch between the two media. 

(b) For nonmagnetic, nonabsorbing dielectrics show that

r = nA − nB
nA + nB

,    t = 2nA
nA + nB

where n = ε is the index of refraction.
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(c) Define the energy transmission and reflection coefficients, R = Ir
It

, T = It
Ii

, where I is 

the wave intensity.  For nonabsorbing media A and B, find these coefficients and show 
that R +T = 1 , as is required by energy conservation. 

(d) Now include absorption through the imaginary part of the dielectric constant.  If the
wave travels from vacuum to a dispersive dielectric defined by  ε(ω ) , show that

R = 1−
n(ω )

1+ n(ω )

2

and T =
4 Re n(ω )( )
1+ n(ω ) 2

where  n(ω ) = ε(ω )  is the complex index of refraction.  
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Problem 2:  Group-velocity dispersion (GVD).  (25 Points) 
We seek the equation of motion for the envelope of a quasimonchromatic pulse 
propagating in a dispersive transparent medium.   

(a) Begin with the Helmholtz equation for the positive frequency Fourier component of
the electric field, 

 
∇2 + k2 (ω )( ) E(+ )(x,ω ) = 0 , where k(ω ) = n(ω )ω / c .  Assume one-

dimensional propagation of a polarized beam (ignore transverse effects) and make the 
slowly varying envelope approximation (SVEA) via the ansatz 

  
E(+ )(x,ω ) = ê E (z,ω −ω 0 )e

ik0z

where k0 = n(ω 0 )ω 0 / c  and ∂
E

∂z
<< k 0 E .  Under the assumption that   E

(+ )  is narrowly 

peaked at ω −ω 0 = 0 , show that up to GVD terms

i ∂
E (z,Δ)
∂z

+ 1
vg

Δ + ′′k0
2
Δ2⎛

⎝⎜
⎞

⎠⎟
E (z,Δ) = 0

where Δ =ω −ω 0 , 1
vg

= dk
dω ω0

, ′′k0 =
d 2k
dω 2

ω0

, and we have assumed k0 ′′k0 >> ′k0
2 . 

(b) Take the inverse Fourier transform to show that the pulse envelope satisfies the
propagation equation

 

∂
∂z

+ 1
vg

∂
∂t

⎛

⎝⎜
⎞

⎠⎟
E (z,t) = −i ′′k0

2
∂2E
∂t 2

. 

(c) Change variables from (t, z)  to τ , z( )  where τ = t − z / vg  is the “retard time”.  Let
A(τ , z) = E(z,t = τ + z / vg ) , and show that 

∂A(τ , z)
∂z

= −i ′′k0
2
∂2A
∂τ 2

Show that this is isomorphic to the time-dependent Schrödinger for a free particle moving in 
one dimension with z as the independent variable and τ as “position”.  From this, deduce 
how a Gaussian wave packet will spread due to GVD. 



Dispersion and the resulting spreading of a wave packet is a serious problem in optical 
communications, where pulses of light are sent through optical fibers over very long 
distances.  Optical fibers are basically wires of silica glass.  The minimum absorption (due 
to scattering from imperfections and other loss mechanisms) is at a wavelength of λ=1.55 
µm.  (The power) attenuation coefficient at this frequency is found to be 2kI =2x10–5 cm–1, 

and the dispersion coefficient d
2k

dω 2  is about –25 ps2/km.  (ps = picosecond) 

(d) Estimate the characteristic distance of spreading of a 20 ps pulse at this wavelength.
How does it compare with the attenuation length?

(e) One way to send a digital signal in an optical fiber is divide up time into “windows” of
duration T.  If a pulse appears in the window, the bit is a “1” -  no pulse, the bit is a “0”.

The rate of data transmission (bits/second) is then 1/T.  The window is taken in order to 
avoid overlap.  It can be shown that if we can tolerate a bit rate error no greater than 10–9, 
then the time window must be 2 times the pulse duration.  Of course the name of the game 
is to maximize the bit-rate over the longest possible distances.  However, very short pulses 
have broad spectra, and thus spread very rapidly. 

What is the maximum distance one could send 20 ps pulses at 10 Gbit/sec (in a 100 ps time 
window) before dispersion makes the bit error-rate intolerable.  Is absorption a problem? 



Problem 3: Negative group velocity.  (25 points Extra credit) 

Recall the group velocity vg =
dkR
dω

⎛
⎝⎜

⎞
⎠⎟
−1

= c
nR(ω )+ω dnR / dω

, where we have written the 

real part of the wave number in terms of the real index of refraction kR(ω ) =
ω
c
nR(ω ) .  

The “group index” is defined ng (ω ) =
c
vg

=
d ωnR( )
dω

= nR(ω )+ω
dnR
dω

.  When dnR
dω

< 0  we

are in a region of “anomalous dispersion” and vg can be greater that c or even negative!  

As discussed in Jackson, if  Im ( χ (ω )) > 0, ∀ω , and we are in a transparent band, we
must have ng > 1 , and the group velocity is 

subluminal. Thus for a “passive medium”,  Im ( χ (ω )) > 0 , we cannot have both
transparency and anomalous dispersion.   On the other hand, in active medium with 

 Im ( χ (ω )) < 0 for some  ω , all bets are off.   In a seminal experiment in 2000, Wang,
Kuzmich and Dogariu demonstrated such negative group velocities based on a 1994 
proposal of Chiao and Steinberg for dispersion between two “gain lines”.  The purpose of 
this problem is to work through the details of how this works. 

Consider two spectral lines at resonance frequencies ω 1,2 and an oscillator strength of -1, 
i.e. these are amplifiers rather than absorbers.  Physically this is achieved by population
inversion in an atomic gas.  We take each resonance to have a linewidth γ .  The complex 
index of refraction, using the Lorentz oscillator model is then,

n(ω ) = 1+ 4πN α (ω ) = 1+ 2πN α (ω ) = 1−
ω p

2

ω1
2 −ω 2 − iγω

−
ω p

2

ω 2
2 −ω 2 − iγω

. 

(a) Defining ω1,2 =ω 0 ± Δ / 2 , plot  Re n(ω )−1( )  and  Im n(ω )( )  for the parameters
ω 0 / 2π = 352  THz, Δ / 2π = 1.8  MHz, γ / 2π = 720 kHz, and ω 0 = 21.6  MHz. Use as
your plot domain ω 0 − 2Δ <ω <ω + 2Δ .  Note that between the resonance lines we are
in a region of anomalous dispersion, but the medium is essentially transparent, with a
small amount of gain.

(b) For γ ,Δ <<ω 0  show that ng =
d ωnR(ω )( )

dω
ω0

≈1−
2ω p

2 Δ2 −γ 2( )
Δ2 + γ 2( )2

, and from this show

that to have negative group velocities we must have Δ ≤ 2ω P .  The region of interest is 
γ << Δ <<ω 0 , as for this show that at ω 0  the group velocity is

vg ≈ − c
2
Δ2

ω p
2 . 

In the Wang experiment Δ /ω p ≈1/12 , and vg ≈ −c / 310.  



(c) Consider now a Gaussian pulse incident on the gain medium in the region 0 < z < a .
For z < 0  and z > a  we have vacuum.  The incident wave is a quasimonochromatic
Gaussian pulse of width τ , with peak amplitude E0  and carrier frequency ω 0 .

Show that up to first order dispersion (ignoring the group velocity dispersion) 

E(z,t) =

E0e
− z/c−t( )2 /2τ 2 eiω0 (z/c−t ) for z < 0

E0e
− z/vg−t( )2 /2τ 2 eiω0 ( n(ω0 )z/c−t ) for 0 < z < a

E0e
iω0 ( n(ω0 )a−1)/c e− (z−a)/c−(t−a/vg )( )2 /2τ 2 eiω0 (z/c−t ) for z > a

⎧

⎨

⎪
⎪

⎩

⎪
⎪

The factor  eiω0
n(ω0 )a−1( )/c = eω p

2γ a/Δ2c  is the gain, and is close to 1 for the parameters here.  

The peak of the Gaussian pulse emerges from z = a  at the time tg =
a
vg

.  

Thus if vg < 0 , the peak exits the medium before it enters at z=0!  

This surprising behavior arises because the smooth tail of the Gaussian contains all the 
information about the arrival time of the peak.  No information travels faster than the 
speed of light! 

(d) Show that in order to satisfy no spreading of the wave packet we must have

a
cτ

<< 1
24

Δ4τ
ω p

2γ
. 

Under these conditions the pulse emerges essentially unchanged in shape, just slightly 
advanced.  In the Wang et al experiment the was well satisfied with a = 6cm , and 
cτ = 300 m 


