Problem 1: The Finite Spherical Well

$$
\begin{aligned}
& V(r)=\left\{\begin{array}{rr}
-V_{0} & 0<r<a \\
0 & r>a
\end{array}\right. \\
& p_{-V_{0}},
\end{aligned}
$$

(a) $E<0$, Bound state, let $E=-E_{b}$

In each region we have a constant potential where the solution is generally
or

$$
\begin{aligned}
R_{l}(r) & =A_{f}(k r)+B n_{l}(k r) \\
& =C h_{l}^{(1)}(k r)+D h_{l}^{(2)}(k r)
\end{aligned}
$$

Where $k=\sqrt{\frac{2 m}{\hbar^{2}}(E-V(r))}$
constant in the regor
The coefficients A, B or C, D are set by the boundary conditions and normalization.

- For $0<r<a$, we must have $R_{l}(r=0)$ fri,

$$
\begin{aligned}
& \Rightarrow R_{l}^{(I)}(r)=A_{f_{e}(q r)} \quad(B=0) \\
& \text { Where } \quad q=\sqrt{\frac{2 m}{\hbar^{2}}\left(-E\left(-v_{0}\right)\right)}=\sqrt{\frac{2 m}{\hbar^{2}}\left(V_{0}-E_{0}\right)}
\end{aligned}
$$

- For $a<r<\infty \quad$ we must have $\lim _{r \rightarrow \infty} R_{R} \rightarrow 0$

$$
\text { Now } \quad h_{l}^{(1)}(k r)=\jmath_{e}(k r) \pm i n_{l}(k r) \propto e^{ \pm(k r}
$$

In region $k=\sqrt{\frac{2 m \theta E}{\hbar^{2}}}=\sqrt{-\frac{2 m E_{b}}{\hbar^{2}}}=i k$ (classically forbadbn) Pure imagerary

$$
\Rightarrow R_{e}^{(r)}=Q_{e}^{(1)}\left(i k_{r}\right) \text { where } K=\sqrt{\frac{2 m E_{b}}{\hbar^{2}}}
$$

Finally using continuity of the wave function

$$
\begin{aligned}
& R_{l}^{(I)}(a)= R_{e}^{(I)}(a) \Rightarrow C h_{l}^{(1)}\left(i k_{a}\right)=A f_{e}\left(q_{a}\right) \\
& \Rightarrow C=A f_{e}(q a) / h_{l}^{(1)}\left(i k_{a}\right) \\
& \Rightarrow R_{l}(r)= 0<r<q \\
& A f_{e}(q r) \quad\left(\begin{array}{ll}
A \frac{f_{l}(q a)}{} h_{l}^{(1)}(i k r) & a<r<\infty
\end{array}\right. \\
& \text { A: determined by normalization }
\end{aligned}
$$

(b) We nous have two unknowns: A and E_{b}

- A is set by normalization
- E_{b} is set by the remaining b.c.

$$
\frac{d}{d r} u_{l}^{(I)}(a)=\frac{d}{d r} u_{l}^{(I)}(a)
$$

where $U_{l}(r)=r R_{l}(r)$ is the reduced valal wave function.

$$
\begin{array}{r}
\left.\Rightarrow A \cdot \frac{d}{d r}\left(r f_{e}\left(q_{r}\right)\right)\right|_{a}=\left.\frac{A f_{e}(g a)}{\frac{h_{l}^{(1)}(i k a)}{d r}\left(r h_{e}^{(1)}\left(i k_{a}\right)\right)}\right|_{a} \\
\Rightarrow \frac{\left.\frac{d}{d r}\left(r f_{e}(q r)\right)\right|_{a}}{f_{l}(q a)}=\left.\left.\frac{\frac{d}{d r}\left(r h_{l}^{(1)}(i(a))\right.}{h_{l}^{(1)}\left(i R_{a}\right)}\right|_{a}\right|_{l}
\end{array}
$$

Check: for $\ell=0, V_{\text {eff }}^{(l=0)}=V(r)$.

$$
\begin{aligned}
& \text { Recall } f_{0}(q r)=\frac{\sin q r}{q r} \quad h_{l}^{\omega)}(i k r)=-\frac{e^{-k_{r}}}{k_{r}} \\
& \Rightarrow \frac{d}{d r}\left(\left.r j_{0}(g r)\right|_{a}=\frac{\cos (q a)}{a},\left.\quad \frac{d}{d r}\left(r h_{0}^{(1)}(i k r)\right)\right|_{r=a}=\frac{e^{k a}}{a}\right. \\
& \Rightarrow \Rightarrow \frac{k=0}{\Rightarrow \cos (q a)} \sin (q a)=-K \Rightarrow K^{\prime} \Rightarrow \cot (q a)
\end{aligned}
$$

We now consider the unbound energy eigenstates. We seek the scattering phase shift according to the asymptote conditions

Find δ_{e}

- For $n>a \quad R_{e}(r)=-i\left(h_{l}^{(2)}(k r)+e^{i \delta_{e}} h_{l}^{(1)}(k r)\right)$

Note $h_{e}^{(1)}(k r)=j_{e}^{(k r)} \pm i n_{l}(k r)$

$$
\begin{aligned}
\Rightarrow r>a & R_{l}(r)=-i\left(1+e^{i \delta_{l}}\right)_{\lambda}+\left(-1+e^{i} \delta_{l}\right) n_{l}(k r) \\
& R_{l}(r)=-2 i e^{i \delta_{l / 2}\left[\cos \frac{\delta_{l}}{2} \partial_{l}(k r)-\sin \frac{\delta_{l}}{2} n_{l}(k r)\right]}
\end{aligned}
$$

- For $0<r<a \quad R_{l}(r)=A_{f_{l}}(k r) \quad \begin{gathered}\text { to remain ruler) } \\ \text { at origen }\end{gathered}$

Logarithmic derivatue:

$$
\begin{aligned}
& \text { Logarithmic derivaluee: } \\
& \qquad\left(\left.\left.\frac{1}{R_{e}} \frac{d R_{e}}{d r}\right|_{r=a} ^{(I)}\right|_{r=a}\right. \\
& \left.\Rightarrow \frac{\rho_{e}}{R_{e}} \frac{d R_{e}}{d r}\right)\left.^{I I}\right|_{r=a} \\
& \Rightarrow \frac{f_{e}(g a)}{\left.q \frac{d j_{e}}{d r}\right|_{g a}}=\frac{\cos \frac{\delta_{l}}{2} j_{e}(k a)-\sin \frac{\delta_{e}}{2} n_{e}(k a)}{k\left[\left.\cos \frac{\delta_{l} d_{l}}{2}\right|_{l e}-\left.\sin \frac{\delta_{l}}{2} \frac{d n_{l}}{d r}\right|_{k a}\right]}
\end{aligned}
$$

Alternately we can use the reduced equation

$$
\left|\frac{r f_{e}(q r)}{\frac{d}{d r}\left(r j_{e}(g r)\right)}\right|_{r=a}=\left.\frac{\left(r \cos \frac{\delta_{e}}{2} j_{e}(k r)-r \sin \frac{\delta_{e}}{2} n_{e}\left(k_{r}\right)\right)}{\frac{d}{d r}\left[r \cos \frac{\delta_{e}}{2} j_{e}(k r)-r \sin \frac{\delta_{e}}{2} n_{e}\left(k_{r}\right)\right)}\right|_{r=a}
$$

Now check: $l=0 \quad r_{j_{0}}(q r)=\frac{1}{q} \sin (g r)$

$$
r n_{0}(q r)=-\frac{1}{q} \cos q r
$$

$$
\begin{aligned}
\Rightarrow \frac{\sin q a}{q \cos (q a} & =\frac{\cos \frac{\delta 0}{2} \sin (k a)+\sin \frac{\delta 0}{2} \cos (k a)}{k\left(\cos \frac{\delta 0}{2} \cos (k a)-\frac{\sin }{20} \cos (k a)\right)} \\
\Rightarrow \frac{1}{q} \tan (q a) & =\frac{\sin \left(k a+\frac{\delta 0}{2}\right)}{k \cos \left(k a+\frac{\delta 0}{2}\right)}=\frac{1}{k} \tan \left(k a+\frac{\delta 0}{2}\right)
\end{aligned}
$$

$$
\Rightarrow \frac{\delta_{0}}{2}=\tan ^{-1}\left(\frac{k}{q} \tan (q a)\right)-k a
$$

Problem 2: The 3D Isotropic SHO
The Hamiltorions

$$
\left.\begin{array}{rl}
\hat{H}=\frac{\hat{\vec{p}}^{2}}{2 m}+\hat{V}(\vec{x}) & \hat{V}(\vec{x})
\end{array}=\frac{1}{2} m \omega\left(\hat{x}^{2}+\hat{y}^{2}+\hat{z}^{2}\right)\right]
$$

(a) This problem is saparable in Cariuzian cordinteo. the energy eigankefs ave

$$
\left|n_{x}, n_{y}, n_{z}\right\rangle=\left|n_{x}\right\rangle \Delta\left|n_{y}\right\rangle \otimes\left|n_{z}\right\rangle \quad\binom{\text { Product of thred }}{1 D \text { ascillatars }}
$$

With energy aqpavalues $E_{n}=h \infty(n+3 / 2)$ where $n=n+y^{n}$?
The degenerany of the slation with energy \mathbb{E}_{n} is as
We stiened in cleso that the dequaxacy of a $2 D$ istropent $S H O$ with eigenvaluen $E=\operatorname{tou}\left(n_{x}+n_{y}+1\right)-15-n_{x}+n_{y}+1$
If we $A_{x} n_{z}$ then $n_{x}+n_{y}=n-n_{z} \rightarrow$ Deynencey $n-n_{z}+1$
Thing as we allow n_{2} to rana over all passbe vella, for a geamen n (i.e. $0 \leq n_{z} \leq n$), the total dengunay is

$$
g_{n}^{30}=\sum_{n_{2}=0}^{n} g_{n-n_{2}}^{2 D}=\sum_{n_{z}=0}^{n}\left(n+1-n_{2}\right)=(n+1)^{2}-\sum_{z_{z}=0}^{n} n_{2}
$$

(Arele: $\sum_{i=0}^{N} i=\frac{N(N+1)}{2}$)
\Rightarrow Degerecacy $g_{n}^{3 D}=(n+1)^{2}-\frac{n(n+1)}{2}=(n+1)\left(n+1-\frac{n}{2}\right)$

$$
\Rightarrow \sqrt{g_{n}^{3 n}}=\frac{(n+1)(n+2)}{2}
$$

The lirst fent degenerate energy levele with corntessai quentum numbers dre showen belowt

(b) Benanse of the fotatiomil symmetry we can seel eigenstates of the camplete set of comemedry opentites

$$
\left\{\hat{H}, L^{2}, L_{2}\right\}
$$

Separation in opherical corrdumester with the eigenenenction whiten the iowal way:

$$
\psi_{m, i, m}(r, \theta, \phi)=R_{p_{0, i}}(r) Y_{x_{i} m}(\theta, \phi)
$$

Whare $R_{n_{n, l}}(r)=\frac{U_{n_{p}}(r)}{r} \leqslant$ (educed nodicil
The rachal eqpaatiom for $u_{\text {a, }}(t)$ io

$$
\left(-\frac{b^{2} d^{2}}{2 m d r^{2}}+\frac{\hbar^{2} \ell(\ell+1)}{2 m r^{2}}+\frac{1}{2} m \omega^{2} r^{2}\right) u_{n} e^{(r)}=E_{n-l} \mu_{m, e}(r)
$$

Defiaing the unal dmanuriles varable $\bar{r} \equiv \frac{F}{r}, \varepsilon=\frac{E}{5}$ Where the charateristic valiew is $r_{6}=\sqrt{\frac{k}{n \omega}}$

$$
\Rightarrow\left(-\frac{1}{2} \frac{d^{2}}{d \bar{r}^{2}}+\frac{l(\ell+)}{2 \bar{r}^{2}}+\frac{1}{2} \bar{r}^{2}\right) u(\bar{r})=\varepsilon u(\vec{r})
$$

Since $\hat{V}(r)$ does not blow up at the ongen, the centripetal barren dominate there and we expect the asymptote form:

$$
u(\tilde{r}) \sim r^{l+1} \quad \text { as } \quad n \rightarrow 0
$$

For $r \rightarrow \infty$, the potential blow up and dominate. obi the centripetal burner and the Enl term

$$
\Rightarrow A s \quad \frac{d^{2}}{d r^{2}} u-r^{2} u=0
$$

We can solve this defequen by malang the $i^{2} \quad y=r^{2} \Rightarrow \frac{d u}{d r}=\frac{d y}{d r} \frac{d u}{d y}=2=\frac{d u}{\partial y}$

$$
\Rightarrow \frac{d u}{d r^{2}}=2 \frac{d u}{d y}+4 y \frac{d u}{d y^{2}}=y u(y) \Rightarrow \frac{d^{2} u}{d y^{2}}=\frac{-1}{2 y} d y+\frac{u}{4}(y)
$$

We can neglect the second term in asympote $y \rightarrow \infty$
\Rightarrow We expect vie reduced radul waivefanctur to Nave the form

$$
u_{n, l}(\bar{r})=\bar{r}^{\ell+1} e^{-r^{2} / 2} F_{n_{r l}}(\bar{r})
$$

Where $F_{n r e}(r)$ on instant hear the origin and doe not blow up foster than $e^{r^{2}}$
cc) Substitute the Ansatz into the radial equation

$$
\begin{gathered}
\left(\frac{d^{2}}{d \bar{r}^{2}}-\frac{l(l+1)}{\bar{r}^{2}}-\bar{r}^{2}+2 \varepsilon\right) u_{l}(\bar{r})=0 \\
u_{l}(r)=g(r) F_{l}(r) \quad \text { where } g(r)=\bar{r}^{l+1} e^{-\frac{\bar{r}^{2}}{2}} \\
\frac{d^{2}}{d r^{2}} u_{l}(\bar{r})=\frac{d^{2} g}{d r^{2}} F_{l}+g \frac{d^{2} F_{l}}{d r}+2 \frac{d g}{d r} \frac{d F_{l}}{d r}
\end{gathered}
$$

After some algebra,

$$
\begin{aligned}
& \frac{d^{2}}{d \bar{r}^{2}} u_{l}(\bar{r})=\left\{\left(\frac{\ell(l+1)}{\bar{r}^{2}}-(2 l+3)+\bar{r}^{2}\right) F_{l}(\bar{r})+\left(\frac{2 l+2}{\bar{r}}-2 \bar{r}\right) F_{l}^{\prime}(\bar{r})+F_{l}^{\prime \prime}(\bar{r})\right\} \bar{r} l+1 e^{-\frac{\bar{r}^{2}}{2}} \\
\Rightarrow & \frac{d^{2} F_{l}}{d \bar{r}^{2}}+2\left(\frac{l+1}{\bar{r}}-\bar{r}\right) \frac{d \bar{l}_{l}}{d \bar{r}}-(3+2 l-2 \varepsilon) F_{l}(\bar{r})=0
\end{aligned}
$$

We can put this in he form of the Laguerre equation through a change of variates Let $x=\bar{r}^{2}$. Define $F(\bar{r})=G(x) \Rightarrow \frac{d F(\vec{r})}{d \bar{r}}=2 \bar{r} \frac{d G}{d x}, \quad \frac{d^{2} F}{d \bar{r}^{2}}=2 \frac{d G}{d \bar{x}}+4 \bar{r}^{2} \frac{d^{2} G}{d x^{2}}$

$$
\begin{aligned}
& \left(2 \frac{d G_{l}}{d \bar{x}}+4 \bar{r}^{2} \frac{d^{2} G_{l}}{d x^{2}}\right)+2\left[\frac{(l+1)}{\bar{r}}-\bar{r}\right]\left(2 \bar{r} \frac{d G_{l}}{d x}\right)=(3+2 l-2 \varepsilon) G_{l}(x) \\
& \Rightarrow 4 x \frac{d^{2} G_{l}}{d x^{2}}+4\left[l+\frac{3}{2}-x\right] \frac{d G_{l}}{d x}=(3+2 l-2 \varepsilon) G_{l}(x) \\
& \Rightarrow x \frac{d^{2} G_{l}}{d x^{2}}+\left[1+l+\frac{1}{2}-x\right] \frac{d G_{l}}{d x}=\frac{1}{2}\left(\frac{3}{2}+l-\varepsilon\right) G_{l}(x)
\end{aligned}
$$

This is the Laguerre equation $x \frac{d^{2} L_{n_{r}}^{k}}{d x^{2}}+[1+q-x] \frac{d L_{n_{r}}^{q}}{d r}=-n_{r} L_{n_{r}}^{q}(x)$ Where $n_{r}=0,1,2, \cdots$ detinuines the order of the polynomial $\left.\Rightarrow F_{r_{r, l}}(\tilde{r})=\ell_{n_{r}}^{\ell_{1}+\frac{1}{2}} \tilde{r}^{2}\right)$

$$
\begin{gathered}
\Rightarrow n_{r}=-\frac{1}{2}\left(\frac{3}{2}+l-2 \varepsilon\right) \Rightarrow \varepsilon=2 n_{r}+l+\frac{3}{2} \\
\Rightarrow E=\hbar \omega\left(2 n_{r}+l+\frac{3}{2}\right)=\hbar \omega\left(n+\frac{3 / 2}{}\right) \quad \text { where } n=2 n_{r}+l \\
R_{n_{r, l}}(\bar{r})=\bar{r}^{l} e^{-\frac{r^{2}}{2}} \ell_{n_{r}}^{l+\frac{1}{2}}\left(\bar{r}^{2}\right)
\end{gathered}
$$

The energy levels are speciful by three quantum numbers, n, l, m_{l}; the energy eigenvalues depend only on n. The radial quacmtum number $n_{r}=\frac{n-l}{2}$ Since n_{r} is an integer, and $n_{r} \geq 0$, given a value of n, \& ranges aver if ne men: $l=0,2, \ldots, n$ in steps of 2
if node: $l=1,3, \ldots, n$..

We thus have the following cenergy-lacel diagram

S states: nondegenrate
p states: 3 fold degenerate
d states: 5 fold degrerate
f states: 7 fold degenerate
Note, the states with given l have parity $(-1)^{l}$. Thus the n even states are even parity and n odd are old parity, as expected.

For cash \& there are $2 l+1$ degenerate sublevele. We can thus find the degeneracy g_{n}

$$
\begin{aligned}
n \text { cen } \Rightarrow g_{n} & =\sum_{l=0,2,4}^{n}(2 l+1)=\sum_{k=0}^{n / 2}(4 k+1)=\left(\frac{n}{2}+1\right)+4 \sum_{i=0}^{n / 2} k \\
& =\frac{n+2}{2}+4\left[\frac{n}{2}\left(\frac{n}{2}+1\right)\right]=\frac{n+2+n(n+2)}{2}=\frac{(n+1)(n+2)}{2} \\
n \text { odd } \Rightarrow g_{n} & =\sum_{l=1,1,5, n}^{n-1}(2 l+1)=\sum_{k=0}^{n-1}(4 k+3)=\frac{(n+1) r_{n}+2 l}{2}
\end{aligned}
$$

Problem 3: Hydrogenic atoms in atomic units
Two oppositely charged particles.
-charge 1 (negative) $q_{1}=-z_{1} e$, mass m_{1}

- Change 2 (positive) $\quad q_{2}=z_{2} e$, mass m_{2}

Coulomb interaction: $\quad V(r)=\frac{q_{1} q_{2}}{r}=-z_{1} z_{2} \frac{c^{2}}{r}$
Relative motion Ham,lorian: $\hat{H}=\frac{p^{2}}{2 \mu}+V(r)$

$$
M=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \text { (reduced move) }
$$

Characteristic: scales determined by μ, q_{1}, q_{2}, in
Length: a_{c} Momentum: $p_{c}=\frac{\hbar}{a_{c}}$, Energy: E_{c}
Relate: $\quad E_{c}=\frac{p_{0}^{2}}{\mu}=\frac{q_{1} q_{2}}{a_{c}}=\frac{\hbar^{2}}{a_{c}^{2} \mu}$
katie energy Coulonble energy
Length $\left[a_{c}=\frac{\hbar^{2}}{\mu \eta_{1} \eta_{2}}=\frac{m_{e}}{\mu z_{1} z_{2}}\left(\frac{\hbar^{2}}{m_{c} e^{2}}\right)=\frac{m_{2}}{\mu_{1} z_{2}}(0.53 A)\right.$
Momentuen $\sqrt{p_{c}}=\frac{t}{a_{c}}=\left(\frac{\mu z_{1} z_{2}}{m_{e}}\right)^{\frac{t}{05 S} A}=\frac{\mu z_{1} z_{2}}{m_{3}} 2 \times 10 \frac{14}{\frac{9}{3}}$

Energy $E_{c}=\frac{q_{1} q_{2}}{a_{c}}=\left(\frac{\mu z_{1}^{2} z_{2}^{2}}{m_{e}}\right)\left(\frac{m_{e}^{e^{4}}}{\hbar^{2}}\right)=\left(\frac{\mu z_{1}^{2} z_{2}^{2}}{m_{e}}\right) 27.2 \mathrm{VV}$
Time: $\left.t_{c}=\frac{\hbar}{E_{c}}=\left(\frac{m_{e}}{\mu z_{1}^{2} z_{2}^{2}}\right) \frac{\frac{1}{E_{2}}}{E_{0}}=\frac{m_{e}}{A z_{1}^{2} z_{2}^{2}}\right)^{24 \times 10^{-17} \mathrm{~s}}$ -10 atto seconds

Ebctric mónest \quad dipole mon $=\left(\frac{q_{1}-q_{2}}{2}\right) a_{c}=\left(\frac{z_{1}+z_{2}}{2}\right)\left(\frac{m_{e}}{\mu}\right)\left(\frac{1}{z_{1} z_{2}}\right)$
Aside ea $=8.5 \times 10^{-30} \mathrm{C}-\mathrm{m}=2.54 \mathrm{Debye}$
$\begin{array}{r}\text { Spead } \\ \text { canito of } c \\ \frac{V_{c}}{c}=\frac{a_{c}}{c t_{c}}=\frac{q_{c}}{c \hbar} \\ =\left(z_{1} z_{2}\right) \\ E_{c}\end{array} \frac{q_{1} q_{2}}{\hbar_{c}}=\left(z_{1} z_{2}\right) \frac{e^{2}}{\hbar c} \quad \begin{gathered}\text { Fine stuchere } \\ \text { constant }\end{gathered}$
Thernd $B-A e l) \quad B_{c}=\frac{v_{c}}{c} E_{c}=\left(z_{1} z_{z}\right)\left(\alpha \xi_{c}\right)=\left(\frac{\mu^{2} z^{3} z^{4}}{m^{2}}\right) \frac{\frac{e}{a_{0}^{2}}}{\frac{1}{1}}+$
a partile 1
$\begin{aligned} & \text { Magnatic } \\ & \text { depole moment }\end{aligned} H_{c}=\frac{\text { current } \times \frac{\text { Area }}{c}=\frac{q_{1}}{t_{c}} \frac{a_{c}^{2}}{c}{ }_{c}^{2}}{c}$
$2 \times \mu_{B}=$ Boh magneton

$$
\Rightarrow \mu_{c}=\left(\frac{a_{c}}{t_{c} c}\right)\left(q_{1} a_{c}\right)=\alpha d_{c}=\left(\frac{z_{1}+z_{2}}{2}\right)\left(\frac{m_{e}}{\mu}\right)\left(\frac{e \hbar}{m c}\right)
$$

Now for each cave given:
(i)tydragen de Anes "atomic units"

$$
\begin{aligned}
& -a_{c}=a_{0}=0.53 \mathrm{~A} \quad \text { Bohr vadens } \\
& -E_{c}=E_{0}=27.2 \mathrm{eV} \quad \text { Itartree } \\
& -t_{c}=2.4 \times 10^{-17} \mathrm{~S} \\
& -\varepsilon_{c}=5 \times 10^{9} \frac{\mathrm{~V}}{\mathrm{~cm}}=1.7 \times 10^{7 \mathrm{sinv}} \mathrm{~cm} \\
& -B_{c}=\alpha E_{c}=1.2 \times 10^{5} \text { Gauss }\binom{\text { Not standand }}{\text { atmic unt }} \\
& -d_{c}=2.5 \times 10^{-18} \mathrm{cgs}=2.5 \text { debge } \\
& -\mu_{c}=2 \mu_{g}=\alpha d_{c}=1.8 \text { ergs/ans }=1.8 \times 10^{-24} \frac{\text { Jnue }}{\text { Trsa }}
\end{aligned}
$$

(ii) Heavy ion: $z_{1}=1, z_{2}=50, \quad M \approx m_{e}$
(iii) Muonium: $m_{1} \approx 200 m_{e} \quad m_{2}=m_{p} \approx 2000 m_{p}, \mu \approx 180 m_{e}$
(iv) Posidranium: $z_{1}=z_{2}=1, \quad m_{1}=m_{2}=m_{e}, \quad \mu=\frac{m_{e}}{2}$

Summary table: Charadtristic Units in ald

From these results we see that

- for heave g elements the electron can be highly relativistic and magnets Redo grow
- Muonium sees huge fill because the muon is so close do the nucleus.

Other useful relations
Given constants e, me, \hbar, c we have additional solus

- rest energy: $E_{\text {rest }}=m_{e} c^{2}$

$$
\begin{array}{r}
\Rightarrow \frac{E_{0}}{m e c^{2}}=\frac{\frac{m e^{4}}{\hbar^{2}}}{m c^{2}}=\left(\hbar c^{2}=\alpha^{4}\right. \\
\Rightarrow E_{0}=\alpha^{2} m c^{2}
\end{array}
$$

- Compton wavelength: $A_{c}=\frac{\frac{1}{\hbar}}{m_{c}}=\alpha a_{0}$
- Classical electron radius: $r_{\text {class }}=\frac{m_{e} c^{2}}{e^{2}}=\frac{\lambda_{c}}{\alpha}$

