
Physics 511  Spring 2025 

Problem Set #10: Extra Credit 
Due Friday May 8

Problem 1.  Scattering in one dimension  (20 points) 

    Consider a system in which all variation in the material properties vary only in one 
direction (call it the z direction); e.g. a infinite slab of dielectric, homogeneous along the 
transverse dimension.   One canshow that the formal solution for the electric field is:
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 where E
inc

 is the incident field and J is the current density.  Note that the radiated field is 
proportional to the current, and is 180° out of phase with the incident radiated field

(a) For the case of a monochromatic incident plane wave,E
0
e
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consisting of a smooth distribution of scatterers with linear polarizability α and density N(z),
show that we arrive at a formal integral equation solution for the complex amplitude,
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Note for α real, the scattered wave is 90° out of phase with the incident wave.

(b) Now suppose we have a very thin dielectric slab of thickness Δz and dilute particle 
density N0.  Show that in the first Born approximation, the forward scattered wave is,
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Interpret this important result! 

(c) The first Born approximation can give unphysical results if we are not careful in 
interpreting them.  Consider the case of a nonabsorbing dielectric sheet at the origin, with 
surface density N, so that the volume density is N(z)=Nδ(z).  This can be though of as a



beam splitter which partially transmits part of the wave and reflects the rest.  Show that under 
the first Born approximation, energy is not conserved, i.e. if we define transmission and 
reflection coefficients as t ! E
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(d) For this special problem we can solve the integral equation exactly to all orders.  Do it,
and show that now energy is conserved.  (Hint:  The exact solution will have the form
E(0)e

ik| z| ).

Problem 2:  Radiation reaction (20 points)
Consider an electron on a spring with resonance frequency ω0. Even without friction,

the oscillator will experience a damping force as since it is loosing energy to 
electromagnetic radiation (“radiation resistance”).  There will be a damping rate Γ

(a) Given some initial displacement A , derive an expression for the energy in the
damped harmonic oscillator average of a period of oscillation. assume ω0>>Γ.

(b) Equating the rate of decay of the damped oscillator to the Larmor formula for the
power radiated, show that the classical radiation damping rate is
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This is the classical picture of "spontaneous emission" for  quantum mechanical 
oscillator. 
Estimate numerically the "radiative lifetime" found for the case of an electron oscillating a 
typical optical frequency (i.e. a frequency of visible light)., and compare it to a typical 
radiative lifetime for an optical transition in a real atom such as sodium. 

(c) The damping coefficient found in part (b) is a special case of the more general problem
of radiation reaction.  Consider a scattering problem in which an incident wave of
frequency ω is elastically scattered (i.e. the scattered wave has the same frequency as the incident
wave) by the electron on a frictionless spring.  Since there are no other channels, all energy
absorbed by the bound electron must be reradiated.  By equating the absorbed to scattered
power, show that in general the damping coefficient will be a function of frequency,
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(d) The resulting polarizability for the electron (including radiation damping) leads to 
unphysical noncausal solutions to the equation of motion.  In particular, using the 
expressing in (c), show that in the absence of any binding or external forces, the equation 
of motion for a the charge is,
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x(t) = x(0) + ˙ x (0) ! "˙ ̇ x (0)( )t ! "2˙ ̇ x(0) 1! exp(t / ")( )with run away solution: .  This is known 

as the Abraham-Lorentz equation (see Jackson). 

As stated in “Classical Field Theory”, by F. E. Low, 
“The contradiction between energy conservation and causality is a genuine difficulty of 
classical electromagnetic theory describing the interaction of electromagnetic fields with 
point particles.  This problem (the unwanted pole) does not appear in relativistic quantum 
electrodynamics; however other problems do [i.e. divergence of Feynman diagrams]” 




