Physics 522, Spring 2016 Problem Set #2 Due: Tuesday Feb. 2, 2016 @ 5PM

Problem 1: 2D Isotropic SHO (20 points)

Consider again the 2D isotropic SHO descriped by the Hamiltonian

$$\hat{H} = \frac{\hat{p}_x^2 + \hat{p}_y^2}{2m} + \frac{1}{2}m\omega^2(\hat{x}^2 + \hat{y}^2)$$

(a) Show that $\hat{H} = \hbar \omega \left(\hat{a}_x^{\dagger} \hat{a}_x + \hat{a}_y^{\dagger} \hat{a}_y + 1 \right) = \hbar \omega \left(\hat{N} + 1 \right)$, where $\hat{a}_x = \frac{\hat{X} + i\hat{P}_x}{\sqrt{2}}$, $\hat{a}_y = \frac{\hat{Y} + i\hat{P}_y}{\sqrt{2}}$ (define dimensionless operators $\left(\hat{X}, \hat{Y}, \hat{P}_x, \hat{P}_y \right)$, and the total number operator $\hat{N} = \hat{a}_x^{\dagger} \hat{a}_x + \hat{a}_y^{\dagger} \hat{a}_y$.

(b) Show that the energy eigenvectors are

$$|n_{x}\rangle \otimes |n_{y}\rangle = \frac{\left(\hat{a}_{x}^{\dagger}\right)^{n_{x}}\left(\hat{a}_{y}^{\dagger}\right)^{n_{y}}}{\sqrt{n_{x}!n_{y}!}}|0_{x}\rangle \otimes |0_{y}\rangle$$

with energy eigenvalues are $E_n = \hbar \omega (n+1)$, where $n = n_x + n_y$, and degeneracy $g_n = n+1$.

(c) Define creation operators $\hat{a}_{\pm}^{\dagger} \equiv (\hat{a}_x^{\dagger} \pm i \hat{a}_y^{\dagger})/\sqrt{2}$. Show that the z-component of orbital angular momentum of the particle in the well is $\hat{L}_z = \hbar (\hat{a}_{\pm}^{\dagger} \hat{a}_{\pm} - \hat{a}_{\pm}^{\dagger} \hat{a}_{\pm})$. Interpret the physical meaning of $\hat{a}_{\pm}^{\dagger} \equiv (\hat{a}_x^{\dagger} \pm i \hat{a}_y^{\dagger})/\sqrt{2}$.

(d) Show that $|n_+\rangle \otimes |n_-\rangle = \frac{(\hat{a}^{\dagger}_+)^{n_+} (\hat{a}^{\dagger}_-)^{n_-}}{\sqrt{n_+!n_-!}} |0_+\rangle \otimes |0_-\rangle$ is an energy eigenvector, with eigenvalue $E_n = \hbar \omega (n+1)$, where $n = n_+ + n_-$, and eigenvector of \hat{L}_z with eigenvalue $m\hbar = (n_+ - n_-)\hbar$.

(e) Thus define joint eigenstates of mutually commuting operators $(\hat{N}, \hat{L}_z), |n,m\rangle$. Show that $|n,m\rangle = \left|n_+ = \frac{n+m}{2}\right\rangle \otimes \left|n_- = \frac{n-m}{2}\right\rangle$, and from this determine the possible values *m*, and thus the degeneracy of the state.