Physics 522: Problem Set #8 Solutions

	Problem & Addition of spin and orbital angular momentum
experiments their miletallicontrol (many control (control	An electron has both spin angular momentum, described by operator $S = tists$ and B orbital angular momentum described by operator $L = til$.
	We can describe the state in the "uncoupled representation" in terms of simultaneous eigenvectors of {13, 12; 53, \$52} lime > (8 15, ms) where 5=1/2 for electrons => ms=+1/2,-1/2
	Here we consider states with $l=1 \Rightarrow m=1,0,-1$ Alternatively, we can use the "coupled representation!" in terms of simultaneous eigenvectors of $\{2,2,3\}$, $\{1,3\}$. Where $\{1,2,4\}$ $\{2,4\}$
	Eigenvectors: (J mj; ls) \$\mathbb{F}\$ Since l=1, S=1/2 is a common eigenvalue in both representations T will denote the short-hand for the eigenvectors
A CONTRACTOR OF THE CONTRACTOR	Coupled: 11, my > 3 l, s understood both
	Let us write \hat{j}^2 and \hat{j}_z as matrician in the uncoupled by We need the relationship: $\hat{j}^2 - \hat{j} \cdot \hat{j} = \hat{l} + \hat{s}^2 + 2\hat{l}_z \hat{s}_z + (\hat{l} + \hat{s} + \hat{l} + \hat{s} + s$
me	$\frac{\int_{0.5}^{2} m_{g}, m_{s}\rangle = \{l(l+1) + s(s+1) + 2m_{g} m_{s}\} m_{g}, m_{s}\rangle}{+ Jl(l+1) + m_{g}(m_{g+1})} \int_{0.5}^{2} m_{g} m_{s}(m_{s}-1)^{2} m_{g}+1 m_{g}-1\}$
	+ Je(l+1)-mp(mp-1) JS(S+1)+mp(ms+1) 1mp-1, ms+1>

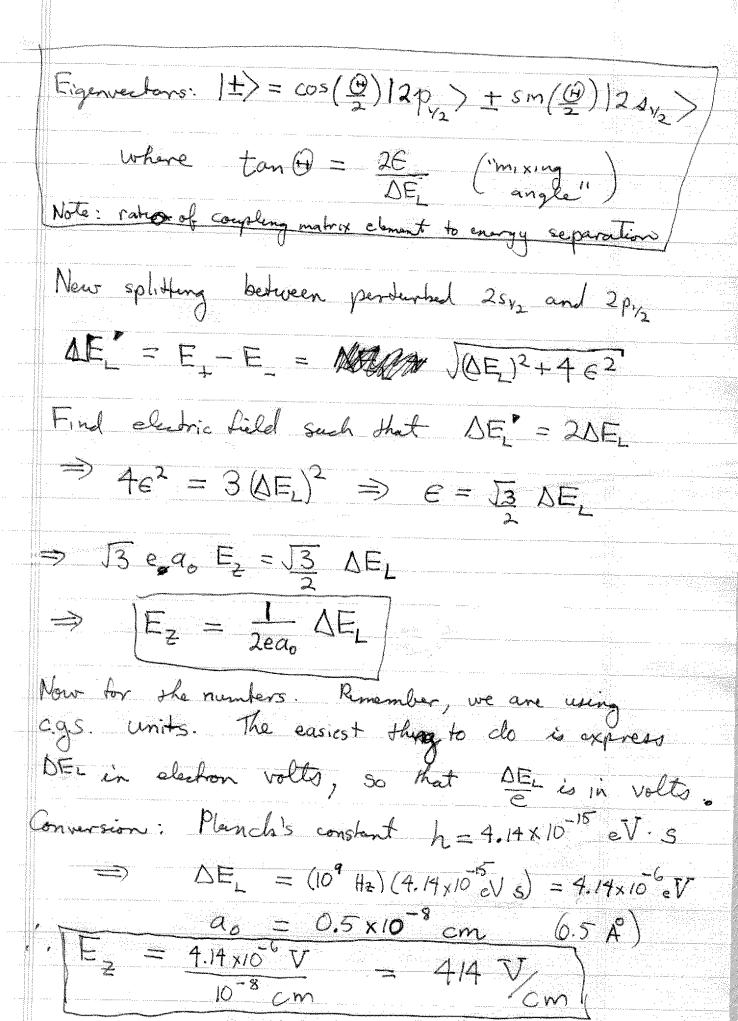
Note: The uncoupled basis vectors (m2, m5) are already eigenvectors of Jz, with Eigenvalue my = m2 + m5 Since $m_2 = 1, 0, -1$ and $m_5 = \frac{1}{2}, -\frac{1}{2}$, the possible values of m_3 are $m_3 = \pm \frac{3}{2}$ and $\pm \frac{1}{2}$, with a double degeneracy for my = = 1/2. (my =3/2 => (me=1, ms=1/2) $lm_1 = \frac{1}{2} = lm_2 = 0, m_5 = \frac{1}{2}$ or $lm_2 = 1, m_5 = -\frac{1}{2}$ $/ m_1 = -1_2 = |m_e = 0, m_s = -1_2 \rangle$ or $|m_e = -1, m_s = \frac{1}{2} \rangle$ $m_1 = -\frac{3}{2} = |m_0 = -1, m_s = -\frac{1}{2}$ We can simplify the calculation by ordering the basis into orthogonal-subspaces. Since the diagonalization of 12 cannot mix states with different Mij, we choose the ordered bases Ime, ms = { |1, 1/2 > , 10, \frac{1}{2} > , 12, -12 > ; 10, -1/2 > , 1-1, -1/2 } $m_1 = \frac{3}{2}$ $m_1 = \frac{1}{2}$ $m_2 = -\frac{1}{2}$ $m_3 = -\frac{3}{2}$ 00000 Thus in each of the 2D subspaces with my=1/2 and my=-1/2 we must chagonize the Same Umatrix $M = \begin{bmatrix} \frac{11}{4} & \sqrt{2} \\ \sqrt{2} & \frac{7}{4} \end{bmatrix}$

The secular equation for both my =+1/2 and my =-1/2 subspace det (21-M) = (1-4)(2-4) -2 =0 $\Rightarrow \chi^2 - \frac{q}{2}\chi + \frac{45}{16} = 0$ $\Rightarrow \lambda = \frac{3}{4} \text{ or } \lambda = \frac{15}{4}$ Remember, eigenvalue of \hat{j}^2 denoted $j(j+1) \Rightarrow j = \frac{1}{2}$ or $\frac{3}{2}$ Eigenvectors $J = \frac{1}{2}$, Where $\begin{bmatrix} 2 & J2 \end{bmatrix} \begin{bmatrix} q \\ J2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ J2 & 1 \end{bmatrix} \Rightarrow \begin{bmatrix} a & -1 \\ 5 & J2 \end{bmatrix}$ Normalyed: $\begin{bmatrix} \frac{1}{3} \\ -J\frac{2}{3} \end{bmatrix}$ (given an ordered basis) 1=3: [-1 \sqrt{2}][9]=[0] => \frac{d}{b}=\sqrt{2}: Normalgel: \bigg[\frac{3}{3}]

We thus have the following eigen vectors in the coupled representation: $(1) = \frac{3}{2}, m_1 = \frac{+3}{2} = |m_e = 1, m_s = \frac{+1}{2}$ $J = \frac{3}{2}, m_1 = \frac{1}{2} = \int_{\frac{\pi}{3}}^{2} |m_e = 0, m_s = \frac{1}{2} + \int_{\frac{\pi}{3}}^{2} |m_e = 1, m_s = \frac{1}{2}$ $J = \frac{3}{2}, m_1 = \frac{\pi}{2}, m_2 = \frac{\pi}{3} |m_e = 0, m_s = \frac{1}{2} + \int_{\frac{\pi}{3}}^{2} |m_e = 1, m_s = \frac{1}{2}$ $J = \frac{3}{2}, m_1 = \frac{\pi}{2} = \int_{\frac{\pi}{3}}^{2} |m_e = 0, m_s = \frac{1}{2} + \int_{\frac{\pi}{3}}^{2} |m_e = 1, m_s = \frac{1}{2} = \frac{1}{2}$ $|j=3/2, m_{g}=-3/2\rangle = |m_{g}=-1, m_{s}=-1/2\rangle$ $J = \frac{1}{2}, m_1 = \frac{1}{2} = \frac{1}{3} | m_2 = 0, m_3 = \frac{1}{2} = -\frac{1}{3} | m_2 = 1, m_3 = -\frac{1}{2} = \frac{1}{3} | m_2 = 0, m_3 = -\frac{1}{2} = -\frac{1}{3} | m_2 = 1, m_3 = -\frac{1}{2} = \frac{1}{3} | m_2 = 0, m_3 = -\frac{1}{2} = -\frac{1}{3} | m_2 = 1, m_3 = -\frac{1}{2} = \frac{1}{3} | m_3 = \frac{1}{2} = \frac{1}{3} | m_3$ these agree with C-T Complement Ax (vol II) eggs . 36-4)

Note:

Note:


The possible eigenvalues of j ronge from $\int_{max} = l+s$ to $\int_{min} = |l-s|$ as expected $= \frac{3}{2}$ o The Clebsch-Gordon coefficients are now given < y mg | l me; sms = < l mg; sms 1 g mg> $\Rightarrow \langle \frac{3}{2} \frac{3}{2} | 11; \frac{1}{2} \frac{1}{2} \rangle = \langle \frac{3}{2}, -\frac{3}{2} | 1 \cdot 1, \frac{1}{2} - \frac{1}{2} \rangle = 1$ (3211, 1-12) - (3-121-1, 122) = (1110, 12) = (1210, 10, 1-12) = (1210, 1-12) = (1110, 112) = (1110, |〈圣皇|10, 皇皇| = |〈金, 皇|10, 皇 -皇>| = |〈皇皇|11, 皇-皇>| = |〈皇皇|1-1, 皇皇>| = | 皇皇| We cannot assure the sign of GG coefficient is consistent with our phase convention by this method. (b) We can easily find the Bryenstettes of $\hat{\vec{l}} \cdot \hat{\vec{s}}$ by noting $\hat{\vec{l}} = (\hat{\vec{l}} + \hat{\vec{s}}) \cdot (\hat{\vec{l}} + \hat{\vec{s}}) = \hat{\vec{l}}^2 + \hat{\vec{s}}^2 + 2\hat{\vec{l}} \cdot \hat{\vec{s}}$ $\Rightarrow \hat{\vec{\chi}} \cdot \hat{\vec{s}} = \frac{1}{2} (\hat{\vec{\chi}}^2 - \hat{\vec{\chi}}^2 - \hat{\vec{s}}^2)$ => <jmj; l, s | Î. 5 | jmj; ls > = \frac{1}{2} (g(g+1) - l(l+1) - s(s+1)) \Syj \Symj, => <y= \frac{1}{2} m; l, s | \frac{1}{2} \frac{1}{5} |_2 - \frac{1}{2}, m_1, l, s > = -2 (j=3, mj; ls | 1.3 | j=32, mj, ls> = 1

Problem 2 Stark effect with Fine-structure
n=2 manifold of Hydrogen (including fine structure)
28 _K \ \ \DEF _{ES}
Stark effect perdurbation: $\hat{H}_{int} = +e\hat{Z}E_{Z}$ (quantization)
Recall spectroscopic notation: nlj = 215 = 0
For a given f , there are $2j+1$ degenerate sublevels $2\delta_{y_2} \Rightarrow 12\delta_{y_2}, +1_2$, $12\delta_{y_2}, -1_2$
$2\delta_{y_2} \Rightarrow (2\delta_{y_2}, + i_2), (2\delta_{y_2}, -i_2)$
$2P_{1/2} \Rightarrow (2P_{1/2}, -1/2)$
$2p_{3_{12}} \Rightarrow 2p_{3_{2}}, 3_{2}\rangle, 2p_{3_{2}}, 2\rangle, 2p_{3_{2}}, 2\rangle, 2p_{3_{2}}, 2\rangle$
Since Hint acts only on the spatial degree of freedom, it will be useful to reëxpress the eigenstate above in terms of the "uncoupled" angular momentum base We did this in P.S.# 8, problem 2 (521 Fall 2006). The results were
We did this in P.S.# 8, problem 2 (521 Fall 2006). The
$ 2\Delta_{\nu_2},\pm\nu_2\rangle = 21,0\rangle\otimes \pm\frac{1}{2}\rangle$
12P12, ±1/2> = \(\frac{1}{3} \) 12p,0>\(\O \pm \frac{1}{2} \) - \(\J_{\frac{3}{3}} \) 12p, \(\pm \) \(\O \pm \frac{1}{2} \)
12P3 = 1312PD & 15 bn +1> 0/-+>

12P. ±36> = bo. ±17 (1±1/5)

(a) For weak fields ea Ez 2 DELomb, we can restrict our attention to the (2sv2, 2p, 2p, 2) man; told The matrix representation of it, it is block diagonal with no offendiagonal fless elements between different mj as we will see below Consider my= 1/2, 2 dim space where DEz = Lamboth ft $\hat{H}_{0} + \hat{H}_{m+} = \begin{bmatrix} \Delta E_{L} & \epsilon \\ \epsilon^{*} & O \end{bmatrix}$ e= (2P, 1) And (2), 1/2> 125, > 12Pv> To calculate E, we use the uncoupled representation From class (2p,0/2/20,0) =-3a. Dragonalze $H = \begin{bmatrix} E_L G \\ O O \end{bmatrix} + G \begin{bmatrix} O I \\ I O \end{bmatrix}$ = 45.1 + 45.6 + 6 分

Figenvalues Et = DEL + JOEP2+ 62)

What about the other my istates? · No off-diagonal madrix elements between different mj Proof $\langle 2A_{1/2}t \mid \hat{H}_{1,1} \mid 2P_{1/2}, -\frac{1}{2} \rangle$ = $+eE_2[\langle 2A,0|\langle \frac{1}{2}|\rangle \hat{\Xi}(|2P,0\rangle|-\frac{1}{2})] - [\frac{3}{3}(\langle 2A,0|\langle \frac{1}{2}|) \hat{\Xi}(|2P,1\rangle)]$ +eEz[虚似,01212p,0) (到一分)-[3(如,01212p-1)(115)] =0 \ and smiltary for <20-12/14+12P121/2> The 2×2 matrix representation for my = -1/2 is the same are for my = 1/2 (try this yourself). Thus in the 4-dim subspace of (2012, 21/2) the representation of A is block-deagonal, weth two degenerate sub-blocks Thus, the eigenvalue we found are doubly digenerate

(b) Consider ea Ez S DEFS = include all states in n=2 Again H is block diagonal, with no off-diagonal matrix element between different my. Those was and also thoubly degenerate for try. As in class, there are no p > p matrix elements. We must thus diagonalize the following 3x3 midnig H= 600 $m_j = \pm 1/2$ $\begin{array}{c|c} \beta & \bigcirc & \triangle E_{FS} \\ \hline 125_{12} & 12p_{12} & 12p_{3/2} \end{array}$ note the 1282, m = ±3/2) is unperdurbed Here B = <2P2/2/4/ Hint 125/2/2) (real) = -e F₂ [] 3 (2p, 0| 2|240) (生) 4) + [+ (2p, 1) 2) 2) (+ (1) 4) + [+ (2p, 1) 2) 2) (+ (1) 4) B = J6 ea. Ez $A = \Delta E_{1} = \Delta E_{2} = \Delta E_{3} \times \Delta C$ $\Delta E_{1} = 1 \text{ GHz} = 1 \text{ GX} = 0$ χ ≡ ea. Ε. ΔΕ.

Solving for the eigenvalues numerically in the range O < x < 10 $y = 2^{20}$ $y = 2^{20}$ y

C) As ymptotic behavior. Note for Small X

we recover the behavior of part (a) (the
level 12ps12) is too far away). For sufficiently
large X the Fine-structure is negligible and t

we recover the simple linear stank shift

discussed in class. That we cover the

expected eigenvectors can be seen in the large

X limit setting. $\Delta F_{ES} = \Delta E_{L} = 0$

= Eigenvalues \{-3x,0,3x}

Eigenvectors (next page) Stpm-6

162) 163> Eigenvectors: (] 1/2 | 1/6 | 1/3 | 1/3 | 一場 (表) in the ordered basis (12pr2), 12pr2), 12pr2) my=12 ラ1e)=- 吉12g2 + 吉12g2 + 吉12g2 = - た124の122+ また12月の122 - ま12月1211239 + ま12月1211239 + ま12月1211239 |PO = 一点 (124,0> - 12P,0>)の1当)レー 19ン= - 5312Pv2 ナ は 12Ps2) = - 5312Po> いシナラ12PD トルトリーと 12Ps2) + ま12Ps2)-よ ||e₂>= |2p,1>@|-½>| Sine (193) = \frac{1}{2}(124,0) + 12p,0) & \frac{1}{2}\ Note the my = -1/2 are the same as ymptotes ons?-mg

The $m_1 = -3/2$ disposphote are flat throughout and yield the remaining states $/2p,\pm 1>0/\pm 5$