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I. H. Deutsch

Special Lecture Notes:
Coherent States of a Simple Harmonic Oscillator

The Simple Harmonic Oscillator

     Recall the properties of the SHO discussed in lecture.  The Hamiltonian is

  
H =

p2

2m
+

1
2

mw 2x2 = hw
X2 + P2

2
Ê 

Ë 
Á ˆ 

¯ 
˜ = hw a *a( ) ,

where X=x/xc and P=p/pc are dimensionless phase space coordinates with

  pc
2 / m = mw2 xc

2 = hw , and the complex phase space amplitude defined by

a ≡ (X + iP) / 2 .

The Hamilton equations of motion have the solutions

X(t) = X(0)coswt + P(0)sinwt = A cos(wt - f)
P(t) = P(0) coswt - X(0)sinwt = -A sin(wt - f)
a (t) = (X(t) + iP(t)) / 2 = a (0)e-iwt = Aeif e- iw t ,

where the amplitude and phase of the oscillation are determined by the initial conditions

2 A = X(0)2 + P(0)2( ) ,  f = tan -1(X(0) / P(0)) .

These equations of motions are conveniently displayed by a phasor diagram in phase space (the
complex a plane)

w
f-w

a

Im(a) = 2 P

Re(a) = 2X



Page 2

Thus the magnitude square of the complex amplitude, a*a, is a conserved quantity, whereas the
complex amplitude itself is not.
     The quantum oscillator follows by the association

X Æ ˆ X , P Æ ˆ P , a Æ ˆ a = ( ˆ X + i ˆ P ) / 2 ,      [ ˆ X , ˆ P ] = i, [ ˆ a , ˆ a † ] = 1 .

Stationary states of the Hamiltonian are eigenstates of the number operator ˆ N ≡ ˆ a † ˆ a ,

n =
( ˆ a † )n

n!
0 ,   where ˆ N n = n n , ˆ a n = n n -1 , ˆ a † n = n +1 n +1 .

The state 0  is the ground state defined by ˆ a 0 = 0 0 .    This states has zero average
occupation number  n = 0 ˆ N 0 = 0 .  It is a minimum uncertainty state

DX DP =
1
2

with equal uncertainty in both X and P,  DX = DP =
1
2

.

     We may now ask, which states of the harmonic oscillator most closely the resemble the
classical counterparts?  By this we mean that the expectation value of any observable follows the
classical trajectory with minimum quantum uncertainty.  One quick response might be to apply
Bohr's correspondence principle, and consider stationary states with a large occupation number
nÆ•.  However, in any number state we have

n ˆ X n = n ˆ P n = 0 .

Thus, any stationary state is distinctly nonclassical.
     In order to find the quasi-classical states we may take a hint from our quantization procedure.
The quantum SHO was defined by associating the classical variables with quantum operators.
Thus, a natural choice is to define a state which is an eigenstate of the classical variables.  Since it
is impossible to find a simultaneous eigenstate of ˆ X  and ˆ P , the best compromise to find "phase-
space" eigenstates, that is eigenstates of the complex amplitude operator ˆ a ,

ˆ a a = a a .
These states are now known as coherent states for a historical reason relating to their use in the
study of coherent laser fields and quantum optics by Prof. Glauber [See R. Glauber in Quantum
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Optics And Electronics, Les Houches Lectures 1964, C. De Witt, A. Bandin, and C. Cohen-
Tannoudji editors, Gordon Breach, New York (1965)].  Note:  the name coherent state should
not be confused with the term "pure state".  In this state, expectation values of observables are
replaced by their classical values,

a ˆ X a = a
ˆ a + ˆ a †

2
Ê 

Ë 
Á ˆ 

¯ 
˜ a =

a + a *

2
= X ,

a ˆ P a = a
ˆ a - ˆ a †

2i
Ê 

Ë 
Á ˆ 

¯ 
˜ a =

a - a*

2i
= P ,

a ˆ N a = a ˆ a † ˆ a a = a *a .

They are not stationary states of the  Hamiltonian since [ ˆ a , ˆ H ] ≠ 0 .  The coherent states are
minimum uncertainty states, with equal uncertainty in X and P,

2DX2 = 2 a ˆ X 2 a - 2 a ˆ X a 2 = a ( ˆ a † + ˆ a )2 a - (a +a * )2 =1
2DP2 = 2 a ˆ P 2 a - 2 a ˆ P a 2 = - a ( ˆ a † - ˆ a )2 a + (a - a *)2 =1

fi DX DP =
1
2

The ground state 0  is the only example of a number state which is also a coherent state.  The
properties of a coherent states are most easily displayed in a phase-space diagram analogous to
the classical diagram on page 8.

The mean values are characterized by the solid phasor, and dotted circle represents the quantum
uncertainties in the complex amplitude.

Uncertainty “bubble”
DP = 1/ 2

2 P
a

2X

Im(a )

Re(a)

DX = 1 / 2
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Number and phase uncertainties

   Although the coherent states are not eigenstates of the number operator, the number states
represent a complete basis for the SHO. The coherent states can be expressed as a superposition

a = cn n
n
Â .

Using the eigenstate definition of the coherent state,

ˆ a a = a a = cn ˆ a n
n
Â = cn n n -1

n
Â .

Projecting both sides of the equation with some particular number state m , we arrive at the
recursion relation,

a m a = acm = cm +1 m +1 fi cm +1 =
a

m +1
cm .

Thus, cn =
a n

n!
c0 .  We can determine the constant c0 by normalization,

a a = cn
n
Â

2
=

|a |2n

n!n
Â |c 0|

2 = e |a |2 |c0 |2 = 1

fi|c0|
2 = e- |a |2 fi c0 = e-|a | 2 /2  (choose to be real ) .

We now have the representation of the coherent state in terms of the number states,

a = e-|a | 2 /2 a n

n!
n

n
Â  .

The probability distribution of occupation number n is given by the absolute square of the
expansion coefficients,

Pn =|cn|
2 = e-| a | 2 |a |2( )n

n!
 = e- n n n

n!
,

where we have used the fact that n = a
2 .  The probability of occupation number n is thus

distributed according to a Poisson distribution.  The fluctuation in occupation number is,
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DN2 = a ˆ N 2 a - a ˆ N a 2 = a 2 = n .

This result has important implications in quantum optics.  A mode of the quantum
electromagnetic field is described by a quantum harmonic oscillator.  A monochromatic field
with a well defined amplitude and phase is described by a “coherent state”.  The excitation
number in that mode represents the number of photons in the field.  Thus in a coherent state, if
we count the number of photons in the mode we will have an uncertainty given by n .  These
“counting fluctuations” represent  “shot noise” – a purely quantum mechanical effect.

Phase uncertainty of the coherent state

      Since these states have an uncertainty in occupation number, we may ask whether there is a
canonical conjugate observable to this variable.  The natural choice follows from the classical
description.  On page 8 we defined the complex amplitude in terms of a polar decomposition
into amplitude and phase,

a = Aeif .

Since the number operator is the quantum analog of A2, the natural choice of the canonically
conjugate variable is the phase f.  Classically, these are the so called "action-angle" phase-space
variables.  Quantum mechanically, a brute force quantization in terms of action angle variables in
not possible as we shall see.
     In the theory of Hilbert spaces it always possible to make a "polar" decomposition of an
arbitrary operator, analogous to the polar decomposition of a complex number.  In particular,  we
can decompose the annihilation and creation operators as

ˆ a = ˆ N 1/2 ˆ e if ,     ˆ a † = ˆ e if( )† ˆ N 1/2

where
ˆ N 1/2 ≡ n1/ 2

n
Â n n , ˆ e if ≡ n n +1

n
Â .

Note that the "hat" was placed over the whole operator ˆ e if , rather than f itself.  This is because
the operator ˆ e if  is not unitary, and thus does not represent the exponentiation of a Hermitian
phase operator.  It is easy to show that
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ˆ e if , ˆ e if( )†È 
Î 

˘ 
˚ 

= 0 0 .

Thus, the problem with defining a Hermitian phase operator arises from the fact that there is a
lower bound on the occupation number (the ground state).  One can however define eigenstates
of eif,

ˆ e if = einf

n= 0

•
Â n fi ˆ e if eif = eif eif .

The phase probability distribution of an arbitrary state is the given by,

P(f ) =
1

2p
eif y

2
.

For a number state, P(f)=1/2p, representing a state with a completely uncertain phase.  For a
coherent state,

P(f ) =
1

2p
eif a

2
=

1
2p

e- inf

n= 0

•
Â n a

2
=

e- a 2

2p
(ae-if )n

n!n= 0

•
Â

2

.

The terms in the sum are rapidly varying except near f=Arg(a).  Thus the average phase will be
given by Arg(a) as expected.  In addition one can show that the variance of the phase uncertainty
is

Df2 =
1

4 a 2 =
1

4 n
.

These results make physical sense when viewed from our graphical representation.

1
2 n

Df

n

Im(a )

Re(a)
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Thus in order to create a state with small phase uncertainty requires a large mean excitation
number of the coherent state (this is the classical limit).  Though in general it is impossible to
define a Hermitian phase operator, one can define an approximate one in the limit of large
average excitation number since the problem arose from the ground state.  In this case we have
the approximate uncertainty relation

DN2Df 2 ≥
1
4

.

A coherent state is therefore a minimum number/phase uncertainty state with DN2 = n , and
Df 2 = 1 / 4 n .

Phase space displacement operators and the time dependence of coherent states

     A very useful way of handling the mathematics associated with coherent states is through the
use of the unitary phase space "displacement" operator defined by,

D(a ) ≡ exp(a ˆ a † - a * ˆ a ) .

The physical meaning of this operator is clear when we write a in terms of its real and imaginary
parts a = (X + iP) / 2 ,  ˆ a = ( ˆ X + i ˆ P ) / 2

   
  
D(a ) ≡ exp (X + iP)( ˆ X - i ˆ P ) - (X - iP)( ˆ X + i ˆ P )

2
Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

= exp i ˆ P X - i ˆ X P{ } = exp i ˆ p x - iˆ x p
h

Ï 
Ì 
Ó 

¸ 
˝ 
˛ 

.

Recall that   exp -iˆ p x / h{ }  is the unitary translation operator in position space, and   exp ipˆ x / h{ }
is the translation operator is momentum space.  These operators do not commute.  Thus the
displacement operator represents a symmetrized translation in phase.
     The coherent state is then equal to a unitary transformation on the ground state,

a = D(a ) 0 . Im(a )

Re(a)

a
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To prove this, use the factor that D(a) is a phase-space displacement  to show

D(a )† ˆ a D(a ) = ˆ a + a .

Then,

D(a )† ˆ a a = D(a )† ˆ a D(a ) 0 = ( ˆ a + a ) 0 = a 0
fi ˆ a a = a a

The displacement operator can also be used to easily obtain the decomposition in terms of
number states. Using the operator theorem,

e ˆ A + ˆ B = e ˆ A e ˆ B e-[ ˆ A , ˆ B ]/ 2 , when [ ˆ A ,[ ˆ A , ˆ B ]] = [ ˆ B ,[ ˆ A , ˆ B ]] = 0 ,

we get the so call "normal order" decomposition of D(a),

D(a ) = e-|a |2 /2ea ˆ a † ea* ˆ a .

Then

D(a ) 0 = e- |a |2 /2ea ˆ a † ea * ˆ a 0 = e-| a | 2 /2eaˆ a † 0

            = e- |a| 2 /2 a n ˆ a †n

n!n
Â 0 = e-| a | 2 /2 a n

n!n
Â n

as before.
     The unitary operators D(a )  form a group known as Heisenberg-Weyl group with the
composition law,

D(a )D(b ) = ei Im (ab * ) D(a + b ) .

This groups leads to a rich variety of properties of the coherent states and the representation of
operators in terms of these states.
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Completeness, and representations in terms of coherent states

    Given the expansion of the coherent state in terms of number states one can show that these
sates form an (over)complete basis,

d2a
p

Ú a a =1 .

We use the term over-complete because these states are not orthogonal

a b = exp -
1
2

a
2

+ b
2( ) + a *bÈ 

Î 
˘ 
˚ 

fi a b
2

= e- a -b 2

.

Although these states are not orthogonal, these become approximately so when a -b
2

>> 1 .
     Given the completeness of the coherent states, any operator in Hilbert space can be expanded
in terms of them.  For example, we may consider expansions of the density operator
representing a general state of the system,

r =
d2a

p
P(a, a * ) aÚ a .

The c-number function P(a ,a* )  is known as the Glauber-Sudarshan P-representation.  It
closely resembles a classical distribution of for an ensemble in phase space.  However, this
analogy must be treated with some care.  In general P(a ,a* )  can be negative or highly singular
for quantum states with have not classical analog.  For a pure coherent state with complex
amplitude a0, the P-representation is,  P(a ,a* ) = pd (2)(a - a 0 ) .

The nonclassical states will have singularities worse than a delta function.
     Because the coherent states form an over complete basis, the representation of the density
operator in terms of them is not unique.  An important example is the Wigner function,

W(a ,a* ) ≡
d2b
p

Ú Tr( ˆ r ˆ D (b )) eba* -ab*
.

In the case of a pure state: ˆ r = y y , with a = (X + iP) / 2  this reduces to
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W(x, p) =

1
p

d ¢ x y* (x + ¢ x ) y(Ú x - ¢ x ) ei2 p ¢ x /h .

Note that W(x, p)dp
-•

•

Ú = y (x) 2   (probability density in position space)

  W(x, p)dx
-•

•

Ú = ˜ y (p) 2   (probability density in momentum space

The Wigner function is always nonsingular, but can be negative, and thus is not generally
interpretable as a classical probability distribution on phase-space (it is sometimes referred to as
a “quasi-probability” distribution).  The negative values are an indication of a purely quantum
effect - interference of classical paths.  In the last few years, techniques have been developed to
directly measure the Wigner function for a quantum system.  Important examples include the
state of a electromagnetic mode [U. Leonhart and H. Paul, Quant. elect. 19, 89 (1995)], and the
state of a single trapped ion whose motion is quantized [C. Monroe et al., Phys. Rev. Lett 75,
4011 (1995)].  In the latter case the Wigner function for an n =1  Fock state was measure, with
negative values, indicating nonclassical motion!

       The use of the Wigner function (and related functions) has become very prevalent in the last
decade or so, because it allows for a clear connection to classical dynamics in phase space.
Contemporary examples include: better understanding of the correspondence principle  (i.e.
under what circumstances are the dynamics classical)  using quantum statistical mechanics
(interaction of particles with a “heat bath”) [W. H. Zurek, Phys. Today 44(10), 36 1991], and
quantum chaos (issues relating to chaos at the quantum level are seen most clearly in a phase
space picture in analogy with classical chaotic dynamics) [M. V. Berry, Proc. Roy. Soc. 287, 30
(1977)].


