Lecture 21: The Wigner-Eckart theorem
The most important use of spherical tensors is to calculate matrix elements between states with well defined angular momentum. The Wigreer-Eckart
Theorem (W.E.T.) will allow us to express these matrix elements in terms of a factor that depended solely on geometry. This lads to "selection rules" in, for example, absorption and emission of photons by atoms. Such selection rules are statement of conservation of angular momentum.
Motivation
Consider the dipole matrix elements of the spherical tensor opertor $\hat{d}_{q}=-e \hat{x}_{g}$ between two Hydrogen eigenfunction (no span)

$$
M_{\left(n^{\prime} \ell^{\prime} m^{\prime}\right)<(n \ell m)}=\left\langle n^{\prime} \ell^{\prime} m^{\prime}\right| \hat{d}_{q}|n \ell m\rangle=-e \int d^{3} x \psi_{n^{\prime} \ell^{\prime} m^{\prime}}^{*} \chi_{q}^{*} \psi_{n m_{m}}(\vec{x})
$$

Now $\quad x_{q}=r Y_{q}^{1}(\theta, \phi) \sqrt{\frac{4 \pi}{3}}$

Thus we see that the matrix element factorizes into a part independent of angular geometry and A factor that looks line addition of amalar momenta

The Wigner-Eclart theorem: Statement
Given a tensor operator $\hat{T}_{q}^{(k)}$

$$
\left\langle\alpha^{\prime} ; j^{\prime} m^{\prime}\right| \hat{I}_{q}^{(k)}\left|\alpha_{;} j m\right\rangle=\left\langle\alpha_{;}^{\prime}\left\|\hat{\Gamma}^{(k)}\right\| \alpha_{j j}\right\rangle\left\langle j^{\prime} m \|_{q}, m\right\rangle
$$

- Here α^{\prime} and α are all other eigenvalues other then gm .
- $\left\langle j^{\prime} m^{\prime} \mid k q \mathrm{jm}\right\rangle$ is the C.G coff for addition

$$
\vec{J}^{\prime}=\vec{J}+\vec{k}
$$

- $\left\langle\alpha, j\left\|\hat{i}^{(k)}\right\| \alpha, j\right\rangle$ is the "reduced matrix element" independent of m, m^{\prime} and q

Notes:- We have chooen a particular convention for the reduced matrix element. Salurai chooses a different normalization

- In our convention, the r.m.e. is not a true "matrix element" $\left\langle\alpha^{\prime}\left\|^{\prime}\right\| \frac{1}{1}(k) \| \alpha_{j}\right\rangle^{*} \neq\left\langle\alpha_{j}\left\|^{(1)}\right\|_{\alpha} j^{\prime}\right\rangle$
In words, the W.E.T. state that all matrix Cements of $\hat{f}_{g}^{(h)}$ are proportional, whet factorizing into a component independent of angular geometry, and a C.G. coff. the C.G. coff determines the selection rules according to conservation of angular momentum $\vec{J} p=\vec{J}+\vec{K}$. The tensor operator thus acts an object that Carries to angular momentum k with z-propection q

The Wigner-Eckart theorem: Proof
Lemma: $\left\langle j^{\prime} m^{\prime} \mid k q g^{m}\right\rangle$

$$
=\sum_{q^{\prime} m_{1}^{\prime} m_{1}} D_{m_{1}^{\prime}\left(m^{\prime}\right)}^{\left(j^{\prime}\right)^{*}} D_{q^{\prime} q}^{(\mathbb{R})} \sum_{m_{1} m}^{(\mathbb{R})} D_{j}^{(j)}\left\langle m_{1}^{b} \mid k q^{\prime} j m_{1}\right\rangle
$$

Proof: $\quad\left\langle j^{\prime} m^{\prime} \mid k q j^{m}\right\rangle=\left\langle j^{\prime} m^{*}\right| D^{+}(\mathbb{R}) D(\mathbb{R})|k g\rangle \otimes|j m\rangle$
Aside $D(\mathbb{R})\left|y^{\prime} m^{\prime}\right\rangle=\sum_{m_{1}^{\prime}}\left|y^{\prime} m_{1}^{\prime}\right\rangle D_{m_{1}^{\prime} m_{1}}^{\left(y^{\prime}\right)}$

$$
\begin{aligned}
& D(\mathbb{R})|k q\rangle \otimes|g m\rangle=\sum_{q^{\prime} m_{1}}\left|k q^{\prime}, f m_{1}\right\rangle D_{q^{\prime} q}^{(k)} D_{m_{1} m}^{(j)} \\
& \Rightarrow\left\langle j^{\prime} m^{\prime} \mid k q g^{m}\right\rangle=\sum_{q^{\prime} m_{1} m_{1}}\left\langle j^{\prime} m_{1}^{\prime} \mid k q^{\prime} \partial M_{1}\right\rangle D_{m_{1}^{\prime} m^{\prime}}^{\left(\prime^{\prime}\right)^{*}} D_{q^{\prime} q}^{(k)} D_{m_{1} m}^{(j)}
\end{aligned}
$$

Now consider: $\left\langle\alpha^{\prime} ; j^{\prime} m^{\prime}\right|{ }_{\uparrow} \hat{T}_{q_{p}}^{(k)}|\alpha, j m\rangle$

$$
=\sum_{q^{\prime} m_{1}^{\prime} m_{1}}\left\langle\alpha_{;}^{\prime} j^{\prime} m_{1}^{\prime}\right| T_{q^{\prime}}^{(k)}\left|\alpha j m_{1}\right\rangle D_{m_{1}^{\prime} m^{\prime}}^{\left(j^{\prime}\right) *} D_{q^{\prime} q}^{(k)} D_{m, m}^{(j)}
$$

Since these are linearly independent equation

$$
\begin{aligned}
\left\langle\alpha^{\prime} j^{\prime} m_{1}^{\prime}\right| \hat{T}_{q^{\prime}}^{(k)}|\alpha \neq m\rangle= & C\left(\alpha^{\prime} j^{\prime}, k, \alpha f\right) \\
& \left\langle j^{\prime} m^{\prime} \mid k q \jmath m\right\rangle
\end{aligned}
$$

C 15 the reduced matrix element Q.e.d.

Application of W.E.T.: Dipole solution rales
Recall from classical electramagnetre theory that a localziel charge/current distribution can be decomposed into multepole moments. We an E/M woe interacts with the distribution, if wavelength $\lambda \gg$ (sire of distribution), the lowest nonvanishing moment dominates the interaction.
For an atom, size $\sim 1 \mathrm{~A}^{\circ}$, interacting with light $\lambda \sim 1 \mu \mathrm{~m} \Rightarrow$ Multupole expansion is excellent
\Rightarrow Typically $\frac{\text { electric }}{(E 1)} \frac{\text { dipole }}{\text { (transitions dominate }}$
Interaction Hamiltonian $\hat{H}=-\hat{d} \cdot \vec{E}\left(\vec{x}_{0}, t\right)$ Tatum position
Here we treat \vec{E} as a classical fold. For a monchromate wave $\vec{E}\left(\vec{x}_{0}, t\right)=\operatorname{Re}\left(\vec{\epsilon} E\left(\vec{x}_{0}\right) e^{-i \omega t}\right)$

$$
\Rightarrow \hat{H}_{\text {int }}=-\frac{1}{2}\left[\hat{d} \cdot \vec{\epsilon} E\left(\vec{x}_{0}\right) e^{-i \omega t}+\frac{\vec{d}}{\vec{\epsilon}} \vec{\epsilon}^{*} E^{*}\left(\vec{x}_{0}\right) e^{i \omega t}\right]
$$

This is a terse dependent tamiltorion, and thew its effect on the atom requires tame dependent perturbation theory. We will study this later in the semester. We will find that the first term ($2 e^{-i \omega t}$) leads to absorption of photons and the second $\left(\sim e^{i \omega t}\right)$ leads to emission of photons.

The transition probability for absorption occurs at a rate proportional to

$$
\begin{aligned}
& \left.w_{f \leftarrow i}=\left|\left\langle\psi_{f}\right| \hat{\vec{d}} \cdot \vec{\epsilon}_{L} E\left(\vec{x}_{0}\right)\right| \psi_{i}\right\rangle\left.\right|^{2}
\end{aligned}
$$

Thus, the important quantity is $\left\langle\psi_{A}\right| \hat{\vec{d}} \cdot \vec{E}_{L}\left|\psi_{i}\right\rangle$
Expand \vec{E}_{L} in the spherical basis wire. space faxed quantization axis $(z$-axis). For monochromatic light at frequency ω, the field vector oscillates:

Note: If \vec{E} is a plane wave, the z axis reed not be the same direction as the were vector \vec{k} (thought it can be). We choose z by convenience. If z axis $=\vec{k}$ direction then $\vec{\epsilon}_{L}=\sigma_{I}$ polarization only.
The atom sees only the local field, not the wave over all space. Thus, it only "cares" about how its charges are perturbed in time. the three vector oscillators about $\left(\sigma_{2}\right.$ and $\left.\pi\right)$ represent the three mofrone with definite angular momentorn about the z-axis.

Consider states with good quantum numbers $\underbrace{}_{\alpha} L S J M$,
Dipole selection rales: $\vec{\epsilon}_{L}=\vec{e}_{q} \quad \hat{d}=\sum \vec{e}_{q}^{*} \hat{d}_{q}$

$$
\begin{array}{r}
\left\langle\alpha^{\prime} ; J^{\prime} M_{j}^{\prime}\right| \hat{d}_{q}\left|\alpha_{;} J M_{J}\right\rangle=\left\langle\alpha^{\prime} J^{\prime}\|d\| \alpha J\right\rangle \\
\left\langle J^{\prime} M_{J}^{\prime} \mid 1 q \square M_{J}\right\rangle
\end{array}
$$

\Rightarrow E1 section rules

$$
\begin{aligned}
& \cdot M_{J}^{\prime}-M_{J}=0,-1,1 \quad 0 \Rightarrow \pi \operatorname{loght} \\
& \text { - } \quad \begin{array}{l}
\pm 1 \Rightarrow \sigma_{ \pm} \operatorname{loght}
\end{array} \\
&
\end{aligned}
$$ but no $J=0 \rightarrow J^{\prime}=0$ transition

- Parity odd $\Rightarrow \Delta L$ odd $\Rightarrow \Delta L= \pm 1$

$$
\text { Also } \quad \Delta S=0
$$

If any of these rules are violated the transition is sard to be (electric dipole) forbidden. $J=0 \rightarrow J=0$ striety for bidelen for any multipole. Typically we draw allowed transitions with the $C G$ coif denoting the probability amplitude e.g. the $D 1$ line $n S_{1 / 2} \rightarrow n^{\prime} P_{3 / 2}$

Thus, an atom in the spin-up ground state is three tomes Shore lidecly to absorb σ_{+}than σ_{-} light.

Physical Picture
The electromagnetic field corries angular momention
Intrinsic angular momentum: spin 1: $+\hbar$ Two helicity states $\rightarrow_{\vec{k}}$ + $\frac{\text { along e }}{} \overrightarrow{R_{R}}$
$\xrightarrow{\nu} \vec{k} \quad$ along \vec{k}
No angular momentum projection 1 to \vec{k} (Massless photon)
\Rightarrow Choosing quantegation axis along $\vec{k} \rightarrow$ only σ_{f} and σ_{-}tronsimoins
$\sigma_{+} \Rightarrow \Delta M=+1$ one unit of angular mormenturn along quant -axis
$\sigma_{-} \Rightarrow \Delta M=-1$-one unit
Suppose $\vec{e}_{L}=\vec{e}_{X}=\frac{-\vec{e}_{+}+\vec{e}_{-}}{\sqrt{2}} \Rightarrow \frac{\text { Supprposituon }}{\text { of } \sigma_{f} \text { and } \sigma_{-}}$

 superposition of $M_{J}=-\frac{1}{2}$ an $\frac{3}{2}$
If take quantion axis 1 to $\vec{k} \Rightarrow \Pi$ light atony quantization axis (say the ald x-director).
Note: With this choice of q-axis only one transition, with old $\overrightarrow{e_{x}}$

$$
\frac{-3 / 2}{\frac{-1 / 2}{-1 / 2} \frac{1 / 2}{1 / 2}}
$$

This is just i change of basis

