Physics 521 Fall 2014 Problem Set #3: Due: Tuesday Sept. 16, 2014

Problem 1: Measurements on a two-state system (15 points)

Given a unit vector $\vec{\mathbf{e}}_n$, defined by angles θ and ϕ with respect to the polar axis *z*,

we can define the ket $|+_n\rangle = \cos(\theta/2)|+_z\rangle + e^{i\phi}\sin(\theta/2)|-_z\rangle$, as the state with spin $+\hbar/2$ along the axis $\vec{\mathbf{e}}_n$.

(a) Show that $\hat{\mathbf{s}} \cdot \vec{\mathbf{e}}_n |+_n \rangle = \frac{\hbar}{2} |+_n \rangle$, where $\hat{\mathbf{s}} = \hat{s}_x \vec{\mathbf{e}}_x + \hat{s}_y \vec{\mathbf{e}}_y + \hat{s}_z \vec{\mathbf{e}}_z$, with $\{\hat{s}_x, \hat{s}_y, \hat{s}_z\}$ the three components of the spin 1/2 operator from Problem Set #1.

Now consider a beam of spin 1/2 atoms that goes through a series of Stern-Gerlach-type measurements as follows:

- (i) The first measurement accepts $s_z = +\hbar/2$ and rejects $s_z = -\hbar/2$.
- (ii) The second measurement accepts $s_n = +\hbar/2$ and rejects $s_n = -\hbar/2$ (along axis $\vec{\mathbf{e}}_n$).
- (iii) The third measurement accepts $s_z = -\hbar/2$ and rejects $s_z = +\hbar/2$.

(b) What is the probability of detecting the final spin with $s_z = -\hbar/2$ given an atom which passes through the first apparatus?

(c) How must we orient the second apparatus if we are to maximize this probability. Please *interpret* your result.

Problem 2: Beyond Projective Measurement (30 points)

(a) Bayes rules with Gaussians.

Let's consider a *classical* problem (no quantum uncertainty). Suppose we're trying to measure the position of a particle and we assign a prior probability distribution,

 $p(x) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left[-(x - x_0)^2 / 2\sigma_0^2\right].$ Our measuring device is not perfect. Due to noise

is can only measure with a resolution Δ . That is, when I measure the position, I must put error bars on this. Thus, if my detector registers the position as y, I assign likelihood that

the position was x to a Gaussian, $p(y \mid x) = \frac{1}{\sqrt{2\pi\Delta^2}} \exp\left[-(y-x)^2/2\Delta^2\right]$.

Use Bayes theorem to show that, given the new data, I must now update my probability assignment of the position to a new Gaussian,

$$p(x \mid y) = \frac{1}{\sqrt{2\pi\sigma'^2}} \exp\left[-(x - x')^2 / 2\sigma'^2\right],$$

Where $x' = x_0 + K_1(y - x_0), \ \sigma'^2 = K_2 \sigma_0^2$, with $K_1 = \frac{\sigma_0^2}{\sigma_0^2 + \Delta^2} \quad K_2 = \frac{\Delta^2}{\sigma_0^2 + \Delta^2}.$

Comment on the behavior as the measurement resolution improves.

(b) POVM for spin projection. Consider the spin *J*, with eigenvectors of \hat{J}_z , $\hat{J}_z |M\rangle = M |M\rangle$. Let up define a set of operators know a "Kraus operators," according to $\hat{A}_{\mu} = \sum_{M=-J}^{J} \frac{1}{(2\pi\Delta^2)^{1/4}} e^{-\frac{(\mu-M)^2}{4\Delta^2}} |M\rangle\langle M|$, where, $-\infty < \mu < \infty$ is a continuous variable

Show that $\left\{ \hat{E}_{\mu} = \hat{A}_{\mu}^{\dagger} \hat{A}_{\mu} \right\}$ is a POVM, i.e., $\hat{E}_{\mu} \ge 0$ and $\int_{-\infty}^{+\infty} d\mu \hat{E}_{\mu} = \hat{1}$.

(c) Comment on the POVM elements $\{\hat{E}_{\mu}\}\$ as the resolution becomes perfect $\Delta \rightarrow 0$.

(d) Suppose the state before a measurement is $|\psi_{<}\rangle = \sum_{M=-J}^{J} \frac{1}{\left(2\pi\sigma_{0}^{2}\right)^{1/4}} e^{-\frac{\left(M-M_{0}\right)^{2}}{4\sigma_{0}^{2}}} |M\rangle$

- (i) What is $\langle \hat{J}_z \rangle$ and ΔJ_z ? (assume J>>1).
- (ii) What is the probability $p(\mu)$ of finding outcome μ corresponding to \hat{E}_{μ}

(e) Conditioned on finding μ , corresponding to \hat{E}_{μ} , the post-measurement state is updated according to a generalization of the projection postulate, $|\psi_{\rangle}\rangle = \frac{\hat{A}_{\mu}|\psi_{\langle}\rangle}{\|\hat{A}_{\mu}|\psi_{\langle}\rangle\|}$.

(i) Find $|\psi_{\rangle}\rangle$, $\langle \hat{J}_{z}\rangle$ and ΔJ_{z} after the measurement. Comment in relation to part (a) (ii) Discuss two limiting cases: $\Delta \ll \sigma_{0}$ and $\sigma_{0} \ll \Delta$.