Physics 522, Spring 2016 Problem Set #8 Due: Thursday Mar. 31, 2016 @ 5PM

Problem 1: Addition of spin and orbital angular momentum (15 Points)

Consider an electron with orbital angular momentum quantum number l = 1 and spin quantum number s = 1/2.

(a) Using the brute force diagonalization method discussed in Lecture find the simultaneous eigenvectors of j^2 , \hat{j}_z , \hat{s}^2 , \hat{l}^2 .

(b) Check your answer by using the Clebsch-Gordan coefficients.

(c) Explicitly calculate the matrix elements of $\hat{\vec{l}} \cdot \hat{\vec{s}}$ in the coupled basis. Show that this what you expect based on $\hat{j}^2 = \hat{l}^2 + \hat{s}^2 + 2\hat{\vec{l}} \cdot \hat{\vec{s}}$.

Problem 2: Stark Shift in Hydrogen (20 points)

Excluding nuclear spin, the *n*=2 manifold in Hydrogen has the configuration:

where $\Delta E_{FS}/h=10$ GHz (the fine structure splitting) and $\Delta E_{Lamb}/h=1$ GHz (the Lamb shift – an effect of quantum fluctuations of the electromagnetic field). In class we neglected these shifts when calculating the Stark shift. This was valid if $ea_0E_z \gg \Delta E$.

Let
$$x \equiv ea_0 E_z$$
.

(a) Suppose $x \in \Delta E_{Lamb}$, but $x \ll \Delta E_{FS}$. Then we need only consider the $(2s_{1/2}, 2p_{1/2})$ subspace in a near degenerate case. Find the new energy eigenvectors and eigenvalues to first order. Are they degenerate? For what value of the field (in volts/cm) is the level separation doubled over the zero field Lamb shift? (*Hint:* Use the representation of the fine structure eigenstates in the uncoupled representation)

- (b) Now suppose $x \ge \Delta E_{FS}$. We must include all states $(2s_{1/2}, 2p_{1/2}, 2p_{3/2})$ in the near degenerate case. Calculate and plot numerically the eigenvalues as a function of *x*, in the range from 0 GHz < *x* < 10 GHz.
- (c) Comment on the behavior of these curves. Do they have the expected asymptotic behavior? Find analytically the eigenvectors in the limit $x / \Delta E_{FS} \rightarrow \infty$. Show that these are the expected perturbed states.