Lecture 14: Identical Particles and Exchange Symmetry: Bose and Fermi Statistics

Motivation: The postulates of quantum mechanics are incomplete as we have stated them so far. When we deal with a many-body system of identical particles, there are "super selection rules" which limit the possible physical states available.

Examples: Pauli exclusion principle "No two electrons can be in the same state" \Rightarrow Chemistry

- Orbital configurations:
 - H: 1s
 - He: (1s)2
 - Li: (1s)2(2s)
 - Be: (1s)2(2s)2
 - B: (1s)2(2s)2(2p)
 - C: (1s)2(2s)2(2p)2

- Electronics in solids \Rightarrow Fermi energy

Field effect transistor

- Bose-condensation: Quantum Phase Transition

Critical temperature

$$N \frac{\chi^3}{\xi_T} \gg 1$$

N: Boson density

$$\xi_T = \sqrt{\frac{1}{4 \kappa m}}$$

Bosons lose "identity" \Rightarrow Condense into single wave function
Identical particles:

- Classical theory - Particles move along well defined trajectories \Rightarrow Even if the particles are identical in every way we can still keep track of which is which.

- Quantum theory - It may be impossible in principle to keep track of particles if identical particles when their wave packets overlap.

 E.g. scattering of identical particles

 \[\text{Center of mass frame} \]

 \[\text{Intermediate: particles lose identity} \]

 \[\text{Final two-particle probability distribution} \]

 \[\text{Two, in principle, indistinguishable paths} \]

 \[\text{Feynman's rule: Interfer probability amplitudes for in principle indistinguishable processes} \]
Exchange Symmetry

The description of a many-body system of identical particles fits within the general theory of symmetries.

Exchange symmetry: E.g., two particles

Hamiltonian: $\hat{H}(1, 2) = \hat{H}(2, 1)$ if identical

Define exchange operator (permutation): \hat{P}_{21},

$\hat{P}_{21} \hat{H}(1, 2) \hat{P}_{21}^+ = \hat{H}(2, 1) = \hat{H}(1, 2)$

Symmetry of Hamiltonian

According to our rules so far:

Hilbert space for a given particle $\hat{h}_1 = \hat{h}_2 = \hat{h}$

\Rightarrow Total Hilbert space

$\mathcal{H} = \hat{h}_1 \otimes \hat{h}_2 = \hat{h} \otimes \hat{h}$

Exchange defined: $\hat{P}_{21} \left| \psi_1 \otimes \psi_2 \right> = \left| \psi_1 \right> \otimes \left| \psi_2 \right>$

$\hat{P}_{21}^+ \hat{P}_{21} = \hat{1}$

Given $\hat{S}(1, 2) = \hat{A}(1) \otimes \hat{B}(2)$

$\hat{P}_{21} \hat{S}(1, 2) \hat{P}_{21}^+ = \hat{S}(2, 1) = \hat{B}(1) \otimes \hat{A}(2)$

Hamiltonian is a symmetric operator w.r.t. exchange

$[\hat{H}(1, 2), \hat{P}_{21}] = 0$
Hamiltonian eigenstates are eigenstates of \(\hat{\mathbf{P}}_{21} \).

Note: \(\hat{\mathbf{P}}_{21}^2 = 1 \) (identity)

\(\hat{\mathbf{P}}_{21} \) acts on states:
- \(\hat{\mathbf{P}}_{21} \left| \psi_{\text{S}} \right> = \left| \psi_{\text{S}} \right> \) (Bosons)
- \(\hat{\mathbf{P}}_{21} \left| \psi_{\text{F}} \right> = -\left| \psi_{\text{F}} \right> \) (Fermions)

Connection of exchange theory to intrinsic spin (field theory):
- Elementary particles: \(\frac{1}{2} \) integer (quarks, leptons) \(\Rightarrow \) Fermions
- Whole integer (gauge fields) \(\Rightarrow \) Bosons
- Composite particles \(\leftrightarrow \) Total spin \(\Rightarrow \) Bose or Fermi

Fact of nature: Bosons \(\Rightarrow \) must symmetric \(\Rightarrow \) Physical States
Fermions \(\Rightarrow \) must antisymmetric \(\Rightarrow \) Physical States

Given arbitrary wave function \(\psi(1,2) \), must project onto symmetric/antisymmetric subspaces:

\[
\hat{S} = \frac{1}{2} \left(\hat{1} + \hat{\mathbf{P}}_{21} \right), \quad \hat{A} = \frac{1}{2} \left(\hat{1} - \hat{\mathbf{P}}_{21} \right)
\]

\[
\hat{S} \left| \psi(1,2) \right> = \frac{1}{2} \left(\left| \psi(1,2) \right> + \left| \psi(2,1) \right> \right) \quad \text{(Renormalize)}
\]

\[
\hat{A} \left| \psi(1,2) \right> = \frac{1}{2} \left(\left| \psi(1,2) \right> - \left| \psi(2,1) \right> \right) \quad \text{\(\frac{1}{2} \rightarrow \frac{1}{\sqrt{2}} \)}
\]

For two particles spaces: \(\mathcal{H} = \mathcal{H}_S \oplus \mathcal{H}_A \), i.e., \(\hat{S} + \hat{A} = \hat{1} \)

Arbitrary state is spanned by 'H, and \(\mathcal{H}_A \)
Consequences of exchange symmetry

\[\Rightarrow \text{ Bose and Fermi statistics} \]

Consider two particles with single particle states \(|\phi_A\rangle \) and \(|\phi_B\rangle \).

Possible unsymmetrized states (Maxwell-Boltzmann stats):
\[
|\phi_A\rangle|\phi_A\rangle \quad |\phi_B\rangle|\phi_B\rangle \quad |\phi_A\rangle|\phi_B\rangle \quad |\phi_B\rangle|\phi_A\rangle
\]

Possible symmetric states (Bose-Einstein stats):
\[
|\phi_A\rangle|\phi_A\rangle \quad |\phi_B\rangle|\phi_B\rangle \quad \frac{1}{\sqrt{2}} (|\phi_A\rangle|\phi_B\rangle + |\phi_B\rangle|\phi_A\rangle)
\]

Possible antisymmetric state (Fermi-Dirac stats):
\[
\frac{1}{\sqrt{2}} (|\phi_A\rangle|\phi_B\rangle - |\phi_B\rangle|\phi_A\rangle)
\]

We see that the probability of finding both particles in the same state is:
\[
P_{\text{same}} = \begin{cases}
\frac{1}{2} & \text{M.B. stats} \\
\frac{2}{3} & \text{B.E. stats} \\
0 & \text{F.D. stats}
\end{cases}
\]

Without symmetrization, there is a 50-50 chance to find particles in the same state. For Bosons, there is an enhancement, and for Fermions, a zero probability. This has important consequences for thermodynamics.
Larger Number of particles: Permutation Group

Given \(N \) particles, there are \(n! \) permutations.

E.g. \(N = 3 \):
- \(\hat{P}_{123} \)
- \(\hat{P}_{231} \)
- \(\hat{P}_{132} \)
- \(\hat{P}_{321} \)

Ex. \(\hat{P}_{132} \) : \(|\psi_A\rangle \otimes |\phi_B\rangle \otimes |\phi_C\rangle = |\phi_A\rangle \otimes |\phi_C\rangle \otimes |\phi_B\rangle \)

Transposition operators \(\hat{P}_{ij} \) (exchange \(i \leftrightarrow j \))

Facts:
- Set of permutations form a group (nonabelian).
- Any permutation is a product of exchanges (not unique).
- The number of exchanges necessary to achieve permutation is unique \(\Rightarrow \) “parity” of permutation \(\Theta = \pm 1 \) (even) \(\Theta = -1 \) (odd).

Projectors:
- \(\hat{S} = \frac{1}{N!} \sum_{\pi \in S_N} \hat{P}_{\pi} \)
- \(\hat{A} = \frac{1}{N!} \sum_{\pi \in S_N} (-1)^{\text{type} \pi} \hat{P}_{\pi} \)

States in subspace \(\mathcal{H}_S \) and \(\mathcal{H}_A \) are eigenstates of \(\hat{P}_{\pi} \)

- \(\hat{P}_{\pi} (|S\psi\rangle) = \chi_\pi \langle S|\psi\rangle \)
- \(\hat{P}_{\pi} (|A\psi\rangle) = (-1)^{(\text{type} \pi)} \langle A|\psi\rangle \)

Symmetry Postulate: Physical states of identical particles lie in \(\mathcal{H}_S \) (Boson) or \(\mathcal{H}_A \) (Fermi).

No superposition of Boson and Fermi states.
Here, for three particles:

\[\hat{P}_{12} = \hat{P}_{21} \hat{P}_{32} \Rightarrow \sigma = -2 \Rightarrow (-1)^{\sigma} = +1 \text{ even} \]

\[\hat{P}_{23} \hat{P}_{12} \Rightarrow \sigma = -2 \Rightarrow (-1)^{\sigma} = +1 \text{ (cyclic perm.)} \]

\[\hat{P}_{13} \hat{P}_{23} \Rightarrow \sigma = 1 \Rightarrow (-1)^{\sigma} = -1 \text{ odd} \]

\[\hat{P}_{32} \hat{P}_{13} \Rightarrow \sigma = 1 \text{ (noncyclic)} \]

Given three particle state \[|\psi_A > |\psi_B > |\psi_c > = \sum |\Psi > \]

Unnormalized: \[|\Psi > = \sum_{\frac{3!}{2}} |\psi > = \frac{1}{6} \sum |\psi > \]

Normalized: \[|\Psi > = \frac{1}{\sqrt{6}} \left(|\phi_A > |\phi_B > |\phi_c > + |\phi_c > |\phi_A > |\phi_B > + |\phi_B > |\phi_c > |\phi_A > + \\
+ |\phi_A > |\phi_c > |\phi_B > + |\phi_B > |\phi_A > |\phi_c > + |\phi_c > |\phi_B > |\phi_A > \right) \]

Unnormalized: \[|\psi_A > = \hat{A} |\Psi > = \frac{1}{6} \sum_{\frac{3!}{2}} (-1)^{\sigma(\text{perm})} |\psi > \]

Normalized: \[|\psi_A > = \frac{1}{\sqrt{6}} \left(|\phi_A > |\phi_B > |\phi_c > + |\phi_c > |\phi_A > |\phi_B > + |\phi_B > |\phi_c > |\phi_A > - \\
- |\phi_A > |\phi_c > |\phi_B > - |\phi_B > |\phi_A > |\phi_c > - |\phi_c > |\phi_B > |\phi_A > \right) \]

Note: Without exchange symmetry there are 6 possible states with one particle \(|\phi_A > \) another \(|\phi_B > \) and the last \(|\phi_c > \).

Under the symmetrization rule, only two physical states \(|\Psi > \) for Bosons, \(1^{2}P_{A} \) for Fermions.

Note: If any two \(\phi > > s \) are the same \(|\Psi > = 0 \) Pauli Principle
For the Fermionic case, given N particles, with possible single particle states, $\phi_A, \phi_B, \phi_C, \ldots$ we can construct the completely antisymmetric state using a determinant: the Slater determinant.

E.g. $N=3$ which one electron in ϕ_A another in ϕ_B a third in ϕ_C and a fourth in ϕ_C

$$\Phi(1, 2, 3) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_A(1) & \phi_B(1) & \phi_C(1) \\ \phi_A(2) & \phi_B(2) & \phi_C(2) \\ \phi_A(3) & \phi_B(3) & \phi_C(3) \end{vmatrix}$$

It is relatively straightforward to check that

$$\hat{\sigma}_3 \Phi = (-1)^{\sigma_3(\phi_3)} \Phi$$

Also note that if any two ϕ's are the same Φ vanishes. - Pauli Principle

In contrast for Bosons if say $\phi_C = \phi_A$

$$|123\rangle = \frac{1}{\sqrt{3}} (|\phi_A\rangle|\phi_A\rangle|\phi_B\rangle + |\phi_A\rangle|\phi_B\rangle|\phi_A\rangle + |\phi_B\rangle|\phi_A\rangle|\phi_A\rangle)$$

(Next Page)