
Physics 531, Problem Set #5
Due Tuesday, March. 8, 2005

Problem 1:  The ac-Stark effect

Suppose an atom is perturbed by a monochromatic electric field oscillating at frequency ωL  

E(t) = Ez cos(ωLt)ez  (such as from a linearly polarized laser), rather than the dc-field studied in

class.  We know that such field can be absorbed and cause transitions between the energy levels;

we will systematically study this effect later in the semester.  The laser will also cause a shift of

energy levels of the unperturbed states, known alternatively as the “ac-Stark shift”, the “light
shift”, and sometimes the “Lamp shift” (don’t you love physics humor).  In this problem, we will

look at this phenomenon is the simplest case that the field is near to resonance between the

ground state g  and some excited state e , 
  
ωL ≈ ωeg ≡ Ee − Eg( ) / h , so that we can ignore all

other energy levels in the problem (the “two-level atom” approximation).

(i) The classical picture.   Consider first the “Lorentz oscillator” model of the atom – a charge

on a spring – with natural resonance ω0.

E cos(    t)Lω

ω0

-e, m

The Hamiltonian for the system is H =
p2

2m
+
1
2
mω0

2 z2 − d ⋅E(t) , where d = –ez is the dipole.

(a) Ignoring damping of the oscillator, use Newton’s Law to show that the induced dipole
moment is

dinduced (t) = αE(t) = αEz cos(ωL t) ,

where α =
e2 / m
ω0
2 − ωL

2 ≈
−e2

2mω 0Δ
 is the polarizability with Δ ≡ ω L − ω0  the “detuning”.

(b) Use your solution to show that the total energy store in the system is ,

H = −
1
2
dind (t)E(t ) = −

1
2
αE2 (t) , or a time average value H = −

1
4
αEz

2

Note, the factor of 1/2 arise because energy is required to create the dipole.



(ii) Quantum picture.  We consider the two-level atom described above. The Hamiltonian for

this system can be written in a time independent form (equivalent to the time-averaging
done in the classical case)

ˆ H = ˆ H atom + ˆ H int ,

where   
ˆ H atom = −hΔ e e  is the “unperturbed” atomic Hamiltonian, and

  

� 

ˆ H int = −
hΩ
2 e g + g e( )  is the dipole-interaction with   hΩ ≡ e d g ⋅E .

(a) Find the exact energy eigenvalues and eigenvectors for this simple two dimensional Hilbert

space and plot the levels as a function of Δ.  These are known as the atomic “dressed states”.

(b) Expand your solution in (a) to lowest nonvanishing order in Ω to find the perturbation to the

energy levels.  Under what condition is this expansion valid?

(c) Confirm your answer to (b) using perturbation theory.  Find also the mean induced dipole
moment (to lowest order in perturbation theory), and from this show that the atomic

polarizability, defined by d = αE  is 
  
α =

− e d g 2

hΔ
, so that the second order perturbation

to the ground state is Eg
(2) = −

1
4
αEz

2  as in part (b).

(d) Show that the ratio of the polarizability calculated classical in (b) and the quantum
expression in (c) has the form

f ≡
αquantum

αclassical

=
e z g 2

Δz2( )SHO
, where Δz2( )SHO  the SHO zero point variance.

This ratio is known as the oscillator strength.

Lessons:

• In lowest order perturbation theory an atomic resonance look just like a harmonic oscillator,
with a correction factor given by the oscillator strength.

• Off-resonance harmonic perturbations cause energy level shifts as well as absorption and
emission.



Problem 2:  Light-shift for multilevel atoms

    We found the AC-Stark (light shift) for the case of a two-level atom driven by a
monochromatic field.    In this problem we want to look at this phenomenon in a more general
context, including arbitrary polarization of the electric field, and atoms with multiple sublevels.
     Consider then a general monochromatic electric field E(x,t) = Re E(x)e−iω Lt( ) , driving an
atom near resonance on the transition, g; Jg → e;Je , where the ground and excited manifolds
are each described by some total angular momentum J with degeneracy 2J+1.  The
generalization of the AC-Stark shift is now the light-shift operator acting on the 2Jg +1
dimensional ground manifold:

  
ˆ V LS(x) = −

1
4
E*(x) ⋅

t ˆ α ⋅E(x) .

Here 
  

t ˆ α = −
ˆ d ge ˆ d eg

hΔ
 is the atomic polarizability tensor operator, where ˆ d eg ≡ ˆ P e ˆ d ˆ P g  is the dipole

operator, projected between the ground and excited manifolds;  the projector onto the excited

manifold is, ˆ P e = e;Je, Me e;Je, Me
Me = − J e

J e

∑ , and similarly for the ground.

(a)  By expanding the dipole operator in the spherical basis, show that the polarizability operator
can be written,

  

t ˆ α = ˜ α CMg

Mg +q 2 r e q
q,M g

∑ g; Jg, Mg g;Jg ,Mg
r e q

* + CM g +q − ′ q 
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∑
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,

where 
  
˜ α ≡ −

e; Je d g;Jg
2

hΔ
 and CMg

Me ≡ Je Me 1q Jg Mg .

Explain physically, using dipole selection rules, the meaning of the expression for   
t ˆ α .

(b)  Consider a polarized plane wave, with complex amplitude of the form,   E(x) = E1
r 
ε L e

ik⋅x

where E1 is the amplitude and   
r 
ε L  the polarization (possibly complex).  For an atom driven on the

transition g; Jg =1 → e;Je = 2  and the cases (i) linear polarization along z, (ii) positive helicity
polarization, (iii) linear polarization along x, find the eigenvalues and eigenvectors of the light-
shift operator.  Express the eigenvalues in units of V1 = −

1
4

˜ α E1
2 .  Please comment on what you

find for cases (i) and (iii).  Repeat for g; Jg =1 / 2 → e;Je = 3 / 2  and comment.

(c)  A deeper insight into the light-shift potential can be seen by expressing the polarizability
operator in terms of irreducible tensors.  Verify that the total light shift is the sum of scalar,
vector, and rank-2 irreducible tensor interaction,



ˆ V LS = −
1
4
E(x) 2 ˆ α (0) + (E*(x) × E(x)) ⋅ ˆ α (1) + E* (x) ⋅ ˆ α (2) ⋅E(x)( ) ,

where 
  
ˆ α (0) =

ˆ d ge ⋅ ˆ d eg
−3hΔ

, 
  
ˆ α (1) =

ˆ d ge × ˆ d eg
−2hΔ

, 
  
ˆ α ij

(2) =
1

−hΔ
( ˆ d ge

i ˆ d ge
j + ˆ d ge

i ˆ d ge
j ) / 2 − ˆ α (0 )δij( ) .

(d)  For the particular case of g; Jg =1 / 2 → e;Je = 3 / 2 , show that the rank-2 tensor part
vanishes.  Show that the light-shift operator can be written in a basis independent form of a
scalar interaction (independent of the sublevel), plus an effective Zeeman interaction for a
fictitious B-field interacting with the spin 1/2 ground state,

  
ˆ V LS = V0 (x) ˆ 1 + B fict(x) ⋅

r ˆ σ 

where

  
V0 (x)=

2
3
U1

r 
ε L(x)

2
 (proportional to field intensity) and

  
B fict(x)=

1
3
U1

r 
ε L
*(x) × r 

ε L(x)
i

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ , (proportional to the field ellipticity),

and I have written   E(x) = E1
r 
ε L(x) .   Use this form to explain your results form part (b) on the

transition g; Jg =1 / 2 → e;Je = 3 / 2 .


