
Physics 521 Fall 2014 
Problem Set #5: Due: Tuesday Oct.. 7, 2014 

 
 
Problem 1: From Cohen-Tannoudji vol. I,  Exercise 14, page 347. (25 points). 
     Consider a physical system whose state space, which is three dimensional, spanned by the 
orthonormal basis formed by the three kets u1 , u2 , u3 .  In this basis, the Hamiltonian operator 

of the system and the two observables ˆ A and ˆ B  have the representations: 
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where ω0, a and b  are positive real constants. 

The state at time t=0 is: ψ (0) =
1
2
u1 +

1
2
u2 +

1
2
u3 . 

 
(a) The energy of the system is measured (projectively) at t=0. What values can be found and 

with what probabilities?  What is the mean value and rms uncertainty in energy? 
(b) If one measures observable A at t=0 (projectively), what values can be found and with what 

probabilities?  What is the state vector immediately after the measurement? 
(c) Given ψ (0)  and the Hamiltonian above, find ψ (t) . 

(d) Calculate  ˆ A (t)  and ˆ B (t) , for time t>0.  Comment on your result. 

(e) What results can be obtained if observable A is measured (projectively) at time t?  Repeat for 
B.  Interpret. 

 
 
Problem 2: Adiabatic and sudden changes in the Hamiltonian (25 points) 
 
     In many circumstances the Hamiltonian will depend explicitly on time through some 
change in a an external parameter (e.g. in Prob. 4 below, an external magnetic field is 
varied in time).  The general solution for the time propagator is quite involved; we will 
revisit it next semester.  There are however, two limiting cases which we can solve 
approximately, that are of great importance: adiabatic and sudden changes in the 
Hamiltonian.  The goal of this problem is to quantify what these words mean, and to get a 
solution for the state vector in these time dependent systems. 
 



     Consider a Hamiltonian with explicit time dependence ˆ H (t) .  At every time t, ˆ H (t) , 
being an Hermitian operator, has a complete set of orthonormal eigenvectors: 
 

ˆ H (t) un
( t) = En

( t ) un
( t) ,    un

(t ) um
( t ) = δnm . 

 
Note:  The eigenvectors and eigenvalues are parameterized  by t.  This is NOT to be 
confused with the time dependent solution to the Schrödinger equation: un

( t) ≠ ˆ U (t) un
(0)  . 

 
Suppose at time t=0, we have the state vector which we expand in the “initial 
eigenstates”, 
 

ψ (0) = cn
(0 ) un

(0)

n
∑  

 

For concreteness, let us suppose choose: ˆ H (t) = ˆ H 0 +
t
T

⎛ 
⎝ 

⎞ 
⎠ 

ˆ H 1 , where ˆ H 0  and ˆ H 1  are time 

independent Hermitian Hamiltonians. 
 
 
The goal of this problem is to show that for: 
 
Sudden change: ψ (T ) = cn

(0) un
(0)

n
∑   (up to an overall phase). 

 

Adiabatic Change: ψ (T ) = an
(T ) un

(T )

n
∑ , where

  
an
(T ) = cn

(0) exp −i / ! En
( ′ t )d ′ t 
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∫
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 (a)  Make the general Ansatz: ψ (t) = cn
( t )e− iφ n (t ) un

( t )

n
∑ ,  where 

  
φn (t) = En

( t )d ′ t 
o

t

∫ / !  (in 

order words factor out the expected kind of phase evolution). 
 

Show that:  
dcm( t )

dt
= − cn

( t) e−i φn −φm( ) um
( t )

n
∑ d

dt
un
( t) . 

 



(b)  Now show that 
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   and thus show  
  

dcm
( t )

dt
= − cn

( t ) e−i φ n −φm( )

n≠ m
∑

um
(t ) ˆ H 1 un

( t )

!ωnm
( t )T

,  where   !ωnm
( t) ≡ En

( t ) − Em
( t ) . 

 
If 

  
!ωnm

( t) >> um
( t) ˆ H 1 un

( t ) 1
T

, i.e. the energy level spacing is large compare to the coupling 

matrix elements and the rate of change of the Hamiltonian, 1/T,  is slow(adiabatic)  

enough,  we see that 
dcm( t )

dt
≈ 0.   Thus, under these conditions we find 

 

⇒ ψ (T ) = cn
(0)

n
∑ e−iφn (T ) un

(T )  

Adiabatic theorem:  If the rate of change of the Hamiltonian is adiabatic (in the sense above),  
then the probability of occupying the nth energy level of ˆ H (t)  is independent of time. 

 
(c)  Consider the opposite limit.  Suppose the Hamiltonian changes “suddenly” (i.e. the 
inequality is in (b) is reversed).  Show that (up to an overall phase): 
 

⇒ ψ (T ) ≈ cn
(0)

n
∑ un

(0) = ψ (0)  

Sudden approximation: If the Hamiltonian is changed suddenly (in the sense above), then the 
state vector does not evolve during this time. 

 
These approximations are extremely useful as tools to “coherently control” the state of 
the system. 
  



Problem 3:  Adiabatic and diabatic (sudden) evolution of a spin  (25 points) 
 
An electron with spin 1/2 sits in a magnetic field initially pointing in the +z direction, 
B(t = 0) = B0 ez  .  At t = 0  the electron is in its ground state  ψ (0) = ground state . 

 
The direction of the field is then rotated for a time T with angular frequency ω  about the  
–y-axis, so that at time t = T = π / (2ω) , the magnetic field points in the +x-direction. For 
t > T , the field is static: 
 

B(t) =
B0 en(t ) 0 ≤ t ≤ T
B0ex t ≥ T

⎧ 
⎨ 
⎩ 

, with en (t) = cosωt ez + sinωt e x  

 
(a)  Give an approximate expression for the state vector for times t > T  in the two cases: 
 (i)  The magnetic field is rotated “suddenly”. 
 (ii)  The magnetic field is rotated “adiabatically”. 
Please define your notation for any basis set you use to express the state. 
 
What is the condition on ω  such that approximations (i) and (ii) hold? 
 
(b)  What is the probability, as a function of time, to measure the electron its original 
state ψ (0)  for t > T , for the two cases (i) and (ii)? 

Please explain your results (a picture or two might help). 
 
(c)  Find the Heisenberg equations of motion for the vector of spin operators 

  
! ˆ S = ( ˆ S x , ˆ S y , ˆ S z ) , during the time the field is rotated (i.e. for 0 ≤ t ≤ T ).  Show that the 
approximate  solution in cases (i) and (ii) give the operator ˆ S x  at time T as: 

 
 (i)     ˆ S x (T ) = ˆ S x(0)                     (ii)    ˆ S x (T ) = ˆ S z (0)  

(Hint:  Go to a noninertial frame, rotating with the magnetic field). 
Give a classical explanation of these solutions, given the equations of motion. 
 
(d)  Use the solutions from part (c) to find the mean value ˆ S x (T )  or the two cases (i) and 

(ii).  Do these agree with your solution to part (a)? 
 


