Lecture 15: Addinion of Angular Momanterm
Classinally, anyuler momentum adels as a rector

e.g: Spinnirg tep w.te interinel argular momantain: 1 raorba wh Lext

$$
\vec{L}_{\text {total }}=\vec{L}_{\text {iot }}+\vec{L}_{\text {ext }}
$$

Quountimn mechonically, the situation is more complex sinice difterient components of angular umimentami do not conmute

Cenerally problem:
Guven wwo angular momenta $\hat{f_{1}}$ and $\hat{f_{2}}(e g, s p i n+t$ orplat of givin parkie, two spors, ete.). नि aet: m h_{1}, spanned by $\left|g_{1}, m_{1}\right\rangle(2,+1)$ de f_{2} act on h_{2}, spanised ky $\left(y_{2}, m_{2}\right\rangle\left(2 y_{2}+1\right)-k_{n}$
Compente space $q=h_{1} \otimes h_{2}, \operatorname{spannod} b y$ the keai $\left\langle g_{1} m_{1}\right\rangle \otimes\left|g_{2}\right\rangle=\left|g_{1} m_{1} ; f_{2} m_{2}\right\rangle$
(tolal of $\left(y_{2}+1\right)\left(2 g_{2}+1\right)$ bavis vectors) the bases vectors are simithneor egenstols of $\left\{\hat{y}_{1}^{2} \hat{y}_{z}, \hat{y}_{2}^{2}, \hat{y}_{z}\right\}=$ Complete sof of mituallg, coumulng "Uncomplad representatoon" oporaters.

Consider the "total angular momentum" opendor.

$$
\hat{\vec{z}} \equiv \hat{z}_{1}+\hat{y}_{2} \text { on } q t
$$

(veally $\left.\quad \hat{\vec{j}}=\hat{\vec{j}}_{1} \otimes \hat{\mu}_{2}+\hat{\mathbb{H}}_{1} \otimes \hat{\jmath}_{2}\right)$
Compminents $\hat{j}_{i}=\hat{j}_{L}+\hat{j}_{L}$

$$
\hat{\jmath}^{2}=\left|\hat{\jmath}_{1}+\hat{\jmath}_{2}\right|^{2}=\hat{f}_{1}^{2}+\hat{f}_{2}^{2}+2 \hat{\jmath}_{1} \cdot \hat{\jmath}_{2}
$$

Doed $\hat{\vec{j}}$ satrify arguler momentem algebra?

$$
\left[\hat{\jmath}_{\nu}, \hat{\jmath}_{\hat{\prime}}\right]=\left[\hat{\partial}_{\nu}, \hat{f}_{\hat{l}}\right]+\left[\hat{f}_{\nu_{l}}, \hat{\jmath}_{2}\right]
$$

(sence $\frac{\lambda}{\lambda}$, and $\hat{f_{2}}$ commate)

$$
\begin{aligned}
& =i \epsilon_{i k} \hat{f}_{i h}+i \epsilon_{i_{k} k} \hat{\partial}_{2_{h}}=i \epsilon_{i j_{h}}\left(\hat{y}_{k}+\hat{\partial}_{k k}\right) \\
& \Rightarrow\left[\hat{\partial_{c}+\hat{\jmath} \hat{J}}=i \epsilon_{i g h} \hat{j_{h}}\right. \\
& {\left[\hat{\jmath}_{1}^{2} \hat{j}_{z}\right]=\left[\hat{j}_{1}+\hat{j}_{2}^{2}+2 \hat{j_{1}} \cdot \hat{\jmath_{2}}, \quad \hat{\partial}_{2}+\hat{j}_{z z}\right]} \\
& =\left[\hat{y}_{1}^{2}, \lambda_{2}\right]+\left[\hat{\gamma}_{2}^{2}, \hat{\partial}_{2 z}\right]+2\left[\left[\hat{J}_{1} \cdot \hat{J}_{2}, \hat{\partial}_{r z}\right]\right. \\
& \left.\begin{array}{ccc}
\| & \| & +\left\lfloor\hat{\jmath}_{1} \cdot \hat{f_{2}}, \hat{f}_{22}\right. \\
0 & 0 &
\end{array}\right)
\end{aligned}
$$

(Nest Page)

Aside:

$$
\begin{aligned}
& {\left[\hat{\hat{j}_{1}} \cdot \hat{\hat{J}_{2}}, \hat{\jmath}_{z}\right]=\left[\hat{\vec{j}}_{2} \cdot \hat{\vec{j}}, \vec{e}_{z} \cdot \hat{\vec{j}}_{1}\right]} \\
& =i\left(\frac{\hat{\partial}}{\gamma_{2}} \times \vec{e}_{z}\right) \cdot \hat{\hat{J}_{1}} \\
& {\left[\hat{\vec{j}}_{1} \cdot \hat{\vec{j}}_{2}, \hat{\jmath}_{2 z}\right]=\left[\frac{\hat{\vec{j}}}{1} \cdot \hat{\hat{v}_{2}}, \overrightarrow{e_{z}} \cdot \hat{\overrightarrow{j_{2}}}\right]} \\
& =i\left(\hat{\jmath_{1}} \times \vec{e}_{z}\right) \cdot \hat{च}_{2}=-i\left(\hat{\tilde{\gamma}_{2}} \times \vec{e}_{z}\right) \cdot \hat{j_{1}} \\
& {\left[\hat{\jmath}^{2},-\hat{\gamma_{z}}\right]=Q}
\end{aligned}
$$

Thus $\hat{\vec{j}}$ is an angular momus operator
Note $\left[\hat{y}_{2}^{2}, \hat{y}_{z}\right]=\left[\hat{y}_{2}^{2}, \hat{\partial}_{1 z}+\hat{\gamma}_{2 z}\right]=\left[\hat{y}_{2}^{2}, \hat{y}_{2}\right]=0$
$\therefore 7$ simultaneous ergenstates of the total angular momentum operators $\left\{\hat{\jmath}^{2}, \hat{j}_{\varepsilon}\right\}$

$$
\{|y, m\rangle\}
$$

These are also elogenstate of \hat{y}^{2} and $\bar{\jmath}_{2}^{2}$ Complete set of commuting opentors

$$
\left\{\hat{\jmath}^{2} \hat{\jmath}_{1}^{2}, \hat{\jmath}_{2}^{2}, \hat{\jmath}_{z}\right\}
$$

\Rightarrow Eignstates $\left.\left\{y_{,} m ; y_{i}, f\right\rangle\right\}$
"Coupled repiresentatorn"

Hawever:

$$
\begin{aligned}
& {\left[j^{2}, \hat{j}_{1 z}\right]=i\left(\hat{y_{2}} \times \vec{e}_{z}\right) \cdot \frac{\vec{j}}{j_{1}} \neq 0} \\
& {\left[\vec{j}^{2}, \hat{j}_{2 z}\right]=i\left(\hat{j}_{1} \times \vec{e}_{2}\right) \cdot \vec{j}_{2} \neq 0}
\end{aligned}
$$

\Rightarrow stata $\left|y_{1} m_{1}\right\rangle \otimes\left(y_{2} m_{2}\right\rangle$ is ganerally not ergenstate of \hat{j}^{2}
\Rightarrow Two defferent repireserlation

- Uncoupled representitor: $\left\{\left|f_{1} m_{1} ; f_{2} m_{2}\right\rangle\right\}$ Shand eigentato of $\left\{\hat{y}_{1}^{2}, \hat{y}_{1 z}, \hat{\jmath}_{2}^{2} y_{2 z}\right\}$
Couplel represintution: $\left\{1 j m_{;}, y_{1}, y_{2}>\right\}$ Simultaneous eiganbets of $\left\{\hat{j}^{2}, \hat{\jmath}_{2}, \hat{j}_{1}^{2}, \hat{j}_{2}^{2}\right\}$
Note $\hat{\jmath}^{2}=\hat{\gamma}_{1}^{2}+\hat{\jmath}_{2}^{2}-2 \hat{\jmath}_{1} \cdot \hat{\jmath}_{2}$
$\Rightarrow \mid \partial_{1}-j_{2} \leq j \leq \dot{\partial}_{1}+j_{2} \quad$ triangle in inqualuty
Total \# of states: $\sum_{y=1 y_{1}+y_{2} 1}^{x_{1} f_{2}}(2 y+1)=\left(2 y_{1}+1\right)\left(2 y_{2}+1\right)$
Vector picture

Example: Tiv spine $(<=1 / 2)$
a Uncoupled: $\left\{\hat{\lambda}_{1}^{2}, \hat{A}_{1 z}, \hat{\lambda}_{2}^{2}, \hat{\lambda}_{2 z}\right\}$
Sui $\left.\left\{\left|t_{z}\right\rangle \otimes\left|+\frac{t_{z}}{}\right\rangle,\left|t_{z}\right\rangle \otimes\left|-\frac{7}{z}\right\rangle,|-z>0| t_{z}\right\rangle,\left|-\frac{z_{2}}{2}\right\rangle\right\}$

- Coupled. $\left\{\hat{A}_{1}^{2} \hat{\lambda}_{z}, \hat{A}_{1}^{2}, \hat{N}_{2}^{2}\right\} \quad \frac{a}{\hat{1}}=\hat{D_{1}}+\hat{D_{2}}$

Basie $\left\{1 A_{1} m ; A_{1} A_{2}>\right\}$
$\left|A_{1}-A_{1}\right| \leq A \leq 1 A_{1}+A_{2} \quad \Rightarrow \quad 0<A<1$
$0 A=0 \Rightarrow|A=0, m=0\rangle \quad$ " singlet 1
$0 A=1 \Rightarrow \quad|A=1, m=-1\rangle,|\alpha=| m=0\rangle,|\alpha=1, m=1\rangle$ M triplet"
(Woe since d, and de are fixed, we need not write them)
Since either bows is a complete set we can expend one sot in farms of the then.

Fund cofereet whet diagonije 1 and \bar{z} Next Page
\Rightarrow Dicegonalize the matrix representatom of $I^{2} \operatorname{tad} 1$ in $\left\{\left|A_{1} m_{1}\right\rangle\left(A\left|A_{2} m_{2}\right\rangle\right\}\right.$

Note: $\left.\hat{A}_{z}\left(1 \Delta_{1} m_{1}\right\rangle \otimes\left|A_{2} m_{z}\right\rangle\right)=\left(\hat{A}_{2}+A_{2 z}\right)\left(1 \alpha_{1} m_{1}\right\rangle \otimes A_{2} m_{z}$

$$
=\left(m_{1}+m_{2}\right) \quad\left(\left|\alpha_{1}, m_{1}\right\rangle \otimes\left|\alpha_{2} m_{2}\right\rangle\right)
$$

\Rightarrow A A en tuagrate in thes base

$$
\hat{A}_{2}=\left[\begin{array}{ccc}
1+1 & 1+-1 & 1+p \\
0 & \cdots \\
& 0 & -1
\end{array}\right]
$$

Howevar.

$$
\begin{aligned}
& \left.A^{2}\left(\| A_{1} m_{1}\left|\alpha_{2} m_{2}\right\rangle\right)=\left(\hat{2}^{2}+\hat{A}_{2}^{2}+2 \hat{A}_{1} \cdot \hat{A}_{2}\right) m_{1}, m_{2}\right\rangle \\
& =\left(\frac{3}{4}+\frac{3}{4}\right)\left|m_{1}, m_{2}\right\rangle+2 \hat{A}_{1} \cdot \hat{A}_{2}\left|m_{1}, m_{2}\right\rangle \\
& \left.=\frac{3}{2}\left|m_{1}, m_{2}\right\rangle+\left(\hat{Q}_{1+} \hat{A}_{2-}+\hat{\theta}_{1-} \hat{\theta}_{2+}+2 \hat{a}_{12} \vec{a}_{22}\right) \right\rvert\, m_{1} m \\
& \left.=\left(\frac{3}{2}+2 m_{1} m_{2}\right)\left|m_{1} m_{2}\right\rangle+\hat{A}_{1}\left|m_{1}\right\rangle \otimes\left|\hat{A}_{2}\right| m_{2}\right\rangle \\
& \left.A_{1-} \mid A_{1}, m_{1}\right) \otimes \otimes J_{2}\left(A_{2}, m_{2}\right) \\
& \left.\hat{A}^{2} 1+1=21+1\right\rangle \\
& \hat{A}^{2}|+->=1+->+1-x\rangle \\
& \partial^{2} \mid-7=21--7 \\
& \hat{A}^{2}|-x\rangle=1-t>+1+-7
\end{aligned}
$$

(rpx Page)

$$
\Rightarrow \hat{A}^{2}=\left[\begin{array}{c|c|c|c}
|+\lambda\rangle & |+\lambda|-1\rangle & 1--\rangle \\
2 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
\frac{0}{0} & \frac{1}{0} & 1 & 0 \\
\hline
\end{array}\right]
$$

Block diagonal: subprace $m=0$:

$$
\mathcal{A}^{2}=\left[\begin{array}{cc}
1+-1 & 1+1 \\
1 & 1 \\
1 & 1
\end{array}\right]
$$

Secular equation:
$\operatorname{det}\left(\hat{\lambda}^{2}-\lambda \hat{\Lambda}\right)=\lambda^{2}-2 \lambda=0$
eigenvalues $\lambda=0: \hat{j} \mid \lambda \lambda=0 \quad \Rightarrow \quad A=0$

$$
\lambda=2-\lambda|\lambda\rangle=21 \lambda\rangle=\alpha(\lambda+1) \Rightarrow A=1
$$

eigenvectors:

$$
\begin{array}{ll}
A=0: & \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=\frac{1}{\sqrt{2}}(1+->-\mid-\lambda) \\
A=1: & \frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
1
\end{array}\right]=\frac{1}{\sqrt{2}}(1+>+|+-\rangle)
\end{array}
$$

We thus arrive at the relaternchip between Ale coupled and uncoupled reppresintatos:

Singlet:

$$
|A=0, m=0\rangle=\frac{1}{\sqrt{2}}(1+->-1-+>)
$$

Triplet

$$
\begin{aligned}
& |A=1, m=1\rangle=1++\rangle \\
& \left.|A=1, m=0\rangle=\frac{1}{\sqrt{2}}(1+\rightarrow+1-+\rangle\right) \\
& |A=1, m=-1\rangle=1--7
\end{aligned}
$$

Note: He $\mid a, m=0$ are entangled?

