Lecture :19 Clebsch-Gordan and Addition of Angular Momentum
The coupling together of angular momenta and the relevant representations of the rotation group are of central importance in the study of tensors in quantum mechamis - our goal for this an it.

Recall: Addition of angular momentum
Consider two angular momenta $\overrightarrow{j_{1}}$ and \vec{j}_{2} each acting on a H1 (bert space h_{1} and h_{2} (each orbit and spin).

We define the joint H ibert space $g t=h_{1} \otimes h_{2}$
The total angular momentum acting on it

$$
\stackrel{\wedge}{\jmath}=\hat{\vec{J}}_{1} \otimes \hat{1}_{2}+\hat{\Lambda}_{1} \otimes \hat{\jmath}_{2} \equiv \vec{\jmath}_{1}+\vec{\jmath}_{2}
$$

The Hilbert space decomposes as

$$
q f=\left(+h_{y_{1} \partial_{2}} h_{1}^{\left(\partial_{1}\right)} \otimes h_{2}^{\left(\partial_{2}\right)}\right.
$$

Where $h_{1}^{\left(j_{1}\right)}$ is spanneal by $\left|j_{1}, m_{1}\right\rangle \quad\left(2 j_{1}+1\right)$-dim $h_{2}^{\left(d_{2}\right)}$ is spanned by $\left(f_{2}, m_{2}\right)\left(2 \gamma_{2}+1\right)-d_{\text {in }}$ Uncoupled basis $\left|\jmath_{1} m_{1}\right\rangle \otimes\left|\jmath_{2} m_{2}\right\rangle$

The "couple d-basis" is defined as simultaneous eigenstates of $\left\{\vec{J}^{2}, \hat{J}_{z}, \hat{\jmath}_{1}^{2}, \hat{\jmath}_{2}^{2}\right\}$
 fixed value of J, J_{1}, g_{2}
where $\hat{J}^{2}\left|J M \partial_{1} \partial_{2}\right\rangle=J(J)(J M)\left|J j_{2}\right\rangle$

$$
J_{z}\left[J M \jmath_{1} \jmath_{2}\right\rangle=M\left|J M \jmath_{1} f_{2}\right\rangle
$$

For given values of y_{1} and y_{2}, the total angular momentum quantum number satisfies the "triangle inequalidy"

$$
\left|y_{1}-f_{2}\right|<J \leqslant \jmath_{1}+\partial_{2}
$$

Thus, we have an aldernatwie decomposition of the total Hilbert space as

$$
q=\left(+\partial_{\partial_{1} j_{2}}{\underset{\left.J=y_{1}-y_{2}\right)}{j_{1}+y_{2}} q(J)}_{(J)}\right.
$$

Where $A^{(J)}$ is spanned by $\left\{\left|J M_{J} f_{1} d_{2}\right\rangle\right\}$
Note $\sum_{J=1 y_{1}-y_{2} \mid}^{\partial_{1}+y_{2}}(2 J+1)=\left(2 y_{1}+1\right)\left(2 \jmath_{2}+1\right)$
As exported

Let us consider the subspace determined by fixed common eigenvalues f_{1} and f_{2}

We have two different completness relations

$$
\begin{aligned}
& \sum_{m_{1}=-\partial_{1}}^{\partial_{1}} \sum_{m_{2}=-j_{2}}^{\partial_{2}}\left|\partial_{1} m_{1} f_{2} m_{2}\right\rangle\left\langle\partial_{1} m_{1} f_{2} m_{2}\right|=\hat{1} \\
& \sum_{J=y_{1}-y_{2} \mid}^{\partial_{1}+y_{2}} \sum_{M=-J}^{J}\left|J M \partial_{1} f_{2}\right\rangle\left\langle J M_{y_{1}} f_{2}\right|=\hat{1}
\end{aligned}
$$

The change of basis relation is a great importance

$$
\begin{aligned}
\left|J M \jmath_{1} \partial_{2}\right\rangle & =\sum_{m_{1} m_{2}}\left|\partial_{1} m_{1} \partial_{2} m_{2}\right\rangle\left\langle\partial_{1} m_{1} \partial_{2} m_{2} \mid J M_{d} j_{2}\right\rangle \\
& \left.=\sum_{m_{1} m_{2}}\left\langle\jmath m_{1} j_{2} m_{2} \mid J M\right\rangle \quad\left|\partial_{1} m_{1}\right\rangle \otimes \partial_{2} m_{2}\right\rangle
\end{aligned}
$$

"vector addition coefficient" or
Clebsch-Gordan coefficient

In writing the C-G coeftiaent, we do not pat $\partial_{1} j_{2}$ in the ket |JM) since they are common eigenvalues

Selection rules
Sine $\hat{\jmath}_{z}=\hat{\partial}_{1 z}+\hat{\jmath}_{2 z}$

$$
\begin{aligned}
\left\langle\partial_{1} m_{1} \jmath_{2} m_{2}\right| \hat{J}_{z}|J M\rangle & =M\left\langle\partial_{1} m_{1} \partial_{2} m_{2} \mid J M\right\rangle \\
& =\left(m_{1}+m_{2}\right)\left\langle\partial_{1} m_{1} \partial_{2} m_{2} \mid J M\right\rangle \\
\Rightarrow\left\langle\partial_{1} m_{1} \partial_{2} m_{2} \mid J M\right\rangle & =0 \quad \text { unless } M=m_{1}+m_{2}
\end{aligned}
$$

Also ${ }^{C-G}$ vanishes in J does not ratify the "triangle inequality": $\quad\left|y_{1}-j_{2}\right| \leq J \leqslant j_{1}+g_{2}$

Other properties of $C-G$ coeffuents

- Phase convention: $C-G$ are defined to be real

$$
\left\langle\partial_{1} m_{1} \partial_{2} m_{2} \mid J M\right\rangle=\left\langle J M \mid \partial_{1} m_{1} \partial_{2} m_{2}\right\rangle
$$

- Normalyatron: Using completeness we see

$$
\sum_{m_{1} m_{2}}^{n}\left|\left\langle J M \mid \jmath_{m_{1}} \jmath_{2} m_{2}\right\rangle\right|^{2}=\sum_{J M}\left|\left\langle J M \mid \jmath_{1} m_{1} \jmath_{2} m_{2}\right\rangle\right|^{2}=1
$$

- Exchange: $\left\langle J M \mid \jmath_{1} m_{1} \partial_{2} m_{2}\right\rangle=(t)^{J-\jmath_{1}-\partial_{2}}$

$$
\left\langle J M \mid \partial_{2} m_{2} \partial_{1} m_{1}\right\rangle
$$

Note: Sometimes these minus signs are removed by defining so-called 3 J -symbols

Finding the C-G coefficients
These days, the are many online calculators for finding the C-G coefficients lincluding, cog., Mathematical). Within the subspace where $J=J_{1}+J_{2}$, we can use simple angular momentum algebra

We defure the "stretched states" such that

$$
\begin{aligned}
& J=j_{1}+j_{2}, \quad M= \pm J=m_{1}+m_{2} \\
& \Rightarrow m_{1}=-j_{1} \\
& m_{2}=j_{1} \text { or } \begin{array}{l}
m_{2}=-j_{2}
\end{array} \\
& \Rightarrow|J \pm J\rangle=\left|\partial_{1} \pm j_{1}\right\rangle \otimes\left|j_{2} \pm j_{2}\right\rangle
\end{aligned}
$$

Consider the lowering operator: $\quad \hat{J}_{-}=\hat{\jmath}_{1}+\hat{\jmath}_{2}$
Recall: $\hat{J}|J M\rangle=\sqrt{J(J-1)-M(M-1)}\langle J M-1\rangle$

$$
\begin{aligned}
\hat{J}_{+}|J M\rangle & =\sqrt{J(J+1)-M(M+1)}|J M+1\rangle \\
\hat{J}_{+} & =\hat{J}_{-}^{+}
\end{aligned}
$$

\therefore We have recursion relations

$$
\begin{aligned}
\hat{J}|J, J\rangle & =\sqrt{J(J+1)-J(J-1)}|J, J-1\rangle \\
& =\sqrt{\partial_{1}\left(y_{1}+1\right)-\partial_{1}\left(\partial_{1}-1\right)}\left|\partial_{1}, \jmath_{1}-1\right\rangle \otimes\left|\jmath_{2} y_{2}\right\rangle \\
& +\sqrt{\partial_{2}\left(\partial_{2}+1\right)-\partial_{2}\left(\partial_{2}-1\right)}\left|\propto \lambda, \partial_{p}\right\rangle\left|\partial_{1} \partial_{1}\right\rangle \otimes\left|\partial_{2} \partial_{2}-1\right\rangle
\end{aligned}
$$

Example: Addition of two spin- $-\frac{1}{2}$ particles.
Uncoupled basis: $\left|s=\frac{1}{2}, m_{s}\right\rangle \otimes\left|s=\frac{1}{2}, m_{s}^{\prime}\right\rangle \quad m_{s}= \pm \frac{1}{2}$
Short hand for uncoupled basis $\{|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle\}$
To find the coupled basis, start with the stretecal state

$$
\begin{aligned}
& \left|S=1, M_{s}=1\right\rangle=\left|s=\frac{1}{2}, m_{s}=\frac{1}{2}\right\rangle \otimes\left|s=\frac{1}{2}, m_{s}=\frac{1}{2}\right\rangle=|44\rangle \\
& =|11\rangle \\
& \text { Apply } \quad \hat{S}=\hat{S}_{1} \otimes \hat{I}_{2}+\hat{\Pi}_{1} \otimes \hat{S}_{2-} \\
& \hat{S}_{-}=\hat{\sigma} \quad \text { so } \quad \hat{\sigma}_{-}|\uparrow\rangle=|\downarrow\rangle \quad \hat{\sigma}|\phi\rangle=0 \\
& \therefore \hat{S}|1,1\rangle=\sqrt{1(1+1)-1(1-1)}|1,0\rangle=\sqrt{2}|1,0\rangle \\
& \left.=\left|\hat{\sigma}_{1}\right| \uparrow\right\rangle \otimes|\uparrow\rangle+|\uparrow\rangle \otimes\left(\hat{\sigma_{2}}|\uparrow\rangle\right) \\
& =|\nleftarrow\rangle+|\uparrow \downarrow\rangle \\
& \Rightarrow|10\rangle=\frac{1}{\sqrt{2}}\left(|\uparrow\rangle+\left|\phi^{\uparrow}\right\rangle\right\rangle
\end{aligned}
$$

The state $|1-1\rangle=|t\rangle\rangle$ (the other streched slate)

The states

$$
\begin{aligned}
& |11\rangle=|\hat{1}\rangle \\
& |10\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle) \\
& |1-1\rangle=|\phi \psi\rangle
\end{aligned} \quad \begin{gathered}
\text { Form } \\
\text { the } \\
\text { triplet }
\end{gathered}
$$

Note: The states in the subspace with $J=J_{\text {Max }}=f_{1}+f_{2}$ are symmetric w.r.t. exchange of y_{1} and y_{2},
since we start with the stretch state and the apply the lowering operator, $\hat{J}=\hat{\jmath}_{1-}+\hat{\jmath}_{2}$.

For two spin $-1 / 2$ particles, $S_{\text {max }}=\frac{1}{2}+\frac{1}{2}=1$.
The $2 S_{\max }+1=3$ different symmetric states

$$
\left\{|\hat{\uparrow} \uparrow\rangle, \frac{1}{\sqrt{2}}(|\uparrow t\rangle+|t \uparrow\rangle), \quad|b t\rangle\right\}
$$

The only other possible value of $S=\left|\frac{1}{2}-\frac{1}{2}\right|=0$
The state $|0,0\rangle$ is a superposition of $|\uparrow|\rangle$ and $|t \psi\rangle$ and must be orthogonal to all states with $S=1$
Thus, $\quad|00\rangle=c_{a}|\uparrow \downarrow\rangle+c_{b}|\nmid \uparrow\rangle$
Require $\langle 1 M \mid O 0\rangle=0$, (trivial for $M= \pm 1$)
For $M=0 \Rightarrow c_{a}+c_{b}=0 \Rightarrow c_{d}=-c_{b}$
Normalized, (up to an arbitrary phase)

$$
100\rangle=\frac{1}{\sqrt{2}}(|\uparrow \phi\rangle-|\psi\rangle)
$$

Singlet: antionymmetric w.r.t. exchange of \vec{S}_{1} and \vec{S}_{2}

Rotations in Uncoupled and Coupled Basis
For a given generator of angular momentum $\overrightarrow{\vec{j}}$, the matrices $D_{m^{\prime} m}^{(\jmath)}=\left\langle\partial m^{\prime}\right| e^{-i \theta \vec{n} \cdot \hat{\vec{\jmath}} \mid}|\mathrm{gm}\rangle$ form irreps of $\operatorname{SU}(2)$ as $(2 y+1) \times(2 y+1)$ matrices Consider now potations generated by $\hat{\vec{J}}=\hat{\vec{j}}_{1}+\hat{J}_{2}$

$$
\begin{aligned}
e^{-i \theta \vec{n} \cdot \hat{\vec{J}}} & =e^{-i \theta \vec{n} \cdot\left(\hat{\jmath} \otimes \mathbb{1}_{2}+\hat{1}_{1} \otimes \hat{\jmath}_{2}\right)} \\
& =e^{-i \theta \vec{n} \cdot \hat{\vec{j}}} \otimes e^{-i \theta \vec{n} \cdot \overrightarrow{\jmath_{2}}}
\end{aligned}
$$

Thus we have a representation of the rotation matrices on $\quad q=h_{1}^{(0)}(8) h_{2}^{\left.()_{2}\right)}$ via the uncouped boos

$$
\left\langle\jmath_{1} m_{1}^{\prime} \partial_{2} m_{2}^{\prime}\right| e^{-i \theta \vec{n} \cdot \hat{\vec{J}}}\left|\partial_{1} m_{1} \jmath_{2} m_{2}\right\rangle=D_{m_{1}^{\prime} m_{1}}^{\left(\partial_{1}\right)} \otimes D_{m_{2}^{\prime} m_{2}}^{\left(\partial_{2}\right)}
$$

Example: Two spin-1/2 particles $\quad D(\theta, \vec{n})=\cos \frac{\theta}{2} \hat{\mathbb{I}} \hat{i}^{\left(\frac{1}{2}\right)} \sin \frac{\theta}{2} \dot{n} \cdot \hat{\overrightarrow{0}}$
Consiche a rotation by π about the y-axis $\Rightarrow D^{\left(\frac{1}{2}\right)}=-i \hat{\sigma_{y}}$

$$
\begin{aligned}
\nRightarrow D^{\left(\frac{1}{2}\right)} \otimes D^{\left(\frac{1}{2}\right)} & =\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \otimes\left[\begin{array}{cc}
0 & -1 \\
+1 & 0
\end{array}\right] \\
& =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Clearly raduable

Example: Action on $\left.\left.|10\rangle=\frac{1}{\sqrt{2}}(|t|\rangle+|t| \psi\right\rangle\right)$

$$
\begin{aligned}
D_{y}^{\left(\frac{1}{2}\right)}(\pi) \otimes D_{y}^{\left.\left(\frac{15}{(\pi)}\right) \right\rvert\,}|10\rangle & =\left[\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]=-\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}} \\
\frac{1}{2} \\
0
\end{array}\right] \\
& =-|10\rangle
\end{aligned}
$$

The matrices $D_{m_{1} m_{1}}^{\left(d_{1}\right)} \otimes D_{m_{2}^{\prime} m_{2}}^{\left(\partial_{2}\right)}$ act symmetrically on the symmetric subspace \Rightarrow inivairant subspace \Rightarrow reducible

Consider now the representation in the couple basis

$$
D_{M^{\prime} M}^{(J)}=\left\langle J M_{1 J_{2}}^{\prime} e^{-i \theta \vec{n} \cdot \hat{J}} \mid J M_{J_{1} J_{2}}\right\rangle
$$

These matrices are irreducibibe because are $2 \mathrm{~J}+1$ vectors are coupled

Thus

$$
\underbrace{\left(j_{1}\right)}\left(\otimes D^{\left(j_{2}\right)}=D^{\left(j_{1}+\dot{j}_{2}\right)}+D^{\left(j_{1}+j_{2}-1\right)}\right.
$$

reducible
representatho
(7) $\underbrace{D\left(j_{1}-j_{2}\right)}_{\text {irreducible }}$

Example: Return to rotation by π around y on state 11,0)

Prep: $D_{y}^{(1)}(\pi)=d^{(1)}(\pi)$ \& wigner.d

$$
d^{(1)}(\beta)=\left[\begin{array}{ccc}
\frac{1+\cos \beta}{2} & -\frac{\sin \beta}{\sqrt{2}} & 1-\frac{\cos \beta}{2} \\
\frac{\sin \beta}{\sqrt{2}} & \cos \beta & -\frac{\sin \beta}{\sqrt{2}} \\
\frac{1-\cos \beta}{2} & \frac{\sin \beta}{\sqrt{2}} & 1+\frac{\cos \beta}{2}
\end{array}\right]
$$

in basis $\{|11\rangle, 11,0\rangle,|1,-1\rangle\}$

$$
\begin{aligned}
& d^{(1)}(\pi)=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 & 0 \\
+1 & 0 & 0
\end{array}\right] \\
& \left.\Rightarrow d^{(1)}(\pi)|1,0\rangle=-\mid 1,0\right) \quad\binom{\text { as before }}{\text { in reducible rep }} \\
& D_{y}^{\left(\frac{1}{2}\right)}(\pi) \otimes D_{y}^{\left(\frac{1}{2}\right)}(\pi) \equiv\left[\begin{array}{ccc}
1_{1}^{1} D^{(0)}(\pi) \\
-1 & 0 & -1 \\
0 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \begin{array}{l}
10,0\rangle \\
11,1) \\
11,0\rangle \\
{[1,-1\rangle}
\end{array} \\
& D^{(1)}(\pi)
\end{aligned}
$$

$$
D^{\left(y_{1}\right)} \otimes D^{\left(y_{2}\right)}=\left[\begin{array}{ll}
D^{\left(y_{1}+\partial_{2}\right)} \mid & \\
\sum^{D^{\left(\partial_{1}+\partial_{2}-1\right.} \mid} & \\
& \\
& \\
D^{\left|\partial_{1}-\lambda_{2}\right|}
\end{array}\right.
$$

We can relate the matrix elements of the uncoupled representation to that of the coupled representation via a change of basis

$$
\begin{aligned}
& D_{m_{1}^{\prime} m_{1}}^{\left(j_{1}\right)} \otimes D_{m_{2}^{\prime} m_{2}}^{\left(\partial_{2}\right)}=\left\langle\partial_{1} m_{1}^{\prime} \partial_{2} m_{2}^{\prime}\right| e^{-i \theta \vec{n} \cdot \hat{\vec{J}}}\left|\partial_{1} m_{1} \partial_{2} m_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left\langle J M \jmath_{1} f_{2} \mid \jmath_{1} m, \jmath_{2} m_{2}\right\rangle \\
& D_{M^{\prime} M}^{(J)} \delta_{J^{\prime} J}
\end{aligned}
$$

$\begin{aligned} & D_{m_{1}^{\prime} m,}^{\left(j_{1}\right)} D_{m_{2}^{\prime} m_{2}}^{\left(J_{2}\right)}= \sum_{\left.J=j_{1}-g_{2}\right)}^{J=J_{1}+J_{2}} \sum_{M=-J}^{J}\langle J M| \jmath_{1} m_{1} \jmath_{2} \\ &\left\langle J M^{\prime}\right| J_{1} m^{\prime} \jmath_{2}\end{aligned}$

