
Physics 521 Fall 2014 
 

Problem Set #2: Due: Tuesday Sept. 9, 2014 
Cohen-Tannoudji et al. vol. I, Chap. III 

 
 

Problem 1:  Functions of an operator (20 points) 
Quite often it is useful to define a function of an operator.  We can do so using Taylor’s formula.  
Consider a function 

� 

f (z) on the real numbers which is analytic at x, so that  
 

� 

f (x) = fn
n= 0

∞

∑ xn  where 

� 

fn = 1
n!
dn f
dxn x= 0

,  

 
converges.  Given an operator 

� 

ˆ A , we define 
 

� 

f ( ˆ A ) = fn
n= 0

∞

∑ ˆ A n  . 

 
(a)  Show that if 

� 

ˆ A  is normal operator with eigen-decomposition 

� 

ˆ A = a a a
a
∑ ,  

� 

f ( ˆ A ) = f (a)
n= 0

∞

∑ a a   . 

 
(Note to the purists, we must “analytically continue” 

� 

f (x)  into the complex plane). 
 
(b)  An important example is the function of an anti-Hermitian operator 

� 

ˆ A , 

� 

f ( ˆ A ) = e ˆ A .  
Show that this operator is unitary.   
 
(c)  Writing 

� 

ˆ A = i ˆ H  where 

� 

ˆ H  is Hermitian, express this operator in terms of the 
eigenvalues and eigenvectors of 

� 

ˆ H . 
 
(d)  Consider 

� 

ˆ U = e ˆ A , where 

� 

ˆ A  is anti-Hermitian.  Show that  
 

  

� 

ˆ U ̂  B ˆ U † = ˆ B + [ ˆ A , ˆ B ] + 1
2!

[ ˆ A ,[ ˆ A , ˆ B ]] + 1
3!

[ ˆ A ,[ ˆ A ,[ ˆ A , ˆ B ]] + … 

 
This is known as the Baker-Cambell-Hausdorff lemma and we will be using it extensively. 



Problem 2:  The polar decomposition (15 Points) 
 
We saw in class that any operator 

� 

ˆ M  can be decomposed as 

� 

ˆ M = ˆ H + ˆ A , where 

� 

ˆ H = ˆ M + ˆ M †( ) 2  is a Hermitian operator and 

� 

ˆ A = ˆ M − ˆ M †( ) 2  is an anti-Hermitian operator.  

This is the operator equivalent of a decomposition of a complex number into a sum of a real and 
imaginary numbers.  Complex numbers also have a “polar decomposition”, 

� 

z = reiθ , where 

� 

r = z = zz* ≥ 0  is the magnitude and 

� 

eiθ = z / zz* , where 

� 

φ = arg(z)  is the phase.  This 
problem explores the generalization to operators on a complex vector space. 
 
Consider an invertible operator 

� 

ˆ M  acting on a complex vector space with finite dimension.  
Define 

� 

ˆ R L = ˆ M ˆ M †  and 

� 

ˆ R R = ˆ M † ˆ M  as the “left” and “right” magnitude-operators, 
respectively.  They are “positive operators” (their eigenvalues are 

� 

≥ 0). 
 
(a)  Show that 

� 

ˆ M = ˆ R L ˆ U = ˆ U ̂  R R , where 

� 

ˆ U  is a unique unitary operator.  This decomposition is 
known as the “polar decomposition” and is useful in many contexts.  Explain why this term 
makes sense as a generalization from complex numbers. 
 
Note:  This decomposition holds in finite dimensions even if 

� 

ˆ M  is not invertible, but in that case 

� 

ˆ U  is not unique. 
 
(b)  A normal operator has an eigen-decomposition 

� 

ˆ M = λ λ
λ
∑ λ , where 

� 

λ  are complex 

numbers and 

� 

λ{ } are the eigenvectors.  Write the Hermitian/anti-Hermitian and polar 

decompositions for this operator. 
 
(c)  Find the polar decomposition of the operator 

� 

ˆ M = ˆ 1 + ( ˆ σ x − i ˆ σ y ) /2 . 

 
 
In infinite dimensions, the polar decomposition is more tricky (as many things are).  Generally it 
does not work as we will see when we study the harmonic oscillator.  Keep this in mind! 



Problem 3:  The angular momentum operator. (20 points) 
 
     The orbital angular momentum operator for a particle with momentum p̂  and position 
ˆ x  is  
 ˆ L = ˆ x × ˆ p , or in component form ˆ L i = εijk ˆ x j ˆ p k

j,k
∑ ,  

where i,j,k index the Cartesian components and sums go from 1 to 3 (1=x, 2=y,3=z). 
  
(a)   We know the famous “canonical commutation relations” 

 
x̂ j , p̂k⎡⎣ ⎤⎦ = iδ jk!  (position 

and momentum for different Cartesian coordinates, otherwise not). 
 
Prove the following standard SU(2) commutation relations:   

  
[ ˆ L i , ˆ L j ] = i! εijk

ˆ L k
k
∑  

Note, As we saw, this holds for spin angular mometum (e.g. spin-1/2):   

 
[ŝi , ŝ j ]= i! ε ijk ŝk

k
∑  

 
(b) Further show some, perhaps less familiar, commutators 
 
 

  
[ ˆ L i , ˆ x j ] = i! εijk ˆ x k

k
∑ , 

  
[ ˆ L i , ˆ p j ] = i! εijk ˆ p k

k
∑ , [ ˆ L i , ˆ r 2 ] = [ ˆ L i , ˆ p 2 ] = [ ˆ L i , ˆ L 2 ] = 0 . 

 

(c)  Prove  the uncertainty principle for angular momentum 
 
ΔJxΔJy ≥

!
2

Ĵz , where Ĵi  

is component of generic angular momentum, orbital or spin. 
 
(d)  Given a spin-1/2 in the state + z , find Δsx  and Δsy .  Show that the  uncertainty 

principle for angular momentum is satisfied. 
 
 
 
 


