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Multipole Moments in Electrostatics

I. H. Deutsch

I. Introduction

     When confronted with complicated systems in physics it is often very useful to break it up

into pieces that are simpler, or at least easy to characterize.  For example when analyzing a

complicated signal, such as speech, it is useful to decompose the signal into a spectrum of

pure sinusoidal tones.  Since we know the signal with each pure sine wave, if we know how

much of each frequency is present we know the signal.

      We want to apply this kind of thinking studying the field associated with a given charge

distribution.  There are relatively few situation where we can solve exactly for the field

everywhere in space.  These are highly symmetric cases where we can use Gauss' law.  For

more complicated situations we have to resort to something else.  The question we ask is,

"what are there characteristics of the charge distribution which, once known, give us the

field?".  One characteristic we know right away - the total net charge qnet.  We have seen that

far away from the charge distribution, the field looks that of a point charge with charge qnet.

But what if qnet=0, or what if we want to find corrections to the point charge approximation?

The other quantities characterizing the charge distribution tell us how the charge is distributed

in space about a given origin.  These are known as the moments of the charge distribution.

     Moments of a distribution are important in many fields of mathematics and physics.  For

example.  Suppose we have a one dimensional function which specifies the number of people

standing at certain positions on a line.  We might write this as P(n)= number of people at the

nth position.  Important characteristics of the distribution are:

•  The total number of all the people on line:  N = P(n)
n

∑
•  The average of the position of the people:  x = x(n) P(n)

n
∑

•  The average spread of people from the middle of the line:  x2 = x2 (n) P(n)
n

∑ , etc.

In general, all moments xm = xm (n) P(n)
n

∑  completely specify the distribution.
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The same principles can be applied to characterize our charge distribution.  Unlike the

example about, we have both positive an negative charge (there are no "negative" people).  In

addition, we are working in three dimensions, which always makes life more difficult.  But,

the basic ideas are the same.  We will characterize our charge distribution by:

•  The total net charge:

•  The average position of the positive charge along x, y, and z::
•  The spreads of charge:   x2 , y2 , z2 , xy , xz , yz

These are respectively, the monopole moment, the dipole moment, and the quadrapole

moment.  Once we know these characteristics of the charge distribution, we can write down

the potential as a superposition of known multipole potentials.   Far enough away from the

charge, the first nonvanishing moment dominates.

II. Formal Derivation of the Multipole Expansion of the Potential in

Cartesian Coordinates

     Consider a charge density ρ(x) confined to a finite region of space (say within a sphere of

radius R).  For positions outside this region (r>>R), we seek an expansion of the exact

potential in powers of r

ρ

x'
x

x-x'

R

  
φ(x) = d3 ′x ρ( ′x )

x − ′x∫ = V (0)

r
+ V (1)

r2 + V (2)

r3 +K (1)
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This is known as the multipole expansion with

0th order:  Monopole potential (falls off like 1/r)

1th order:  Dipole potential (falls off like 1/r2)

2nd order:  Quadrapole potential (falls off like 1/r3)

3rd order:  Octapole potential (falls off like 1/r4)

etc....

In general, if the are far enough away from the charge distribution the first nonvanishing

term in this expansion will dominate since higher order terms go to zero as a much larger

power of r.

     To determine this expansion explicitly consider the following:

1
|x − ′x |

= 1

r2 − 2r ′r r̂ ⋅ ′r̂ + ′r 2
, where x = rr̂ , ′x = ′r ′r̂ (2)

     Now, we see an expansion  in the small parameter ( ′r / r) (remember r  determines the

point of observation, and ′r  the positions of the charges).  So we re express Eq. (2) as

1
|x − ′x |

= 1
r

1 − 2r̂ ⋅ ′r̂ ( ′r / r) + ( ′r / r)2( )−1/ 2
. (3)

As an aside remember

      
  
(1 + δ )n = 1 + nδ + n(n − 1)

2
δ 2 +K, for δ < 1  (fewer terms needed the smaller δ).

So, if we let n = −1 / 2, and δ = −2r̂ ⋅ ′r̂ ( ′r / r) + ( ′r / r)2 (< 1, since ′r / r < 1) , we have

      1 − 2r̂ ⋅ ′r̂ ( ′r / r) + ( ′r / r)2( )−1/ 2

      = 1 − 1
2

δ + 3
8

δ 2 +...= 1 − 1
2

(−2r̂ ⋅ ′r̂ ( ′r / r) + ( ′r / r)2 ) + 3
8

−2r̂ ⋅ ′r̂ ( ′r / r) + ( ′r / r)2( )2
+...

      

≈ 1 + r̂ ⋅ ′r̂
′r

r




 − 1

2
′r

r






2

+ 3
2

r̂ ⋅ ′r̂( )2 ′r

r






2

= 1 + r̂ ⋅ ′r̂
′r

r




 + 1

2
3 r̂ ⋅ ′r̂( )2 − 1( ) ′r

r






2
, (4)
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where we have kept term only to order ′r / r( )2.   Plugging this into Eq. (3), we have

1
|x − ′x |

≈ 1
r

+ r̂ ⋅ ′x( ) 1
r2 + 1

2
3 r̂ ⋅ ′x( )2 − ′r 2( ) 1

r3 . (5)

Note, here I have recombined ′x = ′r ′r̂ .  Plugging Eq. (5) into Eq. (1), remember that the

integral is only over the positions of the charges (the primed variables).  Therefore,

φ(x) = d3 ′x
1

x − ′x∫ ρ( ′x )

≈ d3 ′x∫ 1
r

+ r̂ ⋅ ′x( ) 1
r2 + 1

2
3 r̂ ⋅ ′x( )2 − ′r 2( ) 1

r3




 ρ( ′x )

=
d3 ′x ρ( ′x )∫

r
+

r̂ ⋅ d3 ′x ′x ρ( ′x )∫
r2 + 1

2

d3 ′x 3 r̂ ⋅ ′x( )2 − ′r 2( )ρ( ′x )∫
r3

. (6)

This is the expansion we sought in Eq. (1)!  It is useful to factor out the dependence on the

observation position and leave quantities that depend sole on the how the charge is

distributed.  We is easily done for the first two terms.  We have,

φ (0) (x) = qnet

r
, qnet = d3 ′x ρ( ′x )∫ (net charge) (7)

φ (1) (x) = p ⋅ r̂
r2 , p= d3 ′x ′x ρ( ′x )∫ (dipole moment vector) (8)

The physical meaning of the terms will be described below.

     In order to factor the dependence on the observation point out of the integral in V2 we

must resort to more sophisticated mathematics.  The troublesome term can be written as,

(r̂ ⋅ ′x )2 = (r̂ ⋅ ′x )( ′x ⋅ r̂) = r̂ ⋅ ( ′x ′x ) ⋅ r̂

The expression ′x ′x  is the "outer product" of the vector ′x with itself.  It represents a 3×3
matrix with components ( ′x ′x )ij = ′xi ′x j , where ′xi  are the Cartesian components of the

vector.  Written out explicitly as a matrix

′x ′x =̇
′x 2 ′x ′y ′x ′z

′y ′x ′y 2 ′y ′z

′z ′x ′z ′y ′z 2

















.
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We can also write,   ′r 2 = r̂ ⋅ ( ′r 2
t
1) ⋅ r̂, where   

t
1 is the identity matrix, whose components

are usually written as a "Kronecker delta",

  

′r 2
t
1 =̇

′r 2 0 0

0 ′r 2 0

0 0 ′r 2
















.

Putting these together we have,

3(x ⋅ ′x )2 − ′r 2 =

r̂x r̂y r̂z[ ]
3 ′x 2 − ′r 2 3 ′x ′y 3 ′x ′z

3 ′y ′x 3 ′y 2 − ′r 2 3 ′y ′z

3 ′z ′x 3 ′z ′y 3 ′z 2 − ′r 2

















r̂x

r̂y

r̂z

















.

(Check this for yourself:  Write out the dot product on the left in terms of the Cartesian

components, and do the matrix multiplication on the right.  These should agree).  Note that

the matrix in the middle depends only on the coordinates of the charges (the primed

variables), while the vectors on the ends depend only on the coordinates observation.

     Finally we are in a position to write out the V2 term in Eq. (6) in a way that is

characteristic of the charge distribution,

  
φ (2) (x) = 1

2
r̂ ⋅

t
Q ⋅ r̂
r3 , (9)

where   
t
Q(2)  is the quadrapole tensor.  It is a 3×3 matrix whose component are

Qij = d3 ′x∫ (3 ′xi ′x j − ′x 2 δ ij ) ρ( ′x ), where δ ij =
1 i = j

0 i ≠ j




. (10)

We will return to discuss this is greater detail in the following section.

    We have now expressed the potential as

  

φ(x) = qnet

r
monopole
potential

{
+ p ⋅ r̂

r2

dipole
potential

{
+ 1

2
r̂ ⋅

t
Q ⋅ r̂
r3

quadrapole
potential

123
+L. (11)
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The quantities   {qnet ,p,
t
Q} are characteristics of the charge distribution, whose physical

meaning we will explore below.  Knowing these, we can immediately right down the

potential to order (a / r)3, where a  is the characteristic size of the charge distribution (see

Fig. 1 above).  We thus see the charge distribution as decomposing into a pure "monopole

field", "dipole field", "quadrapole field", "octapole field", etc.  How much of each of these

ingredients we need depends on the charge distribution.  Of course as we go further away
from the distribution r >> a, the first nonvanishing term dominates (e.g. if qnet =0, but

the dipole moment is not zero, then far enough away the potential looks like that of a "pure

dipole" with the contributions of higher order moments made more and more negligible).

III. Physical Meaning of the multipole moments

     As discussed in the introduction, the moments of the distribution tell us something about

how the charges are distributed in space.  The monopole moment is the easiest to understand;

qnet = d3x ρ(x)∫ = q(n)
n

∑ (13)

 it's just the total net charge.  Here I have dropped the primes inside the integral (we have

gotten rid of all reference the position of observation, so there's no need to carry around an

extra label).  In addition I have include the equivalent expression for an assembly of point

charge{q(n)}.  For a system with a net charge, then far enough way, the field looks like that

of a point charge, with spherically symmetric equipotential surfaces. φ (0) (x) = qnet

r

    The dipole moment vector represents the average position of the positive charge minus the

average position of the negative charge along each coordinate axis.
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p= d3x xρ(x)∫ = x(n)q(n)
n

∑
px = d3x xρ(x)∫ , py = d3x yρ(x)∫ , pz = d3x zρ(x)∫

. (14)

The potential associated with a pure "point dipole" is

φ (1) (x) = p ⋅ r̂
r2 = p ⋅ x

r3

= px

x

r3 + py

y

r3 + pz

z

r3 (In Cartesian coordinates)

= px

sinθ cosφ
r2 + py

sinθ sin φ
r2 + pz

cosθ
r2 (In spherical coordinates)

(15)

There is no such thing as a pure point dipole.  However,  two equal and opposite point

charges separated by a distance s closely approximate the pure dipole at large distances, e.g.

a charge +q at x = s / 2 ẑ, and a charge –q at x = −s / 2 ẑ .  The dipole moment vector is then

p = qs ẑ, and the associated potential is:

                                          φ (1) (x) = p ⋅ r̂
r2 = qs

z

r3 = qs
cosθ

r2                        (16)

     The quadrapole moment is the most complicated object we will deal with.  As discussed in

the introduction, second order moments give us information about how the distribution is

spread out  from the origin.  The quadrapole moment elements are a special 3D case.  We

know that if we take a charge q and spread it out uniformly over the volume of a sphere, then

outside that sphere, the field just like that of a point charge at the origin.  Therefore, after

spreading the charge out in a spherically symmetric way we still have only a monopole
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moment.    Physically, the quadrapole moment tells us the degree to which the positive and

negative charge distributions are nonspherical .  Quadrapole moments are important in

many fields of physics, including nuclear, atomic, and astrophysics.  For example, the

deviation of the earth from a perfect sphere give rise to a quadrapole gravitational potential

seen by the moon.  There is a close relationship between the quadrapole tensor and the

moment of inertia tensor familiar in rotational dynamics. Basically, the moment of inertial

tensor tells us how the mass is distributed about the principle axes.  The quadrapole tensor

tells us the difference between the given distribution about the principle axes compare with a

spherical distribution.  Of course this is complicated by the fact hat there are two “species” of

charge (plus and minus), whereas for mass the is only one sign.  For a detailed discussion

see, e.g., Goldstein’s text on Classical Mechanics.

     The components of the quadrapole tensor are written are written compactly in Eq. (10).

These are elements of a symmetric, traceless, matrix.  That is

  Qij
(2) = Qji

(2) , and Trace(
t
Q(2) ) = Qxx

(2) + Qyy
(2) + Qzz

(2) = 0. (18)

Therefore, for the most general distribution, this matrix has only 5 independent elements.   If

the distribution is cylindrically symmetric about z, the off-diagonal elements vanish

Given these elements, the quadrapole potential at the observation point r is generally very

messy (yuk!)

  
φ (2) (r) = 1

2
r̂ ⋅

t
Q ⋅ r̂
r3







= 1
2

x ⋅
t
Q ⋅ x
r5







 =

             = 1
2

Qxx

x2

r5 + Qyy

y2

r5 + Qzz

z2

r5 +


Qxy

2xy

r5 + Qxz

2xz

r5 + Qyz

2yz

r5

 (19a)

 (Cartesian coordinates)

             = 1
2

Qxx

sin2 θ cos2 φ
r3 + Qyy

sin2 θ sin2 φ
r3 + Qzz

cos2 θ
r3 +



                              Qxy

sin2 θ sin 2φ
r3 + Qxz

sin2θ cosφ
r3 + Qyz

sin2θ sin φ
r3




(19b)

(Spherical Coordinates)
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     There are no pure point electric quadrapoles in nature.  A "physical quadrapole" refers to a

charge distribution whose monopole moment and dipole vector moment vanish, e.g. the four

charges on the square shown below.

 +q

–q

–q

+q
x

y

d

d

• The net charge is zero --> no monopole moment,

•  The (average position of the positive charge) – (average position of the positive charge)=0

    ---> No dipole moment.

Neither the positive, nor negative charge distributions are spherically symmetric, so we have

a quadrapole moment.  The calculation was done in class, with the result

  

t
Q(2) =̇

0 12qd 2 0

12qd 2 0 0

0 0 0
















.

That is, Qxy = Qyx = 12qd 2 , with all other moments vanishing.  The quadrapole potential

associated with this distribution is φ (2) (r) = 1
2

Qxy

2xy

r5 =12qd 2 xy

r5 =12qd 2 sin2 θ sin2φ
r3 .

 A plot in the x-y plane (z=0,  or  θ=π/2) is shown below

(see also, the handout “Multipole Moments - Plots”).
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IV. Doing Calculations

      If you have a collection of point charges, label each with one with some index n, and

there associated position vector.  Remember the physical meaning of each moment.  The

monopole moment is easy.  The dipole moment will vanish if: (the weighted average position

of the positive charges)-(the weighted average position of the negative charges)=0.

Calculating the quadrapole moments requires being organized.  Once you have the moments,

forget about the positions of the charges.  The nontrivial potentials are given in Eqs.

(15) and (19).  For details on a specific examples see Problem Set #3.

     When you have a continuous distribution of charges you have to do some integrals.

Think about the proper coordinate system to use.  For the special case that the distribution

has azimuthal symmetry about the z-axis, we showed in Problem Set #3, Problem 4,

px = py = 0, Qxy = Qxz = Qyz = 0, and Qxx = Qyy .

This make geometric sense.  If the distribution is symmetric about the z-axis, the distribution

cannot have a dipole moment along x or y  (how could we pick a direction in the x-y plane if

all are equivalent?)  The same holds true for the off diagonal elements of the quadrapole

matrix.  In this case we find the potential has the form,

φ(r,θ ) = qnet

1
r

+ pz

cosθ
r2 + Qzz

P2 (cosθ )
r3 +... .

For this special case, all we need to calculate is one number for each multipole.  This is of

course the spherical coordinate solution to Laplace's equation with azimuthal symmetry.  If

we obtained the potential in this form through some known boundary conditions, we could

just read-off the multipole moments directly.

For details on a specific example see Problem Set #3, Problem 4.


