Physics 521, Quantum Mechanics I

Problem Set #10: Angular Momentum in Quantum Mechanics
Cohen-Tannoudji et al., Chapter VI,
Sakurai 3.1, 3.5, 3.6, Merzbacher Chapter 11
Due: Tues. Nov. 25,2014

Problem 1: Cohen-Tannoudji et al. Vol. I, Prob. 5, p. 767 (10 Points).

Using Spherical Harmonics

Problem 2: Cohen-Tannoudji et al. Vol. I, Prob. 6, p. 768 (20 Points).
The Electric Quadrapole Moment



Problem 3: The Isotropic Harmonic Oscillator in Two Dimensions (25 Points)

Consider a particle moving in a 2D isotropic harmonic potential

~ 1 R R
V(x,y):Ema)z(x2+y2).

(a) Show that the Hamiltonian commutes with iz . Please interpret.

(b) Defining the usual polar coordinates (p,) via x =pcos¢@, y= psingd, show that the

Hamiltonian can be written as
~ 1 A2 iz 1 2 A2
H=— +—= |[+—mop,
2m (pp p2 ] 2 p

A 1 . . ~
where pj =—h’ —i (p ai) is the radial momentum squared and L = —i# &;‘;
0 2

(c) Separating coordinates , writing the energy eigenstates v, . (p,¢) =R, . (0)®, (9),

with @ (@) the usual eigenstates of i = —ih% , find the "radial equation, for R, , (p).

(d) In class we solved this problem, separating in Cartesian coordinates
‘I’nnny (x,y)=u, (x)uny (y) where u, (x) and u, (y) are the usual energy eigenfunctions

in 1D. The energy eigenvalues are E, = fiw(n+1) with degeneracy n +1. It must be

possible to expand these eigenfunction in terms of the eigenfunction in polar coordinates.
Express the five eigenfunctions W ,(x,y), ¥, (x,y), ¥, (x,y), ¥, (x,y), ¥, ,(x,y),

W ,(x,y) in this basis. That is write

\an ny, (‘x’y) = 2 Cn,ml//n,m(p ’¢)’ n= nx + ny b

m=?

and thus find the eigenstates v, (p,¢) forn=0,1, and 2.
(e) Show that R, (p) satisfy the radial equation you found in (c)

(f) Finally, given the state ¥, (x,y), what are the probabilities of finding the system

with angular momentum eigenvalues m = 2,1,0,—1,-2 respectively?
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COMPLEMENT Fy,

where L; R;, P; denote arbitrary components of L, R, P in an orthonormal

system, and ¢, is defined by :

=0 if two (or three) of the indices 7, j, k are equal
€k =1 if these indices are an even permutation of x, y, z
= — 1 if the permutation is odd.
4, Rotation of a polyatomic molecule

Consider a system composed of N different particles, of positions R, .
..., Ry, and momenta Py, ..., P, ..., Py. We set:

J = Z Ll"

m

'y

m>

with:
Lln = Rm X PIH
a. Show that the operator J satisfies the commutation relations which define

an angular momentum, and deduce from this that if V and V' denote two ordinary
vectors of three-dimensional space, then:

[J.V,3.V] =in(VxV).J

b. Calculate the commutators of J with the three components of R, and
with those of P,,. Show that:

[JLR, . R,]=0
¢. Prove that:
[J,J.R,] =0
and deduce from this the relation:
[J.R,.J.R, ] =R, xR,).J=itJ. R, x R,)

We set:
W = Z amRm
m
W( = Z a:an

m

where the coefficients a,, and «;, are given. Show that:
[J.W,J.W]=—ii(WxW).J

Conclusion: what is the difference between the commutation relations of the
components of J along fixed axes and those of the components of J along the
moving axes of the system being studied?

d. Consider a molecule which is formed by N unaligned atoms whose
relative distances are assumed to be invariant (a rigid rotator). J is the sum of the
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angular momenta of the atoms with respect to the center of mass of the
molecule, situated at a fixed point O ; the Oxyz axes constitute a fixed orthonormal
frame. The three principal inertial axes of the system are denoted by Oo., Off and Oy,
with the ellipsoid of inertia assumed to be an ellipsoid of revolution about Oy
(a symmetrical rotator). The rotational energy of the molecule is then :

2 2 2
oilh Lt
211, I,

where J,, J; and J, are the components of J along the unit vectors w,, W, and w, of
the moving axes Oa, Of, Oy attached to the molecule, and [, and /, are the cor-
responding moments of inertia. We grant that :

PARB+B=n+T+J:=3°

(i) Derive the commutation relations of J,, J;, J, from the results of ¢.

(if) We introduce the operators N, = J, + iJ;. Using the general
arguments of chapter VI, show that one can find eigenvectors common to J >and J,,
of eigenvalues J(J + 1Mi% and Khi, with K = — J, = J + 1,..,J — L, J.

(iii) Express the Hamiltonian H of the rotator in terms of J* and J;7.
Find its eigenvalues. '

(iv) Show that one can find eigenstates common to J 2, J, and J,, to be
denoted by |J, M, K [the respective eigenvalues are J (J + 1)p%, Mh, Kh|. Show
that these states are also eigenstates of H.

(v) Calculate the commutators of J, and N, with J?, J,, J,. Derive
from them the action of J, and N, on \J, M, K>. Show that the eigenvalues
of H are at least 2(2J + 1)-fold degenerate if K # 0, and (2/ + 1)-fold degenerate
ifK = 0. :

(vi) Draw the energy diagram of the rigid rotator (J is an integer
since J is a sum of orbital angular momenta; ¢f. chapter X). What happens to this
diagram when I;; = I, (spherical rotator)?

5. A system whose state space is &, has for its wave function:
Yoy z) = N+ y + 2) e

where o, which is real, is given and N is a normalization constant.

a. The observables L, and L? are measured; what are the probabilities of
finding 0 and 2/?? Recall that:

Y90, @) = -43—n cos 0

b. If one also uses the fact that:

YN0, 0) = F %sin 0e*iv

is it possible to predict directly the probabilities of all possible results of measu-
rements of L2 and L, in the system of wave function ¥(x, y, z)?
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COMPLEMENT F,,

6.  Consider a system of angular momentum / = 1, A basis
is formed by the three eigenvectors of L, : l + 15,
are, respectively, + #, 0, and — h, and which satis

Lilmy =a3/2m+ 15
Lolly=L|-1y=0

This system, which possesses an
field gradient, so that its

of its state space

[0, | = 15, whose eigenvalues
fy

electric quadrupole inoment, is placed in an electric
Hamiltonian can be written:

where L, and L, are the components of L along the two directions Oy and Oy
of the xOz plane which form angles of 45° with Ox and 0z; w, is a real constant,

a. Write the matrix which represents H in the { f + 15, f0>, [ — 1) } basis,
What are the stationary states of the system, and what are their energies ? (These
states are to be written |E, ), | E, 5, | E,>, in order of decreasing energies. )

b. At time ¢ = 0, the system is in the state :

w<0>>=%[1+1>—1—1>1

What is the state vector [¥() > at time 17 At 4, L, is meas
bilities of the various possible results ?

¢. Calculate the mean values (L (), <L,>(2) and <L, >(¢) at ¢ What is
the motion performed by the vector ( L >?

d. At t, a measurement of L} is performed,

ured ; what are the proba-

(i) Do times exist when only one result is possible ?

(if) Assume that this measurement has yielded the result 712, What is (he

state of the system immediately after the measurement ? Indicate, without calcu-
lation, its subsequent evolution,

7.  Consider rotations in ordinar

by 2,(«), where u is the unit vector
angle of rotation.

y three-dimensional space, to be dcl}O'Cd
which defines the axis of rotation and ¢ is the

a. Show that, if A’
of angle ¢, then:

OM' = OM + eu x OM

is the transform of M under an infinitesimal rotation

X
b. If OM is represented by the column vector | y |, what is the malm

zZ
. . . cile
from it the matrices which represent the compone

associated with 2, (e)? Derive
of the operator 4 defined by:

A(e)=1+¢ M u




