
Physics 522.  Quantum Mechanics II 

Problem Set #10 – Time Dependent Perturbations  
Due Thursday, May 5 2011 

 
Problem 1: Photon absorption cross-section and photon scattering  (10 points) 
Given a laser beam at frequency ωL incident of an atom, we can define the absorption cross-
section in the usual way, 

� 

σabs (ωL ) =
Pabs
I inc

, 

 
where Iinc is the incident intensity and Pabs  is the absorbed power Assume a “weak” incident 
(polarized) monochromatic (narrow band) plane wave near resonance to a two-level transition 

� 

g → e , for a time T>>1/Γ, where Γ is the atomic linewidth.   
 
(a) Use Fermi’s Golden rule to show that  

  

� 

σabs (ωL ) =
4π 2

c e ˆ d ⋅
 
ε L g

2
ωL g(ωL) ,where 

� 

g(ωL)  is the normalized atomic lineshape, 

and for the case of lifetime broadening, 

� 

σabs (ωL ) =
σ 0

1 + 4Δ2 /Γ2 , where 
  

� 

σ0 =
8πω L

c
e ˆ d ⋅
 
ε L g

2

Γ
 

is the absorption cross-section on resonance (Δ=0). 
 

(b) Using the expression for the spontaneous emission rate (Einstein-A coefficient), 

  

� 

Γ =
4
3 kL

3 e d g
2
, show that the resonant absorption cross section is, 

• 
  

� 

σ0 = 6π2 Je mg + q 1q Jg mg

2
, when the field is polarized along with eq and the atom is 

“polarized”, i.e. prepared in a well defined m-state. 
•   

� 

σ0 = 2π2  if the field and/or the atom are unpolarized. 
 
The bottom line here is that the resonant cross section is of the order of the square of the exciting 
wave length, much larger that the physical cross section of the atom itself for optical resonance. 
 
(c) If a photon is absorbed by an atom is will eventually be emitted.  This is not necessarily true 
of other matter, e.g. a molecule or condensed mater (liquid or solid) where the excited matter can 
relax with other degrees of freedom such as vibrational motion (phonons) etc.  The absorption of 
a photon followed by spontaneous emission is a random direction is photon scattering.  
 
Argue that for weak fields, the scattering cross-section is equal to the absorption cross-section, 

� 

σscatt (ω) = σ abs(ω) , and show that the scattering-rate is, 
 

  

� 

γ scatt =
I
ω

σ scatt =
s
2Γ ,  where 

� 

s =
Ω2 / 2

Δ2 + Γ2 / 4  is the saturation parameter. 



Problem 2:  Two-photon transitions (20 points) 
 
Suppose we want to excite a hydrogen atom to a state with a very large principle quantum 
number n=100 (a so-called “Rydberg state”).  To get there directly would require an x-ray 
photon, for which lasers do not exist.  If we would like to coherently excite the transition, we 
must thus resort to a two-photon excitation via a virtual transition.  We can enhance the 
excitation rate by tuning one of the lasers frequencies relatively close to a dipole-allowed strong 
transition, and then a second photon to connect to the Rydberg state.   
For example, suppose we shine two laser beams on the gas with electric fields E1(t) = Re(E1e− iω1t )  
and E2 (t) = Re(E2e− iω2t ) .  We can tune one laser near the 1s→ 2p  transitions with a detuning Δ , 
and a second laser so that  ω1 + ω2  is close to the energy difference between 1s  and 100s , with 
a two-photon detuning of δ , as shown. 
 
 
 
 
 
 
 
 
 
 
(a) Use second order perturbation theory to argue that the transition probability P100s←1s  after a 
time t is approximately, 
 

P100s←1s =
Ω 1Ω2

2Δδ
⎛
⎝⎜

⎞
⎠⎟
2

sin2 (δt / 2) , 

 
 
where  Ω1 = 2p d̂ 1s ⋅E1  and  Ω2 = 100s d̂ 2p ⋅E2  define the Rabi frequencies of the two 
dipole-allowed transitions. 
 
Now let us solve the problem more exactly according to the time-dependent Schrödinger 
equation.  Restricting the dynamics to these three levels, Hamiltonian in the rotating-wave 
approximation can be written Ĥ = Ĥ A + Ĥ int (t) , where  
 

Ĥ A = E1s 1s 1s + E2 p 2p 2p + E100s 100s 100s  
 

 
Ĥ int (t) = −

Ω1

2
2p 1s e− iω1t + 1s 2p e+ iω1t( )− Ω2

2
100s 2p e− iω2t + 2p 100s e+ iω2t( )  

 
To simplify notation, let: a = 1s , b = 2p , c = 100s . 
 

1s 

100s 

2p 

ω1

 

ω2

 Δ
 

δ
 



(b) In the interaction picture, use the time-dependent Schrödinger equation show that the 
probability amplitudes in the three states evolve according to 

 
 

 
 
(c) In the limit that Δ >>Ω1,Ω2 ,δ , the population in the 2p state is never large and can be 
eliminated from the dynamics as a “virtual excitation”.  To do so, we formally integrate 
 

cb (t) = i
Ω1

2
d ′t

0

t

∫ e− iΔ ′t ca ( ′t )+ i
Ω1

2
d ′t

0

t

∫ ei(δ−Δ ) ′t cc ( ′t ) . 

 
Plugging this back in and neglecting the rapidly oscillating terms (which contribute to order 
Ω3t / Δ2  and Ω2δt / Δ2 ), show that we get the following approximate equations of motion the 
couple the probability amplitude in 1s and 100s in the two-photon transition, 
 

 

ca = −i Va

ca − i

Ωeff

2
cce

iδt

cc = −i Vc

cc − i

Ωeff

2
cae

− iδt

 

 

where 
 
Va ≡

Ω1
2

4Δ
, Vc ≡

Ω2
2

4Δ
, Ωeff =

Ω1Ω2

2Δ
. 

 
(d) With ca (0) = 1,  show that up to an overall irrelevant phase, the solution is, 
 

 
ca (t) = e

− iδt /2 cos
Ωt
2

+ i
δeff
Ω
sin
Ωt
2

⎛
⎝⎜

⎞
⎠⎟

, 
 
cc (t) = ie

iδt /2 Ωeff

Ω
sin
Ωt
2

 

 
where 

 
δeff = δ + (Vc −Va ) /   and 

 
Ω = Ωeff

2 +δeff
2  

 
This solution is known as two-photon Rabi flopping.   
 
(e) Please interpret the parameters 

 
Ωeff ,Va ,Vc ,δeff , Ω  (Hint: Compare to the Rabi solution of a 

two-level resonance).   
 
(f) Show that to lowest order in Ω1,Ω2 , you recover the solution from perturbation theory in (a) 

 

ca = i
Ω1

2
e+ iΔtcb

cb = i
Ω1

2
e− iΔtca + i

Ω2

2
ei(δ−Δ )tcc

cc = i
Ω2

2
e− i(δ−Δ )tcb


