Physics 522, Spring 2016 Problem Set #3 Due: Thrursday Feb. 11, 2016 @ 5PM

Problem 1: The Isotropic 2D Harmonic Oscillator Encore (25 Points)

Consider a particle moving in a 2D isotropic harmonic potential $\hat{V}(x,y) = \frac{1}{2}m\omega^2(\hat{x}^2 + \hat{y}^2)$.

(a) Show that the Hamiltonian commutes with \hat{L}_z . Please interpret.

(b) Defining the usual polar coordinates (ρ, ϕ) via $x = \rho \cos \phi$, $y = \rho \sin \phi$, show that the Hamiltonian can be written as

$$\hat{H} = \frac{1}{2m} \left(\hat{p}_{\rho}^{2} + \frac{\hat{L}_{z}^{2}}{\rho^{2}} \right) + \frac{1}{2} m \omega^{2} \hat{\rho}^{2} ,$$

where
$$\hat{p}_{\rho}^{2} = -\hbar^{2} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial}{\partial \rho} \right)$$
 is the radial momentum squared and $\hat{L}_{z} = -i\hbar \frac{\partial}{\partial \phi}$.

(c) Separating coordinates, writing the energy eigenstates $\psi_{n,m}(\rho,\phi) = R_{n,m}(\rho)\Phi_m(\phi)$, with $\Phi_m(\phi)$ the usual eigenstates of $\hat{L}_z = -i\hbar \frac{\partial}{\partial \phi}$, find the "radial equation, for $R_{n,m}(\rho)$.

(d) In class we solved this problem, separating in Cartesian coordinates $\Psi_{n_x,n_y}(x,y) = u_{n_x}(x)u_{n_y}(y)$

where $u_{n_x}(x)$ and $u_{n_y}(y)$ are the usual energy eigenfunctions in 1D. The energy eigenvalues are

 $E_n = \hbar \omega(n+1)$ with degeneracy n+1. It must be possible to expand these eigenfunction in terms of the eigenfunction in polar coordinates. Express the five eigenfunctions $\Psi_{0,0}(x,y)$, $\Psi_{1,0}(x,y)$, $\Psi_{0,1}(x,y)$, $\Psi_{1,1}(x,y)$, $\Psi_{2,0}(x,y)$, $\Psi_{0,2}(x,y)$ in this basis. That is write

$$\Psi_{n_x,n_y}(x,y) = \sum_{m=?}^{?} c_{n,m} \psi_{n,m}(\rho,\rho), \quad n = n_x + n_y,$$

and thus find the eigenstates $\psi_{n,m}(\rho,\phi)$ for n=0,1, and 2.

(e) Show that $R_{n,m}(\rho)$ satisfy the radial equation you found in (c)

(f) Finally, given the state $\Psi_{1,1}(x,y)$, what are the probabilities of finding the system with angular momentum eigenvalues m = 2, 1, 0, -1, -2 respectively?

Problem 2: From Cohen-Tannoudji vol. I, Exercise 14, page 347. (20 points).

Consider a physical system whose state space, which is three dimensional, spanned by the orthonormal basis formed by the three kets $|u_1\rangle, |u_2\rangle, |u_3\rangle$. In this basis, the Hamiltonian operator of the system and the two observables \hat{A} and \hat{B} have the representations:

$$\hat{H} \doteq \hbar \omega_0 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}; \quad \hat{A} \doteq a \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}; \quad \hat{B} \doteq b \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

where ω_0, a and b are positive real constants.
The state at time $t=0$ is: $|\psi(0)\rangle = \frac{1}{\sqrt{2}} |u_1\rangle + \frac{1}{2} |u_2\rangle + \frac{1}{2} |u_3\rangle.$

- (a) The energy of the system is measured (projectively) at *t*=0. What values can be found and with what probabilities? What is the mean value and rms uncertainty in energy?
- (b) If one measures observable *A* at *t*=0 (projectively), what values can be found and with what probabilities? What is the state vector immediately after the measurement?
- (c) Find $|\psi(t)\rangle$.
- (d) Calculate $\langle \hat{A} \rangle$ (t) and $\langle \hat{B} \rangle$ (t), for time t>0. What comments can be made?
- (e) What results can be obtained if observable *A* is measured (projectively) at time t? Repeat for *B*. Interpret.

Problem 3: Simultaneous eigenstates of \hat{L}^2 and \hat{L}_x (20 Points)

Though we typically choose the "quantization-axis" as the z-axis, there's nothing that forces this choice. We instead might consider the simultaneous eigenstates of \hat{L}^2 and \hat{L}_x by,

$$\hat{L}^2 | l, m_x \rangle = \hbar l (l+1) | l, m_x \rangle$$
 and $\hat{L}_x | l, m_x \rangle = \hbar m_x | l, m_x \rangle$, $-l \le m_x \le l$ in integer steps.

(a) Using solely the angular momentum algebra, show that

$$\langle \hat{l}_y \rangle_{l,m_x} = \langle \hat{l}_z \rangle_{l,m_x} = 0$$
 (*Hint*: Consider commutators)

(b) Argue through symmetry that $\langle \Delta l_y^2 \rangle_{l,m_x} = \langle \Delta l_z^2 \rangle_{l,m_x} = \frac{l(l+1) - m_x^2}{2}$.

(c) Suppose the state of the system is described by the eigenstate $|l=1, m_x=0\rangle$.

Write the normalized wave function for this state in position-space.

(Hint: The easiest way the approach this is to consider the spherical basis appropriate to rotations about the *x*-axis, as a cyclic permutation of the basis for rotations about z).

(d) Given the state in part (c), what are the possible values that can be measured for \hat{l}_z , and with what relative probabilities?

(e) Repeat part (d) for the state $|l=1, m_x = 1\rangle$.