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Introduction

This course is intended as a complement to the course in laser cooling and
trapping given at this school by Claude Cohen-Tannoudji (1] as well as
to those of Herbert Walther [2] and of Rainer Blatt [3]. Here I take an
“experimental” point of view, discussing how specific atom manipulation
experiments work and how well experiments agree with the theory. The
focus of this course is on those techniques of cooling and trapping that are
appropriate for application to neutral atoms. Approaches used for ions are
covered in refs. [2] and [3]. ‘

The course is divided into three main parts. In the first I treat “Doppler
cooling” as a result of the velocity dependence of the radiation pressure
force and show the common features of a number of experiments which re-
duce the thermal velocity spread of a group of atoms. The second part deals
with the position-dependence of radiative forces, and with the principles of
various kinds of laser traps. The third part summarizes the experiments
on optical molasses with particular emphasis on comparing these results
with the predictions concerning the recently identified polarization gradi-
ent cooling mechanisms.

1. Doppler cooling

1.1. The Doppler shift
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Laser cooling is the reduction of atomic velocity spread through the action
of radiative forces. Such a reduction is necessarily achieved by a velocity
dependence of the force. In Doppler cooling this dependence comes about
because the Doppler shift experienced by a moving atom changes the de-
tuning of that atom’s resonant frequency from the frequency of the applied
laser light. This in turn changes the photon absorption rate and hence the
force on the atom.

While the Doppler shift is often derived as the result of a transformation
between relatively moving frames, it can also be understood as the result
of conservation of energy and momentum. Take the non-relativistic limit
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and consider the one-dimensional (1-D) example of an atom of mass M
moving with an initial velocity v and an impinging photon of frequency
wp, and wavevector b, = wL /c. The internal energy difference between
the atomic ground and excited states is huwly . For resonant absorption of
the photon we equate momentum and energy before and after absorption:
Mu; + ik = Mug and Mv?/2 + hor, = Mu}/2 + b’y . The velocity change
vr — 1; is the recoil velocity vr = Rk/M. The required frequency shift
wp — wl = kv + hk?/2M. The first term is the familiar Doppler shift
kv = wpv/c, and the second term is called the recoil shift, being equal
to the kinetic energy, in frequency units, imparted to an atom initially at
rest when it absorbs a photon. For most of what follows in the course,
the recoil energy Er will be small, and in any case we will absorb it into
the definition of the atomic resonant frequency: wa = wj + hk2/2M. The
preceding discussion is easily generalized in 3 dimensions to give the usual
nonrelativistic Doppler shift dpop = k-v . Thisis the amount by which the
laser frequency must be increased to be resonant with an atom at velocity
v.

1.2. Radiation pressure

For a laser frequency already detuned from the zero velocity resonance by
§ = wp — wy, the effective detuning is Seg = 6 — k- v. A two-level atom
irradiated by a plane wave laser beam having this detuning experiences an
average force in the direction of propagation:

r 1/I,

F=hk— — (1)
14+ 1/ + [—-—2‘5} '”’]
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Here I is the natural decay rate of the excited state population and is the
natural full width at half maximum (FWHM) of the resonance. I is the
laser intensity and Io is the saturation intensity, although some authors
refer to 2I, as the saturation intensity. I/Io = 2027/I'?, the normalized
inténsity, where (2; is the Rabi frequency. Also, the reader is cautioned
that some authors refer to I/Iy or I/2Iy as the “saturation parameter.”
Here and in ref. [1] saturation parameter means the detuning-dependent
quantity (see eq. (3.6) of ref. [1])

1k
T 14 (26/T)°

The fractional population in the excited state is then (eq. (3.7) of ref. [1])

(2)
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Equation (1) is simply a re-writing of eq. (3.25) derived in ref. [1].
It is valid for a two-level atom in an arbitrarily intense plane wave. It
expresses the force as the product of the photon momentum A% and the
photon scattering rate, that is, the rate of events involving a photon ab-
sorption followed by a,spontaneous emission. These transfer an average of
one laser photon momentum to the atom since the spontaneous emission
is symmetrically distributed. Absorption followed by stimulated emission
does not contribute to the force in a plane wave because the stimulated
emission is in the same direction as the laser propagation. Because of this,
the force (1) is often called the spontaneous force. It is also referred to as
the radiation pressure force or scattering force. It is the velocity depen-
dence of this force which leads to Doppler cooling. At high intensity this

" force saturates to the value AkI"/2. The spontaneous force is limited by the

rate at which spontaneous emissions can occur. These occur at a rate I’
for excited atoms whose maximum fractional population is 1/2 according
to eq. (3).

The acceleration of an atom due to the saturated radiation pressure
force is Gmax = hAKI'/2M = wvgI'/2, which can be quite large. For
sodium with A = 27/k = 589 nm, 1/I" = 16 ns, and M = 23 amu,
vp = 3cm/s and amax ~ 10° m/sz. For hydrogen, with A = 122nm,
1/I = 1.6ns, and M = lamu, Vrec ~ 3m/s and amax =~ 10° m/s?. This
acceleration would stop a thermal, 1000 m/s Na atom in 1 ms over 0.5 m,
and a thermal, 2.5 x 10% m/s H atom in 2.5 ps over 3 mm.

1.8. Deflection of an atomic beam

Some of the most important features of Doppler cooling can be illustrated
in the problem of deflecting an atomic beam. Consider, as in fig. 1la,
an atomic beam of initial velocity v; entering a perpendicularly directed
laser beam tuned to resonance (§ = 0). The exact solution to the atomic
motion is complicated, but we can see that, according to eq. (1) the initial
acceleration is

. Rkl I/l
UESM TF /Ty )

As the velocity changes, the acceleration will remain of this order as long

ask-v < I'y/1+I/Iy. As k- v becomes larger than this the force will
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Fig. 1. (a) Laser deflection of an atomic beam. (b) Cooling a diverging beam.

decrease rapidly because the atom will be out of resonance. If I/Ij ~ 1,
the time required to accelerate the atom out of resonance is of the order
of h/Er where Eg is the recoil energy. This is exactly the “external”
time scale discussed in ref. [1]. It is about 6 us for sodium and 11 ns for
hydrogen.

Because the atom goes out of resonance the velocity can be changed by
only a few times I'/k unless the intensity is very high. This is 6 m/s for
Na and 12 m/s for H. The limitation on the velocity change is one of the
biggest problems in manipulating atoms with lasers, but it leads to one of
the biggest advantages: Doppler cooling.

Figure 1b shows an atomic beam with a spread of transverse velocities
encountering a transversely directed laser beam. For initial velocities to-
ward the laser (k-v < 0) the atom is out of resonance on the blue (éeg > 0)
side, and is accelerated into resonance (k-v = 0) and then out of resonance
on the red side (k- v > 0). Atoms with initial k- v = 0 are accelerated
out of resonance, and atoms initially with k-v > 0 are already out of reso-
nance on the red side and are accelerated only a small amount further out
of resdnance. The net effect is that all atoms emerge with nearly the same
transverse velocity, the one needed to put them just out of resonance on
the red side. This compression of velocities is a transverse Doppler cooling.

This transverse cooling (usually called “collimation”) is generally wel-
come, but the deflection, or change in transverse velocity is still limited. To
overcome the limitation, we need to compensate for the change in Doppler
shift as the laser acts on the atom. One way of accomplishing this compen-
sation is shown in fig. 2. Here, the atomic beam encounters not a plane
wave but a converging laser beam (focused by a cylindrical lens). For a
proper choice of parameters the beam will be deflected in such a way that
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Fig. 2. Laser deflection with a converging laser beam.

it always remains perpendicular to the local direction of propagation of the
light. In this way the changing direction of the velocity is compensated by
the changing direction of k and the Doppler shift does not change. This
procedure has been used [4] to produce deflections as large as 30° in a Na
beam with an incident velocity of 100 m/s at R = 62 mm.

To satisfy this condition, the radiation pressure force, given by eq. (1)
with k - v = 0 must equal the required centripetal force Mv2/R. If this
condition is not exactly fulfilled, the deflection process can self-correct so as
to fulfill it. This can be seen qualitatively from fig. 2. If the atomic velocity
entering the laser beam is too large to be deflected along the indicated
path, the atoms will go to a larger radius while being decelerated so that
the condition is satisfied at a larger R and a smaller tangential velocity.
Let us now consider an atom with a tangential velocity vy that satisfies the
condition for circular deflection at a radius R, but which has a small radial
velocity v;. We also assume that R is large enough that we can neglect
the effect of small changes in R. Now we transform to a reference frame
rotating at w = vg/R. In this frame the tangential velocity is zero and the
total radial force on the atom is

My T /I oF

F

R TIFT/T + (262 B (5)

The first term is the centrifugal force in the accelerated frame, which by
assumption cancels the second term, the radiation pressure force for zero

v, The third term is the first order correction to the radiation pressure for
non-zero v,. By differentiating eq. (1), we determine this term to be

F. = 2hkzivr 28/ 5.
Io  [L+1I/Iy+(26/1)?

(6)
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If § < O this is a force that is proportional to and opposes vr. It acts
like a viscous friction force and will damp small radial velocities to zero,
leading to a stable orbit. If an atomic beam with a spread of radial velocities
enters the configuration of fig. 2, that spread will be reduced by the friction
force in the rotating frame. This is again transverse Doppler cooling as in
fig. 1b. There the 6 < 0 condition was insured by the fact that atoms
were pushed out of resonance with the laser. Here, in the rotating frame,
the centrifugal force compensates the radiation pressure force, the atoms
stay near resonance, and only the action of cooling or the friction force is
evident. Experiments using this geometry to produce both large deflections
and significant cooling are described in refs. [4] and [5].

A complete treatment of this kind of experiment for a spread of incident
velocities would be complicated because we need to consider different values
of R, the variation of I/Io with R and the fact that there is no unique
transformation to make the tangential velocity zero. Let us consider a
different, 1-D problem: laser deceleration and cooling of an atomic beam.

1.4. Deceleration of an atomic beam

Consider the deceleration of a collimated atomic beam by a counterpropa-
gating plane wave laser beam. The atomic velocities are distributed around
a nominal velocity V7, with v denoting the difference from V’. The detun-
ing 8 of the laser is chosen so as to be near resonant for atoms at V':
wy, —wp =6 = —kV’'+6, where § is small. According to eq. (1), the force
is

Flv) = kL /o .

: LR §) A [—2@;—“&]

(7)

and the instantaneous acceleration of an atom having velocity V' is
F(0)/M = a. For large I/Io and § = 0 the acceleration has a maximum
magnitude of

r
Amax = hkm (8)
For sodium atoms, as we saw in the previous section, this is about 10°
m/s?, or 10° times the acceleration of gravity.
With I /I, near unity and 6 = 0 an atom at velocity V'’ will decelerate out
of resonance with a characteristic time on the order of Text. Other atoms
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Fig. 3. Longitudinal velocity distribution of an atomic beam before (thin line) and after
(bold line) interacting with a counterpropagating, fixed-frequency laser. The arrow
indicates V/, the velocity resonant with the laser.

with nearby velocities will also decelerate, those with larger velocities first

“decelerating into resonance, then to still slower velocities out of resonance

while initially slower atoms decelerate to still lower velocitics. The atoms
will “pile up” at a velocity somewhat lower than V'. This situation is
analogous to the deflection described in connection with fig. 1b. Both
deceleration and cooling occur because a range of velocities around V' is
compressed into a narrower range at lower velocity. The change in the
velocity distribution of an atomic beam with a thermal spread of velocities
is illustrated in fig. 3.

The difficulty with the velocity distribution of fig. 3 is that only a small
portion of the total velocity distribution has been decelerated by only a
small amount. There are a number of possible solutions to this problem,
some of which have been discussed in ref. [6]. Here we discuss ”chirp
cooling” in which the frequency of the laser is swept up in frequency, or
chirped, in time. Because of the chirp, atoms that have been decelerated
by the laser stay in resonance, continue to absorb photons, and continue
to decelerate. Furthermore, the chirp brings the laser into resonance with
additional atoms, having lower velocities than the original group around
V’. In this way, the chirp cooling can decelerate and cool atoms having
velocities from V' down.

This process can be understood as being analogous to the deflection
depicted in fig. 2. We will transform [7] to a frame decelerating with
the atoms whose initial velocity was V! = V'(t = 0), and we will assume
these atoms to decelerate at a constant rate such that V'(¢) = V'(0) +
at. The chirp is expressed as §(t) = —kV'(t) + 6. This means that the
laser has a constant detuning from resonance with atoms decelerating at a,
guaranteeing that a is constant. Of course, a = F(v=0)/M, with F given
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Fig. 4. Longitudinal velocity distribution of an atomic beam before (thin line) and after
(bold line) deceleration by a chirped laser. The arrow indicates the velocity initially
resonant with the laser.

by eq. (7). o ’
In the decelerating frame the force, in the direction of v’, on an atom

whose velocity differs by v from the nominal velocity V'(t) is:

(9)

r —I/I I/
F(v)ZFLkE /Oék 2 - 25]*
L4 I/To+ 28] 1 /no + (%]

The second term in the large brackets is the "fictitious” inertial force in
the accelerating frame. Expanding this expression for small v, we get:

o) = 24 (26/ v
F(v) = 2Rk T [1+1/Io+ <2Fé>z]z

The term multiplying v is the friction coefficient o = M-y. When 6 <0
the force opposes the velocity v and tends to damp all velocities to zero in
the decelerating frame, which is V/(¢) in the laboratory frame. The final
velocity to which the atoms are decelerated is determined in practice by
the final frequéncy to which the laser is chirped. Figure 4 shows the results
of chirp cooling an atomic beam. All of the atoms in the initial distribution
below the velocity resonant with the laser at the beginning of its chirp are
decelerated.

The robust character of this sort of cooling is evident. Atoms within
a range of velocities around V’(t) are damped (in velocity) toward 18
Lower velocities, not initially close to V', come within range as the laser

(10)
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chirp brings V'(t) into coincidence with them. If the laser intensity changes
during the time an atom is being decelerated (because, for example, the
laser beam is not collimated) the atoms will continue to be decelerated
according to the chosen chirp rate, but with a different effective detuning
§. That chosen chirp rate, however, must be consistent with an achievable
deceleration- with the given I/I, subject to the condition § < 0. That is,
the chirp rate must satisfy

hkT /I

Fokes M 1+1/I+ [—2,2]2

(11)

for some §. And, as we shall see below, it is best if § is not too small. The
condition @ € amax (eq. (8)) implies an upper limit to the allowable chirp
rate.

1.5. Optical molasses in one dimension

In the examples of deflection and deceleration given above, we transformed

" into an accelerating frame where the radiation pressure force was opposed

and compensated by an inertial force in that frame. The total force on zero
velocity atoms in the chosen frame is zero (egs. (5, 6) and (9, 10)), and a
proper choice of detuning makes this velocity a point of stable equilibrium.
If we wish to have the same situation in the laboratory rest frame, we must
have a real force to compensate the radiation pressure. This force might be
provided by an electric field if the atoms are charged [8], or more generally,
by an opposing radiation pressure.

A configuration of counterpropagating laser beams used for cooling of
atoms has come to be known as “Optical Molasses” [9]. If the intensity of
each beam is small (I /Iy <« 1) we can write the total force on an atom as
the sum of the radiation pressure from each of the two beams, as long as
we understand this to be the force averaged over a wavelength of the light.
In one dimension:

r  nn T I/l

F(v) = hk— 5 — hks—————. (12)
2, [2(6;kv):| 214 [2(5;@)]

Figure 5 shows the force from each of the beams, and the total force for
a variety of detunings.
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given, small value of I/Io the damping time is minimized for 26/I" = 1/ V3.
With this detuning, Taamp =7~ ~ ext(lo/ 1), where Texy = h/ER is the
external time scale. Note that if the saturation parameter

F {(nkr)/(1/1)}

o R
§= _——1+('21—§)2 (14)

is held constant (and smnall), the friction and the damping rate are maxi-
mized at 26/I" = 1.

For I/Iy < 1, eq. (10), derived for cooling with a single travelling wave,
is identical to eq. (13) except that here I/Io has been replaced with 2I/Io.
This means that all the results discussed in the context of cooling in a weak
standing wave apply also to cooling in the decelerating frame appropriate
for chirped cooling.
“"So far in the discussion of radiation pressure forces we have considered\
‘only the time averaged value of the force. The force, of course, results from
discrete transfers of momentum when the atom absorbs or emits photons.

This discreteness means that the force fluctuates about the average value.
The fluctuations tend to heat the atom. To visualize this heating, assume
that the average force is zero, but the atom is subject to a fluctuating
force of zero mean arising from the emissions and absorptions. Each event
transfers momentum to the atom, and in this limit of low intensity, each
¢ N cvent is uncorrelated with other events and each momentum transfer is in
a random direction, at a random time. The randomness is a direct result

of the random character of spontaneous emission. As-a result, the atomic

momentum undergoes a random walk. The mean square of the momentum

increases with time, which is to say the kinetic energy increases, and the

Fig. 5. Weak standing wave radiation pressure force (in units of %) versus velocity atom heats. This diffusion of the atomic momentum is treated in detail in
(in units of I'/2k) for various values of the detuning. Cohen-Tannoudji’s lectures {1]. Here we will follow a simple calculation for

weak fields.

_This series of plots illustrates the fact that the slope of F(v) at v =10  Let us calculate the rate of heating in a “truly” one-dimensional situa-

has a maximum near 26/ = 1. Furthermore, F(v) is linear only over a tion, a two-level atom in a weak standing wave along the z-axis, with the
range of velocities on the order of I'/k. For small v and [ /Io the force is spontaneous photons assumed to be emitted only along this axis. There

28r=4

given by are two contributions to the heating: the random direction of the spon-
taneous emissions, and the randomness of the absorption. Each sponta-

o (21/15)(26 /T 13 neously emitted photon goes in a direction which is uncorrelated with that

F(v) = 2hk '——‘—25-—27 (13) of other emitted photons, so these emissions induce a random walk with

[1 + <T> ] momentum step size fik. After N emissions, according to the usual random

The term multiplying v in eq. (13) is the friction coefficient o = M. walk result, the mean square momentum s (p) = N A?k2. The momentum

The characteristic time for damping the atomic velocity is y~!. For a diffusion coefficient is defined in terms of the rate of increase of p?, which
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in turn depends on the rate of emitting photons:

Do = (p2) = 2m2p2 L _1/Do (15)

21+ (26/T)2°

where the first factor of two comes from the two beams of the standing wave,
each having intensity I/I5. The randomness of the absorption process leads
to the direction from which any one photon is absorbed being uncorrelated
with the others (recall that we assume kv, kvrec < I', so that the Doppler
shift due to the recoil velocity does not much change the relative absorption
probability.) Thus, Daps = Depont (= Dyac). This is the same (for the same
total intensity) as the result for diffusion in a single running wave in the
case where I/Iy or s is small so that the non-Poissonian () parameter is
(Note that for the weak standing wave, we have associated the
randomness in absorption with the random direction of absorption, while
in a travelling wave, the randomness can be thought of as arising from the
randomness in the number of photons absorbed per unit time.)

Now we equate the rate of increase of kinetic energy due to the diffusion
with the rate of decrease in kinetic energy due to the damping or friction,
Recall that the damping force F' = —aw, so the cooling rate (Fv) is —a(v?).
Thus, in steady state,

(p?) _ D _
2M M

<Eheat> = "(Ecool) = Q<U2)7 (16)
where D is the total diffusion coefficient, Dgpont + Daps. For this 1-D
problem we have a single degree of freedom so M (v?)/2 = kgT/2. This

temperature is

D Rl 1+(%)? wrr 26
= e NP (2 27 17
bl =0=7 (28) 4 (26+I‘> (a7)
The temperature minimizes for § = —I'/2, giving
hl
kgTpop = - (18)

where Tpep is called the ‘D.&pler cooling limit. Note that this limit is
different from ones often given for Doppler cooling in one dimension. In
some other treatmem/s the spontaneous emission is not assumed to be along
the 1-D axis, but distributed in a manner characteristic of an isotropic,
dipole, or other radiation pattern. With such an assumption, which would
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be appropriate for a “real” 1-D situation such as collimation of an atomic
beam along one dircction, the 1-D cooling limit is smaller than in eq. (18).
The Doppler limit for our idealized 1-D case corresponds to 240 uK, a 1-D
rms velocity of 30 cm/s for sodium and 125 pK and 9 cm/s for cesium.

Finally, in accordance with the fact that the cooling in a weak standing
wave is equivalent to that in a travelling wave of equal total intensity (as-.
suming we go to an accelerated frame, or the radiation pressure is otherwise
compensated), the Doppler cooling limit in a weak travelling wave is the
same as in a weak standing wave. There has been some confusion on this
point because of the way in which D,ys is considered. Here we see it as
arising from the fluctuations in the absorbed photons. In a standing wave,
when one takes account of the variation of intensity along the standing
wave, it may also be thought of as a fluctuation of the stimulated or dipole
force [10]. (See section 2.6 of these notes and see also Cohen-Tannoudji’s
lectures.) In the absence of a standing wave, it might appear that there is
no dipole force, and thus no fluctuation of that force, so the momentum
diffusion and the Doppler temperature should be less. In fact, as we have
seen above, this is not so.

In the above treatment, we have consistently taken I/l <« 1 in 1-D.
This allowed us to treat the standing wave as the sum of two travelling
waves. There are treatments of the standing wave case in 1-D for high
intensity and a two-level atom (see, for example, refs. [1] and [10]), and
for the J = 0 — J =1 case [11]. Unfortunately, these treatments do not
easily generalize to the 3-D case we wish to treat later. We do have an
exact treatment for a single travelling, plane wave at arbitrary intensity,
exemplified by eqs. (1,10). This exact result leads to a model, due to
Dalibard [12], for treating a strong standing wave that does generalize to
3-D.

Consider two opposed running waves, alternated in time, with 50% duty
factor, as illustrated in fig. 6. The average intensity of each wave is I,
while the peak intensity is 2]. We also assume that the time T' for which
each wave is on is such that v~ > T > I'"?, recalling that v and I" are
the cooling rate and the natural decay rate, respectively.

Since there is only one wave on at a time, and the transient time I'"! is
negligible, we can simply add the forces from each wave to obtain the total
average force:

1 1 2I/I,
214 21/1, {_ﬁ—g 8=k “)]2 2149 264k )]
o+ |2 1+2I/I + | =524
(19)

(F) = hk

I 21/Iy
2
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Fig. 6. Counterpropagating, alternated running waves used as a model for a standing
wave. The intensities of the beam propagating to the right (1) and left (2) are shown as
a function of time.

The factor of 1/2 before each term is from the duty factor, while 27 is
the instantaneous intensity. Note that the term 2I/I; in the denominators
looks as if it is due to saturation and power broadening from the aver-
age power summed over both waves, although it is of course due to the
instantaneous intensity of a single wave.

As before, we find the friction coefficient:

YM =a= 4hkzi 26/

292°
ek (]

This is the same friction coefficient seen in eq. (13), except for the “satu-
ration” factor in the denominator.

We may take this expression for the friction coefficient as exact for the
alternated wave case, or as an approximation for the case of continuous
counterpropagating waves each of intensity I. The approximation ignores
effects due to the standing wave character of the counterpropagating waves
such as are treated in, for example, refs. [1,10,12,13]. Nevertheless, it is
a fair approximation for I/Iy $1. An analysis in ref. [14] compares this

(20)
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model to the exact solutions for a two-level system [1,10] and for the case
of counterpropagating waves of opposite circular polarization (¢t —0¢~) on .
aJ =0 — J =1 transition [11]. The model agrees moderately well with
the ¢t — o~ calculation even for large intensity (and, accidentally, agrees
exactly for I /Iy = 4). The model disagrees dramatically with the two-level
calculation when I/Ip > 1. This is because the model admits no possibility
of absorption from one wave followed by stimulated emission induced by
the other. This process does not occur in the o+ — o™ case, but dominates
the behavior of a two-Jevel atom in a standing wave of high intensity.

Now consider the momentum diffusion coefficient in our alternated wave
model. In analogy with eq. (15) we can write the spontaneous part of the
diffusion as
r 21/1

2 spont = 2 = 2k — .
Dspone = (2) = ¥'K" 5 73777, + (26172

(21)

. Because of the non-Poissonian nature of the absorption statistics at non-

negligible intensity, the part of the diffusion ascribed to the absorption is
not the same as that for the spontancous emission. Assuming as always
that the emissions are all along the 1-D axis, we have Daps = Dspont (1 +Q)
where @ is Mandel’s parameter describing the non-Poissonian character
(given as eq. (5.48) inref. [1]). Thus, the total diffusion D = Dspont (2+Q)-
For the intensities where the alternating model is a good approximation to
a standing wave, Q@ < 2, so we will neglect it in the following discussion.

1.6. Optical molasses in N dimensions

This alternated beam model easily generalizes to 2 or 3 dimensions, where
we assume a 2N-fold alternation where N is the dimension (each beam has
intensity 2N 7 for 1/2N of the time). Then for the friction coefficient along
any of the N axes we have

26/T

I
M = o = 4Rk = , (22)
Iy NI 5\2]°
1+ 2+ (%))
and for the total diffusion constant
D= 2Dspont — h2k2£ QNI/IO (23)

2 1+ 2NI/To + (26/T)%

We will use these expressions to obtain approximate results, for moderate
intensity, in 3-D optical molasses.
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(Note that in eq. (23) the momentum diffusion coefficient has been pre-
sented as a scalar. In actuality, it is represented by a tensor 2D;; = (pibj).
For the alternating beam model, there is no correlation between photon
scattering from the various beams, so the tensor is diagonal. Furthermore,
for a 3-D symmetric situation such as isotropic photon scattering, or dipole
scattering induced by three pairs of beams with mutually orthogonal lin-
ear polarization, or for our assumption that all spontaneous emissions are
along the laser beam axis, the diagonal elements of D are the same in each
case, and are all equal, so we may treat D as’'a scalar.) .

For this case where all the axes of the N-D molasses are equivalent, we
can write the friction force as F' = —awv. Then, as in 1-D, (Eheat> =D/M

and (Ecoo1) = —a(v?). From the equipartition theorem we have NkgT/2 =
M@?)/2 = Zil M (v2)/2, so the equilibrium temperature is given by

D Al 1+ 3 4 (%)
kT = — = R —1026.(_” (24)
Na 4 - (%)
For low intensity this reduces to eq. (17).
We can maximize the friction coeficient given in eq. (22) with respect

to both intensity and detuning, finding

Rk?
'y]\lza-—"m for 26/I" = -1, I/Iy = 1/N. (25)

For sodium the minimum damping time is y™! = 13 us in 1-D and 40 ps, in

3-D. For cesium the times are 160 us and 480 us respectively. The reduced
damping in 3-D is due to the duty factor in the alternated beam model.
If we consider this as a model of continuous 3-D molasses, then we may
interpret the reduction as being due to the fact that an atom moving along
any given axis spends 2/3 of its time interacting with beams perpendicular
to its velocity.

With the parameters of eq. (25), eq. (24) gives kgT = AT, just twice the
Doppler cooling limit. In N-D the Doppler limit, achieved at low intensity,
is still the lowest temperature obtainable. For either maximum friction
or minimum temperature, an atom in N-D has N times as much kinetic
energy as in 1-D, but the same energy per degree of freedom.

1.7, Spatial diffusion in optical molasses

We will apply the alternated beamn model to study the atomic motion in
optical molasses, using a Brownian motion approach. Let us estimate the
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distance an atom will diffuse in a time t4. Moving at a thermal velocity
Vrms the atom will travel a distance | = v;ms/y during a damping time.
Considering this [ as a random walk step which is repeated 4y times, the
mean square distance diffused in ¢4 is h

where D, is the momentum diffusion coefficient (the subscript has been
added to distinguish it from the spatial diffusion coefficient). More rigor-
ously, we can define a spatial diffusion constant D, by (z%) = 2t4D,. A
careful treatment (see refs. [9,14] and references therein) gives D, = kgT'/c
and

2Dty

% (26)

(r?)

Using eqs. (22,23) and maximizing the diffusion time for a given diffusion
distance we find [14]

max _ 42 (r?)
d 27TN2I

for 26/I" = —1 and I/Iy = 1/(2N). The times to diffuse 0.5 cm in 3-D
for sodium and cesium are 750 ms and 675 ms, respectively. If we assume
the atoms diffuse to the edge of a spherical region (an approximation to
the intersection region of three pairs of finite cross section laser beams) and
then are lost, we find that the number of atoms within the sphere decays as
the sum of exponentials [9,14]. In 3-D the leading term decays with a time
constant ty = 6tq/m2. This is usually referred to as the molasses lifetime.

If an external force is applied to an atom in optical molasses, the atom
will acquire a drift velocity such that the friction force cancels the external
force:

(27)

Varife = Fexe/ Q. (28)

If the cxternal force is gravity we have vgng = ¢/v. For the maximum
damping conditions of eq. (25) in 3-D, the gravity-induced drift is 0.4 mm/s
for sodium and 5 mm/s for cesinm. This would be quite a significant effect
for a centimeter diameter cesium molasses, limiting the molasses lifetime
to something on the order of a second. Another source of “external” force
might be an imbalance in the intensity of the counterpropagating beams.
In ref. [14] an approximate treatment shows that for optimum damping




