
Physics 522.  Quantum Mechanics II 
Problem Set #4   

Due Thursday, Mar. 3, 2011 
 
 

Problem 1:  Stark Shift in Hydrogen (10 points) 
 
Excluding nuclear spin, the n=2 manifold in Hydrogen has the configuration: 
 
 
 
 
 
 
 
where ΔEFS/h=10 GHz (the fine structure splitting) and ΔELamb/h=1 GHz (the Lamb shift – 
an effect of quantum fluctuations of the electromagnetic field).  In class we neglected 
these shifts when calculating the Stark shift.  This was valid if ea0Ez >> ΔE . 
 
Let x ≡ ea0Ez . 
 
(a) Suppose x ˜ < ΔELamb , but x << ΔEFS .  Then we need only consider the (2s1/2, 2p1/2) 

subspace in a near degenerate case.  Find the new energy eigenvectors and 
eigenvalues to first order.  Are they degenerate?  For what value of the field (in 
volts/cm) is the level separation doubled over the zero field Lamb shift? 
(Hint: Use the representation of the fine structure eigenstates in the uncoupled 
representation) 

 
(b) Now suppose x ˜ > ΔEFS .  We must include all states (2s1/2, 2p1/2, 2p3/2) in the near 

degenerate case.  Calculate and plot numerically the eigenvalues as a function of x, in 
the range from  
0 GHz < x < 10 GHz.  

 
(c) Comment on the behavior of these curves.  Do they have the expected asymptotic 

behavior?  Find analytically the eigenvectors in the limit x / ΔEFS → ∞ .  Show that 
these are the expected perturbed states. 
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Problem 2:  Hyperfine Structure of 23Na  (10 points). 
 
Sodium, being an alkali, has one valence electron and thus has an energy level structure 
similar to hydrogen.  The main difference is that the core now consists a nucleus screened 
by closed shell electrons. Adding electron spin leads to “fine structure” splitting.  The 
energy level spectrum of the ground and first excited state then appears as below. 
 
 

 
 
 

These two lines are known as the “sodium doublet”.  The transition 3s1/ 2 → 3p1/ 2  is 
known as “D1” and 3s1/ 2 → 3p3/ 2  known as “D2”.  All the alkalis have this basic 
structure. 
 
(a) Consider the 23Na isotope which has a nuclear spin quantum number I=3/2.  Find all 
the possible hyperfine states for the ground electronic state and the excited states doublet.  
Express them as superpositions of the uncoupled basis vectors for electron and nucleus 
j,mj ⊗ I ,mI .  You may use any source to find the Clebsch-Gordan coefficients (you 

need not calculate them). Is the new basis orthonomal? 
 
(b) Check your answer for the 3p3/2(F=3) state by directly apply the lowering operator to 
the “stretched state” 
 
(c)  Show that the dipole matrix element (dipole along z) for the three possible transitions 
3s1/ 2 (F = 1,MF = 0) → 3p1/ 2(F =1, ′ M F )  vanish unless ′ M F = 0 . 



Problem 3: Zeeman effect in the ground state of hydrogen 
 
In the 1s state of hydrogen, the interaction of the atom with an external magnetic field is 
due solely to the spins since the orbital angular momentum is zero.  Including the 
hyperfine interactions, the Hamiltonian is 
 

  

� 

 
H = A

 
i ⋅  s + geµBB ⋅  s − gpµNB ⋅

 
i , 

 
where 

� 

ge = 2 (

� 

gp ≈ 5.6 ) is the electron (proton) g-factor, 

� 

µB (µN ) is the Bohr (nuclear) 
magneton, and A is the hyperfine constant.  Here the electron and proton spin operators 
are measured in units of . 
 
(a) In weak field limit, 

� 

A << µBB , the interaction with the magnetic field can be treated 
as a perturbation to the hyperfine interaction.  What strength of magnetic field is “weak”, 
according to this condition in the ground state of hydrogen?  What are the “good quantum 
numbers” in this regime?  Find the eigenstates and shifts in the energy levels per Gauss of 
magnetic field, to lowest nonvanishing order in perturbation theory for weak fields. 
 
(b) In the strong field limit (also known as Pashen-Back regime), 

� 

µBB >> A , the 
hyperfine interaction can be treated as a perturbation to the Zeeman Hamiltonian. What 
are the “good quantum numbers” in this regime?  Find the eigenstates and shifts in the 
energy levels per Gauss of magnetic field to lowest nonvanishing order in perturbation 
theory for strong fields. 
 
(c) This Hamiltonian can be solved exactly in the subspace of the 1s state.  Show that 

  

� 

 
f z =
 
i z +  s z  commutes with the total Hamiltonian.  Use this to block-diagonalize the 

Hamiltonian.  Then diagonalize each block in turn.  Let mf be the eigenvalue of   

� 

 
f z .  Show 

that the exact eigenvalues are of the form, 

� 

E± (mF ) = −gpµNBmf −
A
4

±
A
2
1+ 2mf x + x 2  

 
where 

� 

x = (gpµB + geµB )B /A .  This is known as the “Breit-Rabi formula”. 
 
(d) Plot the four energy levels as function of x (neglect the small contribution of the 
nuclear magneton). Label them in the strong and weak limits. Comment on the behavior 
of these curves. 
 
(e) Show that in the weak and strong limits, the analytic expression agrees with your 
answers in parts (a) and (b). 
 


