
Physics 522.  Quantum Mechanics II 
Problem Set #4   

Due Thursday, Mar. 3, 2011 
 

Problem 1: Time Reversal Symmetry  (10 Points) 
The microscopic laws of physics are thought to be time reversal invariant.  Loosely 
speaking this means the following.  Suppose we take a movie of the motion of a system.  
If we run the movie backwards, could we tell?   
     In classical physics, Newton’s Law 

� 

d2x
dt 2

= −∇V (x)  

is time-reversal in variant.  That is if 

� 

x(t)  is a solution for given initial conditions at t=0, 
then 

� 

x(−t) is a solution – that is the solution running backwards in time is also a solution. 
 
     In quantum physics (nonrelativistic, and ignoring spin), the dynamics can be described 
by the Schrödinger equation (e.g., for one particle),  
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By inspection we see that given a solution 

� 

ψ(x,t) , the function 

� 

ψ*(x,−t)  is also a 
solution.  Thus the time reversed wave function in position space is the complex 
conjugate.   We can thus define the time reversal operator by its action in position space, 

� 

ˆ Θ ψ = ˆ Θ d3x∫ ψ(x) x = d3x∫ ψ*(x) x   (complex conjugation in the basis 

� 

x{ }  ). 

By this definition, Θ̂−1 = Θ̂ . 
 
(a) Show that 

� 

ˆ Θ  is antiunitary.  
 
(b) Use the position representation to show the following transformations for the position, 
momentum and orbital angular momentum operators. 

Θ̂x̂Θ̂−1 = x̂ ,  Θ̂p̂Θ̂−1 = −p̂ ,  Θ̂L̂Θ̂−1 = −L̂  . 
 

We extend the time-reversal transformation on orbital angular momentum to include spin 
Θ̂ĴΘ̂−1 = −Ĵ , where 

� 

ˆ J  is an arbitrary angular momentum operator.   
 



(c)  Show for spin 1/2 the time reversal operator can be written, 

  

� 

ˆ Θ = e−iπ ˆ S y /  ˆ K z , 

where   

� 

e−iπ ˆ S y /   is the rotation operator about y by π, and 

� 

ˆ K z  is complex conjugation in the 

standard basis (eigenstates of 

� 

ˆ S z), i.e. this operator satisfies Θ̂ŜΘ̂−1 = −Ŝ . 
    Note, this division is not unique, so nothing is special about the y and z directions. 
 
(d)  Show that the Hamiltonian for the Hydrogen atom (including first order relativistic 
effects) is time-reversal invariant. 
 
(e)  Consider now adding an external magnetic field.  Show that if all dynamics are time 
reversal invariant, that the electric and magnetic fields must transform as  
 

� 

E⇒ E and 

� 

B⇒−B  
 
 

Problem 2:  Gauge Symmetry and the Aharonov-Bohm Effect (10 Points) 
An important symmetry of physics, especially from the perspective of modern quantum 
field theory, is gauge invariance.  Recall from the fundamental Hamiltonian for a charged 
particle q in a static electromagnetic field described by  vector potentials A and 
electrostatic potential V is, 
 

 ˆ H = 1
2m

ˆ p − q
c

A( ˆ x )
2

+ qV( ˆ x ) . 

 
Under a “gauge-transformation” A(x )→ A(x) +∇χ(x)  where χ is a scalar, the physical 
field B is unchanged.  Thus, the quantum mechanical description must be gauge 
independent. 
 
(a)  Show that a gauge transformation is accomplished by the unitary transformation 
 

  ̂  U = e− iqχ (ˆ x )/ c . 
 

Thus show that under a gauge transformation, the wave function undergoes a phase shift, 
ψ (x)→ e−iφ (x)ψ (x) , where   φ(x) = qχ(x) / c . 

 
We can turn this argument on its head.  Since we know that the physics must be invariant 
under a phase change of the wave function, and this phase can be position dependent, we 
MUST have gauge invariance.  This is the fundamental theorem of modern field theory:  
Local phase change implies a “gauge field”, here A. 
 



(b)  As an example, consider the charge localized at the origin.  Expanding the scalar and 
vector potential in a Taylor series about the position of the charge gives the multipole 
expansion.  Show that to up to the order of the electric dipole d, 
 

ˆ H = 1
2m

ˆ p − q
c

A(0)
2

+ ˆ d ⋅ ∇V(0) + constant . 

 
Perform a gauge transformation using the gauge function χ(x) = − ˆ x ⋅A(0) , and show that 
the transformed Hamiltonian is 
 

ˆ ′ H =
ˆ p 2

2m
− ˆ d ⋅E(0) + constant , where now p is usual kinetic momentum. 

This form of the Hamiltonian is much simpler and easier to interpret than the one above, 
though they are physically equivalent. 

 

(c)  Consider the function
  
ξ(x) = q

c
A(x ) ⋅ dl

x0

x

∫ ,where x0 is an arbitrary point and the 

integral is take over some path C connecting x and x0.  Show that if ψ0(x) satisfies the 
free particle Schrödinger equation, eiξ( x)ψ 0(x) is the solution in the presence of a 
magnetic field B =∇ × A . 
 
(d)  Show that ξ(x)  is not uniquely specified by x, but also the path C.  To do this, 
consider the two paths sketched below with a flux tube of magnetic field threading them. 
 
 
 
 
 
 
 
 
 
Show that the phase difference accumulated by an electron along these two paths is 

Δφ12 = 2π
Φ
Φ0

, 

 
where Φ = B ⋅ da

S∫  is the magnetic field flux through a surface bounded by the closed 

loop, and Φ0 =
hc
e

 is the fundamental flux quantum (cgs units).  This is amazing!  It says 

that even though the electron travels only through regions of strictly zero magnetic field, 
so that classically there is NO Lorentz force, quantum mechanically the wave function is 
effected. This a nonlocal global property of the wave function, depending on the 
topology of the space.  The two paths interfere, as has been observed.  This is known as 
the Aharonov-Bohm effect. 
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Problem 3:  Diatomic Molecule (10 points) 
 
     The simplest molecule consists of identical nuclei plus electrons.  The basic features 
of the spectrum can be understood by considering the symmetries. 
 
In the Born-Oppenheimer approximation, we take the nuclei as fixed and calculate the 
wavefunction of the electrons.  These electronic states then determine a “molecular 
potential”, in which the nuclei can move. 
 
 
 
 
 
 
The Hamiltonian for the system can be written 
 

ˆ H =
ˆ p i2
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(a)  Show that this Hamiltonian is invariant under the following symmetries. 
 (i)  Continuous rotation about the internuclear axis. 
 (ii)  Parity (inversion of all coordinates through the center of the molecule). 
 (iii)  Reflection through a plane containing the internuclear axis. 
(Note:  there are also important exchange symmetries for the identical particles). 
 
Now take ZA=Zb.  If we take the internuclear axis to be the quantization axis, then these 
electron states have eigenvalue M of total electron angular momentum ˆ L z .  Since, the 
direction of the axis (A-->B) or (B-->A) is irrelevant, the state depends only on M ≡ Λ , 
where Λ=0,1,2, are denoted Σ,Π,Δ,... (the Greek versions of the usual spectroscopic 
labels for atoms). 
 
The parity eigenvalue p is denoted +1=g (gerade), -1=u (ungerade), using the German for 
even and odd.  Thus we denote this electron states as Λ p  (“term” notation). 
 
(b)  Show that under symmetry (iii) M→ −M , and since the state depends only on M , 
prove that states with Λ>0 are doubly degenerate.  In contrast, for Λ=0, the state is 
unchanged by a reflection and thus this degeneracy is broken. The Σ thus have must 
respect the reflection symmetry, with  eigenvalue ±1. The Λ=0 states are denoted 
Σ p

+ orΣp
− . 

 
(c) When the nuclei are sufficiently separated compared to the size of an atom (order Å), 
the potential should asymptote to the energy of two free atoms. Consider then the Cl2 
molecule.  Given that ground state Cl atoms have total electron angular momentum L=1 
(i.e. P states), what are the possible molecular terms?  
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