
Physics 522.  Quantum Mechanics II 

Problem Set #3   
Due Tuesday, Feb. 15, 2011 

 
 
Problem 1:  Periodic Potentials, Bloch Functions, and Band Structure (20 points) 
Consider a periodic potential in one dimension V(x) = V (x + L)  (e.g. electron moving in 
a crystal lattice).  There is a natural symmetry corresponding to translation by a lattice 
constant,  
 

ˆ T L
† ˆ x ˆ T L = ˆ x + L . 

 
(a) Show that this symmetry satisfies, 
 

ˆ T L
† = ˆ T −L ,  ˆ T L( )l

= ˆ T lL . 
 

(b) Show that the Hamiltonian is invariant under this symmetry, and thus these operators 
share a set of common eigenstates. 
 
(c) Show that the eigenvalue equation for ˆ T L  can be written 
 

ˆ T L ψ q = e−iqL ψ q  (Bloch’s theorem). 
 

The eigenvector is generally written as ψ q = eiqˆ x φq  (the Bloch state), where 
ˆ T L φq = φq , i.e. φq (x)  is a periodic function of x with the lattice period (known as the 

Bloch function).  Show that this form of ψ q  satisfies the eigenvalue above. 
     Thus, the eigenstates are plane wave modulated by a period function.  The parameter q 
is known as the “quasimomemtum”. 
 
(d) We seek eigenfunctions of the Hamiltonian that are Bloch states, 
 

ˆ H ψ n,q = En (q)ψ q , 
 

where n is a discrete index.  The function En(q)  is known as the “energy band”.  Show 
that  
 

En(q) = En (q + K) , 
 

where K = 2π / L  is known as the “reciprocal lattice vector”.  The quasi-momenta in the 
range  



−K / 2 < q ≤ K / 2  is known as the “First Brillouin zone”.  The non-connected regions 
K / 2,K( ] + −K ,−K / 2( ]  form the second Brillouin zone, etc. 

 
(e) Let us write the potential as sum of wells localized at each lattice site, 
V(x) = v(x + lL)

l
∑ .  The single well has a discrete set of bound states,  

p2

2m
+ v(x)⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ un (x) = En

(0)un (x) . 

Consider a situation in which the electrons are tightly bound at the given lattice sites (i.e. 
deep in the valance band).  The electron can travel to a neighboring site only by tunneling 
through a barrier.  Assuming weak tunneling, a zeroth approximation to the energy band 
is to place “single atom orbital”, un(x) at each lattice site, consistent with Bloch’s 
theorem. (Next page) 

Show that ψ n, q
(0) = eilqL

l= −∞

∞

∑ ˆ T lL un  satisfy Bloch’s theorem.  To first order in perturbation 

theory in the “tight-binding” approximation show that, 
 

En (q) = En
(0 ) + 2ΔEn cos(qL)  

where un
ˆ H ˆ T L un ≡ ΔEn   (taken to be real). 

 
(f) Consider the specific example of a sinusoidal potential, V(x) = V0(1− cos(2kx)) / 2 , as 
in an optical lattice.  In the tight-binding approximation, under the assumption the single 
particle orbitals are well approximated by a harmonic approximation to the potential, 
sketch the real and imaginary parts of the wave function for q = 0,K / 4,K / 2 (i.e. center 
and edge of the first Brillouin zone and half-way to the edge). Sketch the ground and first 
excited energy bands En(q)  in the first Brillouin zone. 
 
Now let us go the opposite limit in which the potential is very weak, i.e. near to a free 
electron gas, so the wave functions are close to plane waves.  This is valid for the 
conduction bands in a solid.  Start by expressing the exact TISE in the plane wave basis.  
Because the potential is periodic, i.e. can be expanded as a discrete Fourier series, 
V(x) = vle

il (Kx)

l
∑ , and the same for the Bloch function φnq(x) = cl

(nq)

l
∑ eil (Kx ) .   

(g) Show that the expansion coefficients satisfy, 
 

  
cl
(nq) 2 (q + lK)2

2m
− En (q)

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ + cl− ′ l 

(nq) v ′ l 
′ l 
∑ = 0 . 

 
(h) Consider the free electron problem in 1D (i.e. V(x)=0).  This is also a periodic 
potential (trivial of course).  Argue for each l we must have, 
 

  
En(q) =

2 (q + lK)2

2m
.  Does this agree with your expectation of free particle?  Explain. 

 



Of course here K =
2π
L

 is arbitrary, since there is no real period L.   

 
A plot of the energy “bands” is typically done in three different way shown below. 
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                        “repeated zone”                                “extended zone”              “reduced zone” 
 
Note that the energy bands are degenerate at the center and edge of each Brillouin zone 
(q/K=n/2).  In the repeated zone scheme we explicitly see the periodicity of the bands 
(here over 4 zones).  In the extended zone scheme we plot each band in its corresponding 
Brillouin zone (first band--> first Brillouin zone), (second band --> second Brillouin 
zone),  etc.  In the reduced zone scheme, we plot all bands only in the first Brillouin zone, 
which contains all information. 
 
(i) Now treat the periodic potential as a perturbation to the free particle solution above.  
Show that gaps open at the degenerate points (i.e. crossings become anti-crossings) with 
an energy gap of 2v1 .  Sketch the band structure in the three schemes as in (h). 

q/K q/K q/K 

  

E (q)


2

K
2

/ 2m
 



Problem 2:  The Born-Oppenheimer Approximation and Landau-Zener (10 Points) 

 
We have discussed in class adiabatic change of a Hamiltonian due an externally 

controlled classical parameter.  Another important scenario is when we have coupled 

degrees of freedom which are quantum but have different dynamical time scales.  If one 

scale is much faster than the other, the dynamics of the fast variable is “slaved” to the 

slow variable.  That is, it the quick system adiabatically follows the slow one.   

     The standard paradigm for this circumstance in quantum mechanics is the dynamics of 

molecules.  For example, consider a diatomic molecule, i.e. two nuclei with constituent 

electrons. 

 

 

 

 

The Hamiltonian for the system (in the center of mass frame) is 

 

� 

ˆ H = ˆ T R + ˆ T e + ˆ V e ( ri{ }) + ˆ V N (R) + ˆ V e,N ( ri{ },R), 

 

where 

� 

ˆ T R  and 

� 

ˆ T e  are the kinetic energies of the relative coordinate of the nuclei and the 

electrons, respectively, 

� 

ˆ V N (R)  and 

� 

ˆ V e ( ri{ }) are the coulomb repulsion potentials between 

the nuclei and between the electrons, and 

� 

ˆ V e,N ( ri{ },R)  is the coulomb attraction between 

the nuclei and electrons.  This is a complex many body problem that is generally 

impossible to solve.  However, the nuclei are much much heavier than the electrons, and 

therefore move much slower than the speedy light electrons.  Thus, the electrons will 

adiabatically follow the nuclei. We can take this into account quantum mechanically as 

follows. 

• Diagonalizable 

� 

ˆ H  ignoring the nuclear motion.  Thus, we treat the internuclear 

coordinate R as a classical parameter 

 

� 

ˆ T e + ˆ V e ( ri{ }) + ˆ V N (R) + ˆ V e,N ( ri{ },R)( )φn ( ri{ },R) = Un (R) φn ( ri{ },R). 

• 
• 

• 
• • 



The eigenvalues 

� 

Un (R) , parameterized by R,  are known as the adiabatic potentials.  

Since this is a complete set for the electron space at any R, an exact expansion of the total 

wave function for electrons and nuclei is  

� 

Ψ( ri{ },R) = ηn (R)φn ( ri{ },R)
n
∑ . 

This is known as the solution to the TISE in the adiabatic basis. 

 

(a)  Argue that in an adiabatic approximation 

 

� 

ˆ T R ηn (R)φn ( ri{ },R)
n
∑ ≈ ˆ T Rηn (R)( )φn ( ri{ },R)

n
∑  

so that the TISE reduces to 

� 

ˆ T R + Un (R)( )ηn (R) = Eηn (R)  for each adiabatic state.  This is 

known as the Born-Oppenheimer approximation (the adiabatic potentials are sometime 

known as the Born-Oppenhemier potentials).   Note that under the BO approximation, the 

wave function for electrons and nuclei separates as

� 

Ψ( ri{ },R) = ηn (R)φn ( ri{ },R) . 
 

The nuclei generally move adiabatically in the BO potentials for a given electron 

configuration.  But suppose as some critical radius two BO potentials cross, as shown 

below.  If the they are coupled, this crossing can become an avoided crossing. 

 
Near the crossing, the neglected terms in the BO approximation can now become 

important determine whether or not the nuclei move adiabatically or diabatically through 

the crossing.  For example, nuclei moving in BO potential 1 might adiabatically transfer 

to state 2 and dissociate, below the usual energy threshold.  This phenomenon is known 

as “predissociation” 



(b) Argue that if the relative velocity of the nuclei through the crossing region is v, the 

probability for a diabatic transition is 

� 

Pdiab = e−2πA , where 
  

� 

A = V12
2

v F1 − F2
 with 

� 

V12 the coupling matrix element and 

� 

Fi = − dUi(Rc )
dR

 is the force on the nuclei in the ith BO potential. 

(Hint:  Approximate the anti-crossing as the standard hyperbola discussed in class for the 

spin 1/2 in a magnetic field). 

 

(c) 5 points Extra Credit 

 Another example is the so called “Zener breakdown” of the conduction of electrons in 

crystalline solids.  The energy bands provide a dispersion relation   

� 

ωn (q) = En (q) / so that 

electrons in the n band and quasimomentum q move with a group velocity 

� 

v = dωn (q) /dq.  

Now if we apply an electric field E, the electron will accelerate.  Assuming the 

acceleration is sufficiently slow, the electron will adiabatically follow in its energy band 

q(t)= q(0)-eEt/.  However, at the edge of the Brillouin zone, there is an anticrossing.  If 

the electron is moving too fast it will “tunnel” (i.e. make a diabatic LZ transition) to the 

next band 

 
 

Thus, a insulator with a large bandgap will start to conduct.  This is “Zener break down”. 
Show that the rate of tunneling (and thus the current per charge) is 
 

    

� 

γ =
eEL
2π

exp −
meL δ

2

2eE
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 

 
where L is that lattice period and 

� 

δ  is the half width of the energy gap. 


