
Physics 522.  Quantum Mechanics II 

 
Problem Set #2 – Time Independent Perturbation Theory 

Due Tuesday, Feb. 8, 2011 
 

Problem 1:  The ro-vibrational spectrum of diatomic atoms (15 points) 

    Consider a diatomic molecule.  In the Born-Oppenheimer approximation such that the nuclei 

move much more slowly than the electrons, the nuclei see an effective static potential U(r), 

where r is the relative coordinate.  Making the usual separation of variables between center of 

mass of relative coordinates for this two-body problem, the Hamiltonian for the reduced mass µ 

is, 

  
ˆ H =

ˆ p r2

2µ
+
2l(l +1)

2µr2 + U( ˆ r ) . 

 

Assuming an attractive potential for large separations and repulsive for short range, there can be 

bound states which form the molecule.  The may appear as the figure below. 

   
(a) Near r0, the classical equilibrium point, the potential looks harmonic.  Perform a Taylor series 

expansion to fourth order in δr = r − r0 , and show that the Hamiltonian has the form of a one-

dimensional SHO, plus perturbation: 

  

ˆ H = ˆ H 0 + ˆ H 1,

ˆ H 0 =
ˆ p r2

2µ
+

1
2

k(δ ˆ r )2 +
2l(l + 1)

2µr0
2 + U(r0 ),

ˆ H 1 =
1
3

′ k (δˆ r )3 +
1
4

′ ′ k (δˆ r )4 −
δˆ r 2l(l + 1)

µr0
3 +

3
2

(δˆ r )2 2l(l + 1)
µr0

4 ,

where k = d2U
dr2 r= r0

, etc .  
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and thus the zeroth order energy eigenvalues are: 
  
Ev,l
(0) = 

k
µ

v +
1
2

⎛ 
⎝ 

⎞ 
⎠ +
2l(l +1)
2µr0

2 + U(r0 ) , with v 

an integer (the vibration quantum number). 

 

(b) Find the appropriate scale length x0, and from this the energy scale, to make the 

dimensionless Hamiltonian (here in the position representation), 

 

  

h = h0 + h1,

h0 = −
1
2

d2

dy2
+
1
2

y2 +
l(l +1)
2r0

2
1
µk

+
U(r0 )


µ
k
,

h1 = 1
3

′ k y3

(k 5µ)1/ 4
+ 1
4

′ ′ k y4

(k3µ)1/ 2
− y l(l + 1)

r03 (kµ)3/ 4
+ 3
2

y2 l(l +1)
kµr04

,

 
  

where y = δr / x0

and I have set,   ≡ 1
. 

 

(c) Find the first order corrections to the energy levels as a function of v and l.   

Of the four terms in the sum h1, the last two involve a coupling of the rotational and 

vibrational motion.  The last in particular has a large contribution in first order and is called 

the “rotational-vibrational” interaction. 

 

Consider the hydrogen diatomic molecule (H2).  Note that this molecule has no electric dipole 

moment, so its vibration-rotation radiation is inhibited.  However, the spectrum exists, and has 

been seen in radio telescopes from H2 in space and by laser spectroscopy of earth.  The selection 

rules for this radiation (as we will derive later in class) are Δl = ±2  and Δv = ±2 .   

The H2 molecule has the following properties: 

r0 = 0.75Å, k = 5.2 Newtons/cm ,  

bond strength = binding energy of molecule = 102 kilocalories/mole 

The deuterium molecule D2 has the same parameters except the bond strength is 104 kCal/mole. 

 

(d)   Calculate the wavelength of the Δv=2 Δl=0 line and the  Δv=0 Δl=2 line in H2 (excluding 

the perturbations). 

(e)  Account for the difference in bond strength between the hydrogen and deuterium molecule.   



Problem 2:  The ac-Stark effect (15 points) 

 

Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ωL   

E(t) = Ez cos(ωLt)ez  (such as from a linearly polarized laser), rather than the dc-field studied in 

class.  We know that such field can be absorbed and cause transitions between the energy levels; 

we will systematically study this effect later in the semester.  The laser will also cause a shift of 

energy levels of the unperturbed states, known alternatively as the “ac-Stark shift”, the “light 

shift”, and sometimes the “Lamp shift” (don’t you love physics humor).  In this problem, we will 

look at this phenomenon is the simplest case that the field is near to resonance between the 

ground state g  and some excited state e ,   ωL ≈ ωeg ≡ Ee − Eg( ) /  , so that we can ignore all 

other energy levels in the problem (the “two-level atom” approximation). 

 

(i) The classical picture.   Consider first the “Lorentz oscillator” model of the atom – a charge 

on a spring – with natural resonance ω0. 

E cos(    t)Lω

ω0

-e, m

 
The Hamiltonian for the system is H =

p2

2m
+
1
2
mω0

2 z2 − d ⋅E(t) , where d = –ez is the dipole. 

(a) Ignoring damping of the oscillator, use Newton’s Law to show that the induced dipole 

moment is 

dinduced (t) = αE(t) = αEz cos(ωL t) ,  

where α =
e2 / m

ω0
2 − ωL

2 ≈
−e2

2mω 0Δ
 is the polarizability with Δ ≡ ω L − ω0  the “detuning”. 

(b) Use your solution to show that the total energy store in the system is , 

 

H = −
1
2
dind (t)E(t ) = −

1
2
αE2 (t) , or a time average value H = −

1
4
αEz

2  

Note, the factor of 1/2 arise because energy is required to create the dipole. 



(ii) Quantum picture.  We consider the two-level atom described above.  As we will derive later, 

the Hamiltonian for this system can be written in a time independent form (equivalent to 

the time-averaging done in the classical case) 
ˆ H = ˆ H atom + ˆ H int , 

where   
ˆ H atom = −Δ e e  is the “unperturbed” atomic Hamiltonian, and 

  

� 

ˆ H int = −
Ω
2 e g + g e( ) is the dipole-interaction with   Ω ≡ e d g ⋅E  (the Rabi frequency). 

 

(a) Find the exact energy eigenvalues and eigenvectors for this simple two-dimensional Hilbert 

space and plot the levels as a function of Δ.  These are known as the atomic “dressed states”. 

 

(b) Expand your solution in (a) to lowest nonvanishing order in Ω to find the perturbation to the 

energy levels.  Under what condition is this expansion valid? 

 

(c) Confirm your answer to (b) using perturbation theory.  Find also the mean induced dipole 

moment (to lowest order in perturbation theory), and from this show that the atomic 

polarizability, defined by d = αE  is 
  
α =

− e d g 2

Δ
, so that the second order perturbation 

to the ground state is Eg
(2) = −

1
4
αEz

2  as in part (b). 

 

(d) Show that the ratio of the polarizability calculated classical in (b) and the quantum 

expression in (c) has the form 

f ≡
αquantum

αclassical

=
e z g 2

Δz2( )SHO
, where Δz2( )SHO  the SHO zero point variance. 

This ratio is known as the oscillator strength. 

Lessons: 

• In lowest order perturbation theory an atomic resonance look just like a harmonic oscillator, 

with a correction factor given by the oscillator strength. 

• Harmonic perturbations cause energy level shifts as well as absorption and emission. 

 


